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Abstract. In the present paper, we have focused on the antiviral treatment of avian influenza to 

predict the situation of the disease and analyzed the stability of the model at the equilibrium points 

(disease-free and endemic). In this concern, we have applied the SITR model based on the 

well-known SIR model to calculate the basic reproduction number and final size relation. 

Important parameters, such as susceptible, infective, treatment, and removal (SITR) rate under the 

compartmental method have been studied theoretically. The analytical results highlight that the 

model results are locally and globally stable at disease-free equilibrium if the basic reproduction 

number is less than one and it is locally and globally stable at endemic equilibrium if the basic 

reproduction number is greater than one. The numerical simulations of the developed model 

(SITR) are performed graphically with the help of the Range-Kutta method and we have also 

observed that each compartment has much affected by the infection and death rate, whereas 

re-susceptive has no significant effect on compartments. 
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1. Introduction

Avian influenza (H5N1) was first reported and diagnosed at ICCDRB in Bangladesh in 

2008 and every year it is infrequently spread out in the Asia subcontinent as well as 

Bangladesh. The transmission of this influenza occurs in Bangladesh because of its 

geographical and tropical conditions. The migration of birds to Bangladesh from other 

countries (such as Russia, East Europe and Asia) is one of the major factors to spread out 

this disease. Avian influenza may be highly pathogenic or low pathogenic based on the 

virus’s molecular characteristics. For low pathogenic poultry show no major signs of 

disease and exhibit several symptoms of illness such as loose feathers and a drop in 

decrease of production. For highly pathogenic they show several disease symptoms with 

high mortality up to 100% [23]. 

The control strategy of avian influenza targets to minimize the risk factors and 

transmission from birds to birds or birds to humans or humans to humans. Vaccination of 

avian influenza is the first stage to prevent and if the diseases are spread out then antiviral 

treatment is the alternative option for protecting the poultry from influenza. Treatment 

may be gives to diagnose infective of seasonal influenza and it is short supplied [5].  

There are no specific treatments for avian influenza, but treatment with broad-spectrum 

antibiotics control secondary pathogens, and increasing house temperature may reduce 

morbidity and mortality, although treatment with antiviral compounds is not recommended. 

Treatment with the combination of immune-modulators and antiviral agent significantly 

reduce mortality rate and it is relatively high over 10%-50% [26]. The mortality rate due to
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avian influenza is very high up to 90-100% within 48 hours [21]. Parvin et al. [20] studied 

the Mortality rate of commercial chicken in Bangladesh and showed that it was higher in 

Mymensingh (70-75%) compared to lower in Tangail (35%). 

Several antiviral treatments were applied for avian influenza (AIV), such as 

Amantadine, Rimantadine, oseltamivir, Zanamivir, etc. and usually, these were used with 

water or food to the birds.  Amantadine is the cheapest antiviral drugs for controlling of 

AIV, which can be used to the infected poultry only with water or foods. The morbidity, 

mortality, and transmissibility were decreased after using amantadine; resulting egg 

production was increased [24]. But avian influenza in both humans and birds were mostly 

resistant to amantadine [6,8,15] and Govorkova et al. [14] found that AIV 

amantadine-resistant was double (62.2%) compared with the number at resistant strains of 

avian origin (31.6%). All recovered birds were susceptible again due to antiviral treatment 

for avian influenza [17,24]. 

The stability analysis of an epidemic model is very important but very complicated. 

When a model is formulated, it is very momentous to analyze the stability. Mainly, 

researchers use two methods: (i) the first method represented by Lyapunov is called direct 

method, and (ii) the second is indirect method and the system may be stable or unstable at 

the equilibrium points [12]. The SIR model is derived for transmitted disease considering 

several assumptions, and mathematical analysis becomes more significant by relaxing 

some assumptions, remembering this, the SIR model is deterministic but there are no 

probabilities [2]. To the model of annual influenza, treatment population can affect the 

susceptive and infect the new population and treatment can reduce the infection rate. If 

expose period is very short of the outbreak and we can avoid that for this seasonal 

influenza.  

Some researchers [3,7,19] studied the frictional order SIR model, and found the 

stability of the model.  Casagrandi et al. [7] developed the SIRC model of influenza A 

type virus with cross-immune population and showed that prevalence of a virus was 

maximum for an intermediate value of basic reproduction number 0( )  and increasing 

of cross-immune complicate the system. Shahed et al. [22] discussed asymptotic stability 

at disease-free equilibrium for fractional-order SIRC model of influenza A and found that 

at disease-free equilibrium it will be locally stable if 0 1   and unstable if 0 1   

[22]. Yang et al. [25] developed the SIR model of influenza for self-management and 

vaccination scenario of the outbreak of the disease and shown that early intervention of 

self-management and vaccination is more effective than the later intervention [25].  The 

effective of drug treatment can be very important factor to control the outbreak of the 

disease and treatment effects adversely in the pandemic influenza [13].  Das et al. [9] 

studied the SIR model with treatment effect on the removal rate of the transmitted disease 

and found the stability of the model at two equilibrium points, which were the similar to 

Shahed et al. [22]. However, separate treatment compartment is not considered, since the 

population of treatment can infect the susceptive.    

From the above studies, it is clear that there is a scope to investigate the avian influenza 

by compartment method. Therefore, we intend to investigate the effect of treatment of the 

population of SITR model with the antiviral treatment using compartment method. We 

will also describe the stability of the model at two equilibrium points. Finally, we will 

analyze the dynamical variable of the model numerically and graphical. 

2. Mathematical formulation 

2.1 Model description 

For seasonal influenza epidemic come and go in a short time. In compartmental model, the 
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population is divided into several compartments, and diseases are transmitted into these 

dynamical compartments [16]. According to the compartmental model, we divided the 

total population into four compartments: Susceptible (S), Infective (I), Treatment (T), and 

Removal (R). Infected individuals can transmit disease to susceptible. Let   is the 

transmitted rate to the susceptible. A is the input of uninfected population which is 

including in susceptible compartment.   and   are the removal rate of the population 

that is removed for self-immune system and treatment, respectively.   is the rate to take 

dug treatment for infected individual and death rate is  . We take that, the resistance of 

the drugs of the virus is a rate of  . 

These assumptions lead to the mathematical model as 

 
( ) ,

dS
A S S I T R

dt
   = − − + +  (1) 

 
( ) ( ) ,

dI
S I T I

dt
    = + − + +  (2) 

 
,

dR
I T R R

dt
   = + − −  (3) 

 
,

dT
I T T

dt
  = − −  (4) 

where (0) 0,  (0) 0,  (0) 0,  (0) 0S I R T    and lim ( ) 0,
t

S S t
→

=   lim ( ) lim ( ) 0
t t

I t T t
→ →

= =

represent the initial and boundary conditions, respectively. The physical description of this 

problem is given in Figure (1). 

 
Figure 1. Sketch of the model described by the Eqs. (1)-(4). 

2.2 Disease-free equilibrium 

For diseases-free equilibrium, an equilibrium solution of the systems of Eqs. (1)-(4), that 

is, 

0,
dS dI dT dR

dt dt dt dt
= = = =  

can be found with aid of 0I = . After solving the above system and using the initial 

conditions, we have 0T R= =  and .
A

S


=  Thus, diseases-free equilibrium becomes 
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0 0 0 0( , , , ) ( ,0,0,0)
A

S I T R


=  

Proposition 2.1 Prove that the basic reproduction number of the proposed model can be 

written as 

0

( )
.

( )( )

A   

     

+ +
 =

+ + +
 

Proof  We can separate the proposed model into two categories as disease and 

non-disease compartments. 

(i) Disease compartments 

 
( ) ( )

dI
S I T I

dt
    = + − + + , 

 
dT

I T T
dt

  = − − , 

(ii)  Non-disease compartments  

 
( ) ,

dS
A S S I T R

dt
   = − − + +  

 
,

dR
I T R R

dt
   = + − −  

In general, the above disease and non-disease compartments can be written as 

 
( , ) ( , )i

i i i i i i

x
f x y v x y

t


= −


 (5) 

 
( , )i

i i

y
g x y

t


=


 

(6) 

where xi and yi be the subpopulations in disease and non-disease compartments, 

respectively.  𝑓𝑖  and 𝑣𝑖  are the rate of secondary infections increased in 𝑖  th disease 

compartment and the rate of disease other cases such as progression, death, recovery 

decreased in the i th disease compartment, respectively. Then, we get 
(

0
i

S I T
f

 + 
=  
 

   

and 
( )

( )
i

I
v

I I

  

  

+ + 
=  

− + + 
. 

We assume that all new infections are secondary infections and infected by infected 

population, and linearizing the above system (Eqs. (5)-(7)) for diseases compartment we 

get 1( )x F V x = − , where 

0(0, )i

i

f
F y

x


=


and 1 0(0, )i

i

v
V y

x


=


 

which gives 

0 0

0 0

S S
F

  
=  
 

and 
1

0
.V

  

  

+ + 
=  

− + 
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According to Diekmann and Heesterbeek [10], the next-generation matrix is 1

1k FV −=  

at diseases free-equilibrium and the basic reproduction number is the positive eigenvalue 

of the matrix k, Driessche et al. [11] and given by 

0

( )
.

( )( )

A   

     

+ +
 =

+ + +
 (7) 

                                                                                  ◼ 

Proposition 2.2 Show that the disease-free equilibrium of the model is locally 

asymptotically stable if 0 1  , and unstable 
0 1  . 

Proof  The Jacobian matrix J is given by 

( ) ( ) 0

( ) 0 0
.

( )

0 ( )

S S I T

J
S S I T

      

  

     

   

 − + + + 
 

− + =
 − − − − +
 

− + 

 (8) 

At disease free-equilibrium, Eq. (8) becomes 

1

1 2

0F V
J

U U

− 
=  
 

 

where 
0 0

1

S S
U

 

 

− − 
=  
 

 and 
2

0 ( )
U

 

 

− 
=  

− + 
. 

The disease-free equilibrium is locally asymptotically stable, if the eigenvalues of 

Jacobian matrix at disease-free equilibrium have a negative real part. Since the eigenvalues 

of J are that of 1F V−  and 2U . It is clear that the eigenvalues of 2U  are negative 

(Driessche et al. [11]).   

Thus, the stability of J is depended on the eigenvalues of 1F V− . That is, the 

disease-free equilibrium is stable if all the eigenvalues of 1F V−  have the negative real 

part. Here F is non-negative and 1V  is non-singular. 

Now characteristic equation of 1F V−  can be written as 

2

1 1 1 1 traceof ( ) determinent of ( ) 0F V F V −  − + − =  

2

1 1[2 ) ] ( )( ) ( ) 0
A A

               
 

+ + + + − + + + + − + + =  

According to Routh-Hurwitz’s condition the system will be stabile if  

[2 ) ] 0 and ( )( ) ( ) 0,
A A

             
 

+ + + −  + + + − + +   

which give that 0

( )
1

( )( )

A   

     

+ +
 = 

+ + +
. Consequently, we can prove that it will be 

unstable if 0 1  . This completes the proof.                                           ◼ 

Proposition 2.3 Show that the disease-free equilibrium of the model is globally 
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asymptotically stable if 0 1  , and unstable 0 1  . 

Proof we introduce the linear Lyapunov function in the following way: 

1L CI DT= +  

where C and D are constants and the derivative of Lyapunov function can be written as 

1L CI DT= +  

Using the value of I and T  from Eqs. (2) and (3). 

1

( ( ) ( ) ) ( )

( ) ( )

( )
( ) ( 1)

L

C S I T I D I T T

C SI C I D I C S T D T

S S
C I D I C T D T

       

        

     
  

           

= + − + + + − −

= − + + + + − +

 +
= + + − + + − 

+ + + + + + + + 

 (9) 

where ‘dot’ represents differentiation with respect to time. A perturbation method can be 

applied to Eq. (9), while the reproduction number takes the form as 
( )

S
D C

 

 
=

+
 and 

since 0 /S S A = =  at disease free-equilibrium. And after simplifying Eq. (9) becomes 

0 1( )( 1)I L  + +  − = . 

The disease free-equilibrium is globally asymptotically stable if  1 0L   and above 

Eq. (9) provides that 0 1  .                                                          ◼ 

2.3 Endemic equilibrium 

For endemic equilibrium, an equilibrium solution of the systems of Eqs. (1)-(4) can be 

found 

0
dS dI dT dR

dt dt dt dt
= = = =  

with 0.I   After solving the above system in the case of endemic equilibrium, we have 

the following relations 

0

0 0

( )( ) 1 ( )
,  (1 ),  ,  .

( )( ) ( )( )
e e e e e

S
S I T I R I

        

             

+ + + +
= = − = =
 + + + + +  + + +

 

Thus, endemic equilibrium is ( ), , ,e e e eS I T R . 

Proposition 2.4 Prove that the endemic equilibrium of the model is locally asymptotically 

stable if 0 1,   and unstable 0 1  . 

Proof The Jacobian matrix J is given by the Eq. (8) and at endemic equilibrium 

( , , , )e e e eS I T R  the Jacobian matrix becomes as 



A. Malek and A. Houqe/𝐼𝐽𝑀2𝐶, 11 -03 (2021) 1-16.                         7 
 

 

( ) ( ) 0

( ) 0 0

( )

0 ( )

e e e e

e e e e

S S I T

S S I T

      

  

     

   

 − + + + 
 

− + 
 − − − − +
 

− + 

 

and this can be written briefly as 
1 2

3 4

P P
J

P P

 
=  
 

 where 

( )

( )
( )

( )

( )

1 2 3

4

0
,  ,  ,  

0 0

and .
0

e e e ee e

e e

S S S SI T
P P P

I T
P

       

    

   

 

− + +  − − +  
= = =     

− +    

 − − +
=  

− + 

 

The endemic equilibrium is locally asymptotically stable, if the eigenvalues of Jacobian 

matrix at endemic equilibrium have a negative real part. Since the eigenvalues of 𝐽 are 

those of 1P  and 4P . Moreover, the eigenvalues of 4P  will be negative, if 

( )e eI T  + +  or ( )e eI T +  is negative.  

Let 
1

( )( )

( )( )
A

   

       

+ +
=

+ + + + +
 and 

2A


 
=

+
 then ( )e eI T +  

becomes 
1 2

0

1
(1 ) 1A A 

 
+ − 

 
 which will be negative iff 0 1  .                    ◼ 

Proposition 2.5 If 0 1  , then show that at the endemic equilibrium, the proposed model 

is globally asymptotically stable. 

Proof Letting the Lyapunov function following as 

2 ( ln ) ( ln ) ( ln ) ( ln ).e e e e e e e e

e e e e

S I T R
L S S S I I I A T T T B R R R

S I T R
= − − + − − + − − + − −  

After differentiating the Lyapunov function which gives 

2 (1 ) (1 ) (1 ) (1 )e e e eS I T R
L S I A T B R

S I T R
= − + − + − + −  (10) 

Since ( ), , ,e e e eS I T R  is the equilibrium point of the model then, we can write Eqs. (1)-(4) 

as 

( ) 0,e e e e eA S S I T R   − − + + =  (11) 

( ) ( ) 0,e e e eS I T I    + − + + =  (12) 

( ) 0,e eI T  − + =  (13) 

( ) 0.e e eI T R   + − + =  (14) 

The first term of Eqs. (10) can be written with the help of Eq. (1) as 
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(1 ) (1 )[ ( ) ]e eS S
S A S S I T R

S S
   − = − − − + +  

Using the value of A form Eq. (11), the above term becomes 

( )
( )

( )

( )
( )

( )

(1 ) (1 ) (1 ) 1 1

               (2 ) 1

                  1

e e e

e e e e

e e e e

e e

e e e e

e e e e e e

e e e e

S I TS S RS
S S S I T R

S S S S I T R

S I TS SS I T
S S I T

S S S I T S I T

R S R S
R

R S RS


   




  

 



  +  
− = − − + + − + −     +     

 ++
= − − + + − + −  + + 


+ − − +







 

Similarly, we have found the second, third and fourth terms. 

Second term: 

 (1 ) (1 ) ( ) ( )e eI I
I S I T I

I I
    − = − + − + +  

( )
( )

( )

( )
( )

( )

( )

( )

(1 ) (1 )

             1

e e

e e e

e e e e

e

e e e

e e e e e e e

S I TI I I
I S I T

I I S I T I

S I T SI I TI
S I T

S I T I S I I T


 



 
 

 

 +
− = − + − 

+  

 + +
= + − − + 

+ +  

 

Third term: 

 (1 ) (1 ) (1 ) 1e e e e

e e

e e e e e

T T T T II T I T
T I T T I I

T T T I T I T TI
    

   
− = − − − = − − = − − +   

   
 

Fourth term: 

 (1 ) (1 ) ( )

               (1 )( )

( )
               ( ) 1

( )

e e

e

e e

e e e

e

e e

e e e e e

R R
R I T R

R R

R I T R
I T

R I T R

R I TI T R
I T

I T R R I T

   

 
 

 

  
 

   

− = − + − +

 +
= − + − 

+ 

 ++
= + − − + 

+ + 

 

Therefore, the Lyapunov function can be written in differential form as 

( )
( )

( )
2 (2 ) 4

      3 3

( )
      ( ) 3

( )

ee e e e

e e e e

e e e e e

e e e e

e

e e e e

e e e

e e

e e e

SI I TS S I TS I
L S S I T

S S S I S I I T I T

R S I T IRS T
R A I

R S R S I T TI

R I T I TR
B I T

R R I T I T

 
  

 

 

   
 

   

 + +
= − − + + − − − −  + + 

   
+ − − − + − − −   

   

 + +
+ + − − − 

+ + 

 (15) 
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( )      2 2      

      2 ( ) 2

e e e e

e e e

e e e e

e e e

e e e

e e e

I T R SI T RS
S I T R

I T I T R S RS

I I TI I T
A I B I T

I I I T I T

 
  

 

  
  

   

   + +
− + + − − + −   

+ +   

   ++
− + − − + + −   

+ +   

 

 Since the arithmetic mean exceeds the geometric mean, then we can express the 

following inequalities: 

 
2 0,e

e

S S

S S
− −   

 ( )

( )
4 0,

ee e e

e e e e

SI I TS I TI

S I S I I T I T

 

 

+ +
− − − − 

+ +
 

 
3 0,e e

e e

I T IT

I T TI
− − −   

 
3 0,e e

e e

R S RS

R S R S
− − −   

 ( )
3 0.

( )

e e e

e e e

R I T I TR

R R I T I T

   

   

+ +
− − − 

+ +
 

Inside the bracket of sixth, seventh, eighth and ninth terms of Eq. (15) can be expressed 

as 
21 ( 1)

2 0,  0
a

a a
a a

−
+ − =   . Thus 2 ( , , , ) 0L S I T R  . If , ,  e e eS S I I T T= = =  and 

eR R=  then 2 ( , , , ) 0L S I T R = . Therefore, the largest invariant set ( ), , ,e e e eS I T R   is 

 * ,  where 
*  is the endemic equilibrium. According to LaSalle’s invariant principle 

*  is globally asymptotically stable every solution approach to the endemic equilibrium 

( ), , ,e e e eS I T R  of the model as t →  for 0 1  . 

3. Results and discussion 

The control system, which is formed by the system of Eqs. (1)-(4) have solved numerically 

with the initial and boundary conditions. We have controlled numerical simulation using 

various choices of parameters (Table 1) and have observed the solution in each 

compartment. 

Table 1. Various referenced value of parameters. 

Parameters Value References 

Infection rate (  ) 0.006 per day [4] 

Mortality rate (  ) 50%-90% [26] 

Treatment rate ( )  100% … 

Drug Resistance ( ) 31.6%-62.2% [14] 

Recovery rate without treatment ( ) 0%-10% [21] 

Recovery rate with treatment ( ) 10%-50% [26] 

Re-susceptive rate ( ) 100% [24] 
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The results of the situation of each compartment are shown graphically in Figures (2) to 

(5) and antiviral treatment demonstrate the whole model. 

  

  

  

  

Figure 2. Variation of the susceptible with the variation of the parameters using tabulated 

values. 
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Figure 3. Variation of the infective with the variation of the parameters using tabulated values. 
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Figure 4. Variation of the treatment with the variation of the parameters using tabulated values. 
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Figure 5. Variation of the removal with the variation of the parameters using tabulated values. 
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In Figure 1, variations of susceptive are represented against the variation of several 

parameters, such as migration rate, infraction rate, the resistance of drug rate, mortality 

rate, recovery rate, etc. The susceptive rate, other parameters have no significant depends 

on infection rate and it exponentially decreases with the increasing of time whereas effect 

(Figure 2). 

In Figure 3, the infective rate increases from initial to a certain point and then decreases 

up to dismiss, and this compartment is much affected by infection rate, mortality rate, and 

recovery rate due to treatment. Moreover, it is also observed that the migration rate, drug 

resistance rate, and re-susceptive rate have no sensitive effect. In addition, the infective 

rate increases with the increase of infection and drug resistance rate and decreases with the 

increase of mortality rate. Similar results are found for the treatment compartment as 

infective compartment. In this compartment, individuals increase with the decreasing of 

removal rate due to treatment (Figure 4). Finally, we have observed in Figure 5 that the 

individual of removal compartment increases with the increase of infection, treatment, 

drug resistance, recovery rate, and decreases with the increase of mortality rate. 

Finally, we have compared our present model’s result with the Feng et al. [13] and Das 

et al. [9] and in Figure 6. In this figure, we have seen that the present model shows good 

agreement with the model of Das et al. [9], whereas, a slight difference observes with the 

model of Feng et al. [13]. The reason of difference occurs may be due to the value of the 

choice of the parameters. 

 

Figure 6. Comparison of the model results of infection with other’s models. 

4. Conclusion 

In this study, a mathematical model (SITR) of influenza optimized by antiviral treatment 

was presented and discussed its stability at the equilibrium points in terms of basic 

reproduction number. Important parameters, such as susceptible, infective, treatment and 

removal rate under the compartment method were studied theoretically. The model result 

showed that it was locally and globally stable at disease-free equilibrium if the basic 

reproduction number is less than one ( 0 1  ) and locally and globally stable at endemic 

equilibrium if the basic reproduction number is greater than one ( 0 1  ). Moreover, the 

effects of several parameters on each compartment were presented graphically. In addition, 

we also compared the present model (SITR) with other’s models and found good 

agreement. 
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