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Abstract. In this paper, we consider a system of viscoelastic wave equations of Kirchhoff
type with delay and logarithmic nonlinearity. We obtain the local existence of solution by
using the Faedo-Galerkin approximation and under suitable conditions, we prove the blow up
of solutions in finite time.
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1. Introduction

In this paper, we concerned with the following a system of logarithmic viscoelastic
wave equations of Kirchhoff type with delay.

t

916 — M(||V0]]3) A0 + / g(t — 5)AB(s)ds + «|0,0(x, t)[*10,0(x, 1)
0

+ Bl8:0(x,t — T)|“10:0(x,t — T) = 0]6]P 2 In |0k, z € Q,t >0, )
O(x,t) =0, z € 0Q,t >0, W
o0 (z,t — 1) =fo(z,t — 1), x € Q,t € (0,7),
0(x,0) = 0p(x), 0:0(x,0) =01(x), x € 1,
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where () is a bounded domain of R", with a smooth boundary 92. T > 0 is a
time delay term and k, &, 3 are positive real numbers and p > 2. The initial datum
(80,01, fy) belong to a suitable space. The source term 0]|0/P~21n |0|* appears natu-
rally in nuclear physics, optics, geophysics, supersymmetric and ination cosmology
[1, 3]. The problems without delay (i.e., § = 0) has been considered by many au-
thors during the past decades and many results have been obtained [2, 6, 10, 14]
and the references therein. In [13], Wu and Tsai considered the following equation

t

96 — M(||V0]]3) A0 + / g(t — s)AB(s)ds — A(8;0) = £(6).
0

with the same initial and boundary conditions as defined in (1) and established
the global existence, asymptotic behavior and blow-up properties. Later, Wu [12],
extended the result of [13] under a weaker condition on g. In [5], Mahdi, Ferhat
and Hakem investigate the following initial boundary value problem for a system
of viscoelastic wave equations of Kirchhoff type with a delay term in a bounded
domain

t

0u0—M (|| V0]3)A0 + / g(t — s)A0(s)ds + o|9,0(x, 1) 19,0(x, 1)
0
+ Bl00(z, t — T)[*0,0(x, t — T) = 0]0P7 L,

with the same initial and boundary conditions as defined in (1) and established the
energy decay rate and the blow up of solutions. Recently, Piskin and Yuksekkaya
[11] consider a logarithmic nonlinear viscoelastic wave equation with a delay term
in a bounded domain

t
90 — AO +/ g(t — 5)AB(s)ds + xd;0(z, t) + POO(z, t — T) = 60" 21n |0],
0

with the same initial and boundary conditions as defined in (1) and they obtained
the local existence of solution by using the Faedo-Galerkin approximation and
under suitable conditions they proved the blow up of solutions in finite time. Mo-
tivated by the aforementioned works, in this paper by using the Faedo-Galerkin
approximation we obtain local existence of solution and finite time blow up of
solutions of the problem (1).

We assume the following conditions hold throughout the paper:

(A1) M(t) is a nonnegative C! function for ¢ > 0 satisfying

M(t)=a+bt",a>0,b>0 and m > 0.

(A2) the memory kernel g(t) : [0,00) — [0,00) is a bounded C! function satisfying

g(t) >0, a —/ g(t)dt =m >0 and g'(t) <0.
0

(As) there exist positive constants d, 7y, d such that

YM(s) - [M(s) " 5/05 g(y)dy} s> sd, Vs >0,

where M(s) = [ M(u)du.
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The organization of the remaining part of this paper is as follows. In the next
section, we will give some preliminary lemmas which are useful in the main results

of this paper. In section 3, we will prove local existence theorem and finite time
blow up of solutions.

2. Preliminaries

In this section, we present some lemmas which are useful in our main results. As
usual, (-,-) and || - ||, indicates the inner product in the space L?(£2) and the norm
of the space LP(Q), respectively.

Lemma 2.1 ([4/, Lemma 3.2) There ezists a positive constant C > 0 depending
on ) only such that

s/p
[/ﬁmmnwhm} gc{/ﬁmmnwmm+nvm§
Q Q
for any 6 € LPT1(Q) and 2 < s < p, provided that [, |8[P In|6|*dz > 0.

Lemma 2.2 ([/], Corollary 3.1) There ezists a positive constant C > 0 depending
on  only such that

[ClEEge

2/p A
< / |e|p1n|e|’fdx) vl
Q

provided that [, |6[P In|6|"dz > 0.

Lemma 2.3 ([}/, Lemma 3.4) There exists a positive constant C > 0 depending
on  only such that

1ol < C[llefE + Ivels] ,

for any © € LP(Q) and 2 < s < p.

In order to prove the local existence result, we introduce the new variable z as
in [9].

z(x,0,t) = 00(x,t —10), z € Q,0 € (0,1),
which implies that

10z(x, 0,t) + Ogz(x,0,t) =0 in 2 x (0,1) x (0,1).
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Therefore, problem (1) can be transformed as follows

0u0 — M(||V0]3) A0 + /Ot g(t — s)A0(s)ds + «|9,0(x, )| 10,0(x, 1) \
+ Blz(z, 1,t)[Lz(z, 1,t) = 0|6 2In 8], = € Q,t > 0,

T04z(x, 0,t) + Ogz(z,0,t) =0 in Q x (0,1) x (0,1) (2)

z(z,1,t) = fo(z, —70), =z € Q,t € (0,71),

0(x,0) = 0p(x), 0:0(x,0) =01(x), x € Q,

O(xz,t) =0, z € 0Q,t > 0.

For any regular solution of (2), we define the energy as

1 1 t b
B(t) =5 0013 + (20 VO)0) + 5 |a— [ s(ehas| V01 + 5 (IvoE™
// Hl(z,0,s)dods + 2|ye|ylﬁ’— / 18P In |8|*dz,
where
B a(l+1)—p

(g0 VO)(t) = /0 o(t - 5)||V6(t) — VO(s)|ds

and by simple calculations, we have

| 8t = )(V0(5). V0u(0)ds = = S VO + 5 o Vo)1)

s [sevon - ([ ewas) Ivowre].

Lemma 2.4 Let (0,2) be the solution of (2). Then, for some Co > 0, the energy
satisfies

B(0) = ~Co 1080 + [ 41w 1,00~ (¢ 0 VOO + ()] VLB <.
(1)

Proof Multiplying the first equation in (2) by 0,6, integrating over {2 and using
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integration by parts, we get

% Buate(t)ng + % <a - /O g(s)ds> Ive(b)ll3 + %(g 0 VO)(t)

b 2 +1 1 k /+1
+ gy (VO™ + 101 == [ (o mofds| + wlao(o)lit]

P / o(, 1, )l ez, 1, )08 (. ) + (D) VO3 — = (g 0 VO)(t) =
0 2 2

()

Integrating (5) over (0,t), we get

10003+ 5 (a— [ s(os) 9001+ (0 V)0

b

k 1 t
——\ v P ep—/epl 0|kd / 0(s)||51ds
+2(m+1)(HV 1) +p2|| 1 . Q! PIn [0 dx | + ; oc[|0s0(s)][

t 1 t
—l—B/ /|Z({L‘,1,S)dl'|€_lz(l',1,3)636(1',8)d8d1‘+2/ g(s)||VG(s)||%ds
0o Jo 0
Tt L,.o 1 9
1 [ (g o ey (s)as = Lol + L vegs
0
(6)

Multiplying the second equation in (2) by 0|6]°~'0 and integrating over Q x (0,1),
we get

d 1
o [ [ o et 0. t)dods
dt Ja Jo
_ g+1
= €+1//8 z(x,0,t)|"" dodx

:/ 122, 1,6)[ = Ja(2,0,6)|"| da
Q

T

__¢ 041 4 041
=2 [ ol 10 o+ 20002

Now multiplying the equation (7) by % and then adding to (6), we get

t t
E(t) + [a—g}/ 10:0(s) |51 1ds + = //|z(x,1,s)\f+1dxds
T Jo 0 Ja

t
—[3/ /|z(x,1,s)]é_lz(x,1,5)656(x,s)d3:ds
0 JQ

+ ;/0 g(9)[IV(s)|3ds — ;/0 (8" 0 VO)(s)ds = E(0).
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Differentiating with respect to ¢ on both sides, we obtain
E()+ [0~ 2] 000N + 2 [ oo 1,0) do
T TJo
- [5 / ’Z(IL‘, 17 t)‘eilz(xa 17 t)889(37, t)de’
Q

+ a0 VO()IE — (& o VO)(r) =

From the Youngs inequality, we get

‘
E/(t) + [oc—i eEJ |00 1L + [i_eiJ /QZZJrl(g;,l,t)da:

1

+ (VO[3 ~ 5 (& o Vo)1) <0

By (3), for some Cy > 0, we have

E(f) = —Cy {nat i+ [ zf“(a:,l,t)da:—<g’ove><t>+g<t>uveu§] <0

3. Local existence and finite time blow up solutions

Theorem 3.1 Let g € H2(Q)NW, wp € W and fy € L2(2 x (0,1)), then there
exists a unique solution (0,z) of problem (2) defined on 2x (0,%) for some constant
T > 0 satisfying © € L°°((0, %), H2(Q)NW), 9,0 € L>((0,T), W), where W = {6 €
H2(Q) : 6(0) = 04(0) = 0} is the closed subspace of H?(Q) endowed with the norm

equivalent to the usual norm in H2(Q).

Proof We prove this theorem by Faedo-Galerkins method. In the next step, we
obtain approximate solution of the problem (2).

Step 1: Approximate Solution: Let {goj}“;;’l be a complete orthogonal system
of W and and W, = span{¢1,--- ,¢,}, for each r € N Moreover, we defne V, =
span{iyn,--- ¢}, r € N and we can find a set of bases {t;(x,0)};_;, which is a
subset of L2(2 x (0,1)), such that

¢z<3770) - ¢’L<m)7 1= 1727 R

Choosing {60, } and {wo,} in W, and {zo,} in V, such that 8y, — 0 strongly in
W, wor — wo strongly in W, and zg, — fo strongly in L2(Q x (0,1)). We define
approximates solution in the form

Z i () gir (1

r(z,0,t) ZQ,Z)ZSCO'W
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where (0,(t),z,(t)) are solutions of the following system:

t
/(8tter)¢idx—/M(||V9T]§)A9T¢,-dw+// g(t — 8)A0,(s)pidsdx
Q Q QJo
+ / o010, ()| 940, (x, t) pidx + / Bla(e, 1,6)|"  a(x, 1, t)pidee
Q Q
:/9r|9r|p_2ln\er|k¢idx in Qx(0,%),
Q

/[T@tzr(ﬂs, 0,t) + 0szr(x,0,t)]pide =0 in 2 x(0,1) x (0,%F)
Q

zr(x,1,t) = fo,(z,—70), in Q x (0,1),
(JJ,O) = GOT(SC)7 ater(SC,O) = 917«($), x €,
r(x,t) =0, x € 90, t € (0,1). J

r

0
0
We obtain (8) has a unique solution { (g, (t), hir()) };:1 defined on (0, ) by using

the theories of ordinary differential equation. Rest of the proof is very similar to
Theorem 3.1. in [11, 15], so we omit details here. [ ]

Theorem 3.2 Let g € Hj(2) NHA(Q), 61 € H{(Q) and fo € L*(Q x (0,1)) be
given. Assume that the assumptions (A1)—(As) are fulfilled. Let p > k. Then for
any initial data satisfying E(0) < 0, the solution of (2) blows up in finite time.

Proof Let H(t) = —E(t) and using the Lemma 2.4, we obtain

H'(t) > [oc % — B} 10:0(8)[[11 + [" - M] /sz“(x, 1,t)dx

l+1 T (41 )
1 1
+ 28 VO(D3 — 5 (& o Vo))
Hence,
0<H©) <H() <+ [ 8P nfofds < ol (10)
Q

Next, we let N(t) = ||0]|3 and differentiating twice, we get

() = 2 / (0,0)0dz
Q
and

N/ (t) = 2||ate||§+2/(atte)edx. (11)
Q
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Using the first equation in (2), we get

t
N"(t) =283 — 2M (|| Ve[3) [ VO|l3 + 2 /Q /0 a(t — 5)A0(5)0(t)dsd
9 / 19,0z, )[10()0,0(, t)dax (12)
Q

_2[3/ yz(x,1,t)\f—1e(t)z(x,1,t)dx+2/ 0 In |65z
Q Q

Using Holder’s and Youngs inequalities to get

// (t—s)VO(s)VO(t)dsdx
/0 o(t — )| VO(t ||2ds+// (t— 5)VO(1)(VO(s) - VO(1))dsdz  (13)

(50 V8)(1) + S IVO(1)3 / a(5)ds

Using (13) in (12), we get

3—2

N"() > pl340]3 + 2pH(t) + (p — 2)(5 0 VO) (1) + [ p] Vo2 [ s(s)ds
~2a|[V8(1)[3 — 2b(| VOIE)"™ " + alp + 1) VO]
+ - (IVOIE) ™ +dl Ve - 2a / 240, D018 (, t)dx
—2(5/9|Z(1:,1,t)|€_19(t)z(x,l,t)dac+Qp/Q/O z”l(m, o,t)dodx.
(14)
Using (A3) to get

N"(t) > ]|9:0]13 + 2pH(t) + (b — 2)(g 0 VO)(¢) + d|| VO[3

— z, )T "z xr — z(x =1 z(x T
2oc/Q|Bt6( ()0 (2, t)d 2[5/9\ (z,1,0)10(t)z(x, 1, t)d

1
—|—Qp// 7 (x, 0,t)dodx.
QJ0o

Now we define the functional

(15)

G(t) = H(t)' 77 + 2eN/(1).
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Differentiating on both sides and using (15), we obtain

G'(t) =(1 — o)H(t)"“H'(t) + 2eN"(¢)
> (1 - 0)H(t) " H'(¢) + 2¢p] 9403 + 2peH(t) + (p — 2)(g 0 VO)(2)

— 250¢/ 10,0(x,t)|710(t)0' (x, t)dx
Q

(16)
- 25[5/ |z(z,1,1)[*10(t)z(x, 1, t)dzx
Q
1
+£Qp/ / 72z, 0,t)dodz + d|| V3.
QJo
By Hélder’s inequality and from (10), we have
9|3t 1 (i8)dx| < (1018151118l <01||9||§Ii|!9”z+p+1HateHeH
(17)
bt L ¢
< col |0l H(E) w07 |0:6][ 444
By Youngs inequality and (9), we get
[ eloer @) < e[ lolE0) - ¢ 0 @) ]

(18)
where 0 = ﬁ - (51112 >, > 0,0 = L. Letting 0 < 0 < ¢’. Similarly, we can
have

-1 041
[t 10 a0ate 1,00 < a6 ol 0
(19)
- HO) (R
Applying (19) and (18) in (16), we have
G(0)> |(1- o) - 2=(c+ B)H(O)U-G’f—”] H(D)~H (1)
—2e(a+p §p+1 0 nglH

( )&r(|6][4 H(0)™° 20)

+2ep||3;0]3 + 2peH(t) + £(p — 2)(g 0 VO)(t)

1
—|—€Qp/ / 7Yz, 0, t)dodz + ed|| V0|3
QJo
But, for sufficiently small e, we have
[(1 — o) — 2e(oc + B)H(o)‘f—“’g—é’} > 0.

So, put s = £+ 1 < p+ 1 such that [|6] ; < c([|VO]3 + HGHEE), where
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1 7 .
¢=2(ax+ B){r+H(0)" % ¢ and taking d > ¢. Then

G'(t) >e(d — )| V0|3 — ecl|0|[P11 + 2ep||0:0]|3 + 2peH(t)

1
+e(p—2)(goVO)() +69p// 2t (2, 0,t)dodz +ed|| V0|3 (21)
QJo
> e | V05 — ena|8]071 + ensH(t) + epal|0,0][3 + ens(g 0 VO)(1),
where u; = d —c,lo = ¢, U3 = 2p, iy = 2p and pus = p — 2. Next, using the

technique of Messaoudi [8], we suppose that p = 2ug + (p — 2ug), where pg <
min{ Ly, 12, U3, U5}, then (21) takes the form

G'(t) > (i — 16) VO3 — (s — ma)l[O)PT] + (s — ) H(t)
+ e(pa — 16)[|0:0113 + e(ps — 1) (g 0 VO)(¢)

(22)
> ex [HVGI@ + 181551 +HE) + 1903 + (0 VO)(?)

> ex [10151] + () + l12:013]

where x > 0 is the minimum of the coefficients of HOHgE, H(t) and [0,0]|3. Now
choose an ¢ so that

G(0) = H(0)} 79 + 25/ 0°0'dz > 0.
Q

Thus, we have
G(t) > G(0) >0, Vt >0.

Similarly as in [7], we also obtain

GV < C [l + H(t) + |a0l3] . ¥ ¢ > 0, (23)

for some number C' > 0. Combining (22) and (23), we arrive at
g'(t) > 2o, vi>o.

A simple integration over (0,t) yields

o/(1—0) 1
G2 G io e~ T2

This shows that G(t) blows up in finite time

C(1-o0)
T < .
- 5xo‘g(0)0/(1_c)

This completes the proof of theorem. [ |
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