
International Journal of

Mathematical Modelling & Computations

Vol. 11, No. 01, Winter 2021, 1- 14

Modeling Banana Xanthomonas Wilt with Protection

T. S. Fanirana,∗, A. A. Ayoadeb and A. O. Faladec

aDepartment of Computer Science, Lead City University, Ibadan, Nigeria,
bDepartment of Mathematics, University of Lagos, Lagos, Nigeria,

cDepartment of Mathematics, African Institute for Mathematical Sciences, Mbour,

Senegal.

Abstract. Banana Xanthomonas Wilt (BXW) is an infectious disease caused by Xan-
thomonas campestris pv. musacearum. The model incorporates a new class of protected ba-
nana plants into banana plant population. This new class are the susceptible banana plant
that are treated with fertilizers. The basic reproduction number, Ro, is obtained using next
generation matrix. The model analysis is done and equilibrium points are analysed to establish
the local and global stability of disease-free and endemic equilibrium solution. It is shown that
if the basic reproduction number, Ro ⩽ 1, then banana xanthomonas wilt is cleared from ba-
nana plantation and is globally asymptotically stable and if Ro > 1, the endemic equilibrium
point is globally asymptotically stable and the disease persists in banana plant population.
The impact of parameters in BXW model is investigated using sensitivity analysis. Numerical
simulations are performed to justify the analytical findings.
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1. Introduction

Banana and plantain are perennial herbs, which belong to the Musa genius of
the Musaceae family. They are cultivated in more than 120 countries throughout
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the tropics and subtropics [1].They are distributed mainly on margins of tropical
rainforests [13]. Total annual world production of banana is estimated at 130 million
tons and this makes it ranked the fourth most important food crop in the developing
world after rice, wheat and maize [4].
Banana Xanthomonas Wilt is a vector-borne disease caused by Xanthomonas

Campestris pv. Musacearum (xcm). The impact of BXW (Banana Xanthomonas
Wilt) are both extreme and rapid, unlike those of other diseases that cause grad-
ually increasing losses over years. The disease leads to absolute yield losses and
death of the mother plant production cycles [12]. Following the first report of the
disease in Uganda in 2001, a lot of research has been carried out and much data
has been generated about the disease spread and control dynamics (See [6], [8],
[10]) and references cited therein.
Mathematical models have been developed to model BXW dynamics in which

one can predict through these models, the behaviour of the disease and control the
particular epidemic. Nakakawa et al., [9] developed a deterministic model with op-
timal control in which the use of clean planting materials, debudding, disinfection
of tools and roguing are taken into consideration in their model. They used Pon-
tryagin’s Maximum Principle to characterize and discuss possible control strategies
that substantially reduce the infection levels of BXW within a plantation. In their
paper, they did not consider a fraction of susceptible plant that are treated with
fertilizers as this is an effective control strategy to reduce the BXW spread. Horub
et al., [5] formulated a mathematical model for the vector transmission and control
of Banana Xanthomonas Wilt by incorporating roguing of infected banana plants
and replanting using healthy suckers without considering a new class of fraction of
susceptible plants that are treated with fertilizers on the transmission dynamics.
This paper modifies and extends deterministic model developed by Horub et

al., [5] by incorporating a new class of protected plants into the banana plant
population. The new class of protected plants is the fraction of susceptible plants
that are treated with fertilizers (Potassium, Calcium and Nitrogen). This is because
exogenous application of potassium, calcium and nitrogen reduces susceptibility to
xanthomonas wilt in banana plants [2]. The formulated model is then analysed
theoretically using suitable Lyapunov function to establish both global stability of
disease-free and endemic equilibrium points.
In addition to the introductory section, the paper has three more sections. Sec-

tion 2 shows the mathematical formulation of the model. In Section 3, transfor-
mation of the model is presented. In Section 4, stability analysis of the model is
carried out. Section 5 discusses the results and concludes the modeling work.

2. Materials and methods

In this section, a model for the spread of banana xanthomonas wilt in the banana
plant population and vector population is formulated. The total plant population
denoted by NP is partitioned into three classes namely; the susceptible banana
plants SP , the infected banana plants IP and the protected banana plants FP and
so that NP = SP + IP + FP . Also, the total vector population denoted by NP , is
sub-divided into two classes namely; the susceptible vector, SV and the infected
vector IV . Thus the total population NP and NV for banana plants and vector
population is given by NP = SP + IP +FP and NV = SV + IV . The parameters in
Table 1 are chosen from the paper developed by Horub et al. [5].
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Table 1. Summary of the parameters.

Parameters Meaning Value
µp Death rate of infected banana plants 0.0167

ω Emergence rate of new suckers 0.001

h Harvesting rate of susceptible banana plants 0.0056

r Roguing rate of infected banana plants which 0.0105
is also the replanting rate of healthy suckers

ρ Fraction of susceptible banana plants that 0.5 (Assumed)
are treated with fertilizer

(1− ρ) Remaining fraction of susceptible banana 0.5 (Assumed)
plants that are not treated with fertilizer

α Contact rate between susceptible banana 0.021
plants and infected vector

θ Contact rate between susceptible vector and 0.021
infected banana plants

ωv Immigration or birth rate of vector 0.02

µv Emigration or death rate of vector 0.02

m The number of vector per banana plant 1

2.1 Assumptions and decriptions of the model

The following assumptions were made in order to formulate the equations of the
model:

(a) The total banana plant population size is variable whereas the total vector
population size is constant.

(b) There is no latency in both the host and vector populations and the trans-
mission of the bacterium by the vectors is by non-circulative and non-
persistent mode.

(c) The emigration and immigration rates of the vectors are equal so that the
total vector population size is constant.

(d) The roguing rate of infected plant is balanced by the replanting rate of the
healthy suckers.

(e) Fraction of susceptible banana plants that are treated with fertilizer move
to the protected banana plant compartment.

(f) Remaining fraction of susceptible banana plants that are not treated with
fertilizer move to the infected banana plant compartment.

Susceptible banana plants are recruited through two processes, namely, emer-
gency of new suckers at a constant rate ω and replanting rate r using healthy
suckers. Healthy plants are harvested at a rate h whose reciprocal is the life time
of a healthy banana plant. Roguing of infected plant is done at a rate r which is
also the replanting rate of healthy suckers. Infected banana plants die at a rate µp.
Susceptible vector population is recruited through the immigration of vectors. The
emigration rate of both classes of vectors is assumed to be equal to the immigration
rate at a constant µv.

In the model, the term
αSP IV
NP

denotes the rate at which the susceptible banana

plants get infected by infected vector IV and
θSV IP
NP

refers to the rate at which

the susceptible vector are infected by the infected banana plant host.
Applying the assumptions, nomenclature of parameters and definitions of vari-
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ables, the following system of ordinary differential equations is formulated:

dSP

dt
= ωSP − αSP IV

NP
+ rSP − hSP , (1)

dIP
dt

=
(1− ρ)αSP IV

NP
− rIP − µP IP , (2)

dFP

dt
=

ραSP IV
NP

, (3)

dSV

dt
= ωvNv −

θSV IP
NP

− µvSV , (4)

dIV
dt

=
θSV IP
NP

− µvIV . (5)

3. Transformation of the model

It is convenient to use fraction of population instead of population number. This is
done by dividing each population class by the total population and hence, we have

sp =
SP

NP
, ip =

IP
NP

, fp =
FP

NP
, sv =

SV

NV
, iv =

IV
NV

,m =
NV

NP
.

Differentiating the fraction with respect to time t gives the following:

dsp
dt

= ϕsp − αmspiv − ϕs2p + γspip, (6)

dip
dt

= αmspiv − ραmspiv − ϕspip − γip + γi2p, (7)

dfp
dt

= ραmspiv − ϕspfp + γfpip, (8)

dsv
dt

= ωv(1− sv)− θipsv, (9)

div
dt

= θipsv − ωviv. (10)

From the relation sp + ip + fp = 1 and sv + iv = 1, it implies that fp = 1− sp − ip
and sv = 1− iv which reduces to the following system of differential equations:

dsp
dt

= ϕsp − αmspiv − ϕs2p + γspip, (11)

dip
dt

= αmspiv − ραmspiv − ϕspip − γip + γi2p, (12)

div
dt

= θip(1− iv)− ωviv. (13)

where ϕ = ω + r − h and γ = r + µp.
For biological reasons, the model is analysed in the feasible region

T = {(sp, ip, iv) ∈ R3
+ : sp, ip, iv ⩽ 0, sp + ip = 1, 0 ⩽ iv ⩽ 1},
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that can be shown to be positively invariant with respect to the system (11)-(13)
where R3

+ denotes the nonnegative cone of R3 including its lower dimensional faces.
We denote the boundary and the interior of T by ∂T and T respectively.

3.1 Equilibrium point and basic reproduction number

The equilibrium is gotten by setting the right hand side of (11)-(13) to zero and
the system takes the form

ϕsp − αmspiv − ϕs2p + γspip = 0 (14)

αmspiv − ραmspiv − ϕspip − γip + γi2p = 0 (15)

θip(1− iv)− ωviv = 0 (16)

where Eo = (1, 0, 0).
The computation of the basic reproduction number Ro is needed in order to as-

sess the local and global stability of disease-free equilibrium. This is obtained by
expressing (6)-(10) as the difference between the rate of new infection in each in-
fected compartment F and the rate of transfer between each infected compartment
G. Hence, we have

 dip
dt
div
dt

 = F −G =

[
αmspiv − ραmspiv

θsvip

]
−
[
γip + ϕspip + γi2p

ωviv

]
.

The Jacobian matrices JF and JG of F and G are found about E0.

S = JFJ
−1
G =

 0
θ

ω
mα−mρα

ϕ+ γ
0

 .

Ro is the maximum eigenvalue of S given as

Ro =

√
αmθ − ραmθ

KTωv
,

where KT = γ + ϕ, γ = r + µp and ϕ = ω + r − h.

3.2 Local stability of disease-free equilibrium solution

The Jacobian matrix of (14)-(16) is given as

JE =

−(αmiv + 2ϕsp − ϕ− γip) γsp −αmsp
αmiv − ραmiv − ϕip −AT + 2γip αmsp − ραmsp

0 θ(1− iv) −(θip + ωv)

 (17)
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where AT = ϕsp + γ
The Jacobian matrix evaluated at Eo is given by

JE0
=

−ϕ γ −αm
0 −(ϕ+ γ) αm− ραm
0 θ −ωv

 (18)

One of the three eigenvalues are −ϕ. The other two are obtained from the sub-
matrix

JE0
=

[
−(ϕ+ γ) αm− ραm

θ −ωv

]
(19)

whose trace(JE0
) = −(KT+ωv) < 0 and det(JE0

) = 1−αmθ − ραmθ

KTωv
= 1−R2

o > 0

if Ro < 1.
Thus, Eo is locally asymptotically stable if and only if Ro < 1, and we have thus

established the following Lemma.

Lemma 3.1 The disease-free equilibrium Eo is locally stable if Ro < 1 and unsta-
ble if Ro > 1.

3.3 Global stability of disease-free equilibrium

The following result investigates the global behaviour of the model as its solution
trajectory approaches the equilibrium solution.

Theorem 3.1 The disease-free equilibrium Eo of (11)-(13) is globally asymptoti-
cally stable in T if Ro ⩽ 1 and unstable if Ro > 1.

Proof Consider the Lyapunov function L = θip +KT iv. Its time derivative is

L′ = θ
dip
dt

+KT
div
dt

L′ = θ(αmspiv − ραmspiv − ϕspip − γip + γi2p) +KT (θip(1− iv)− ωviv)

L′ = αmθspiv − ραmθspiv −KTωviv + γθi2p − γθip +KT θip −KT θipiv − θϕspip

L′ = αmθspiv − ραmθspiv −KTωviv + θip(γip − γ) + θip(KT −KT iv)− θϕspip

L′ = KTωviv

(
αmθsp − ραmθsp

KTωv
− 1

)
+ θip(γip − γ) + θip(KT −KT iv)− θϕspip

L′ = KTωviv(R
2
osp − 1)− θip(γ − γip)− θip(KT iv −KT )− θϕspip

⩽ KTωviv(R
2
osp − 1) ⩽ 0 if R0 ⩽ 1

Therefore, L′ ⩽ 0 for Ro ⩽ 1. One sees further that (sp, ip, iv) → (1, 0, 0) as t → ∞.
Consequently, the largest compact invariant set in {(sp, ip, iv) ∈ Γ : L′ = 0} is the
singleton E0 and by Lyapunov-Lasalle’s Theorem [7], the disease-free equilibrium
point is globally asymptotically stable in Γ if Ro ⩽ 1 and this completes the proof
of the Theorem. ■
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3.4 Local stability of endemic equilibrium

The dynamics of the model on a small scale when the pathogen is sustained in the
population is examined by deriving the Jacobian matrix for the system (14)-(16)
at the endemic equilibrium E∗. The matrix is derived as

JE∗ =

ϕ− αmi∗v − 2ϕs∗p + γi∗p γs∗p −αms∗p
αmi∗v − ραmi∗v − ϕi∗p −ϕs∗p − γ + 2γi∗p αms∗p − ραms∗p

0 θ − θi∗v −θi∗p − ωv

 , (20)

where s∗p, i
∗
p and

∗
v denote the quantities of susceptible bananas, the infected bananas

and the amount of the infected vectors when the ecosystem is invaded by the
pathogen.

Theorem 3.2 The endemic equilibrium of the model (14)-(16) is locally asymp-
totically stable in T if Ro > 1 and is unstable if otherwise.

Proof The endemic equilibrium of the system is locally asymptotically stable if
all the eigenvalues of (19) have negative real parts. The characteristic polynomial
in λ of (19) is given as

|JE∗I − λ| =

∣∣∣∣∣∣
m1 − λ m2 −m3

m4 m5 − λ m6

0 m7 m8 − λ

∣∣∣∣∣∣ , (21)

wherem1 = ϕ−αmi∗v−2ϕs∗p+γi∗p,m2 = γs∗p,m3 = αms∗p,m4 = αmi∗v−ραmi∗v−ϕi∗p,
m5 = −ϕs∗p − γ + 2γi∗p, m6 = αms∗p − ραms∗p, m7 = θ − θi∗v, m8 = −θi∗p − ωv, and
is evaluated as

a0λ
3 + a1λ

2 + a2λ+ a3 = 0, (22)

where a0 = 1, a1 = −m1 −m5 −m8, a2 = m2(m5 −m8)+m5m8 −m2m4 −m6m7,
a3 = m2m4m8 +m1m6m7 +m4m7m8 −m1m5m8.
Following Routh-Hurwitz stability criteria outlined in [11], the endemic equilib-

rium of the system (3.9)-(3.11) is locally asymptotically stable if a1 > 0, a2 > 0,
a3 > 0, and a1a2 − a0a3 > 0. ■

3.5 Global stability of endemic equilibrium

To investigate the dynamics of banana xanthomonas wilt on a large scale when all
the variables of the system coexist for the solution of the model, the analysis will
be extended beyond only a small region around the equilibrium by examining the
global stability of the non-zero equilibrium.

Theorem 3.3 The non-zero equilibrium of the system is globally asymptotically
stable in T if Ro > 1.

Proof Suppose sp = sp − s∗p, ip = ip − i∗p and iv = iv − i∗v. Define a quadratic
Lyapunov function k as

k(sp, ip, iv) = b1(sp − s∗p)
2 + b2(ip − i∗p)

2 + b3(iv − i∗v)
2, (23)
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where b1 > 0, b2 > 0, and b3 > 0.

dk

dt
= 2b1(sp − s∗p)

dsp
dt

+ 2b2(ip − i∗p)
dip
dt

+ 2b3(iv − i∗v)
div
dt

. (24)

We aim to show that
dk

dt
< 0 ∈ T to establish that R0 > 1.

dk

dt
= 2b1(sp − s∗p)[ϕsp − αmspiv − ϕs2p + γspip]

+ 2b2(ip − i∗p)[αmspiv − ραmspiv − ϕspip − γip + γi2p]

+ 2b3(iv − i∗v)[θip(1− iv)− ωviv]

(25)

dk

dt
= [2b1β(sp − s∗p)sp + 2b1γ(sp − s∗p)spip

+ 2b2(ip − i∗p)αmspiv + 2b2γ(ip − i∗p)i
2
p + 2b3(iv − i∗v)θip]

− [2b1(sp − s∗p)αmspiv + 2b1(sp − s∗p)ϕs
2
p

+ 2b2(ip − i∗p)ραmspiv + 2b2(ip − i∗p)ϕspip + 2b2(ip − i∗p)γip

+ 2b3(iv − i∗v)θipiv + 2b3(iv − i∗v)ωviv]

(26)

dk

dt
= [2b1β(sp − s∗p)

2 + 2b1γ(sp − s∗p)
2(ip − i∗p)

+ 2b2αm(ip − i∗p)(sp − s∗p)(iv − i∗v) + 2b2γ(ip − i∗p)
3 + 2b3θ(iv − i∗v)(ip − i∗p)]

− [2b1αm(sp − s∗p)
2(iv − i∗v) + 2b1ϕ(sp − s∗p)

3

+ 2b2ραm(ip − i∗p)(sp − s∗p)(iv − i∗v) + 2b2ϕ(sp − s∗p)(ip − i∗p)
2 + 2b2γ(ip − i∗p)

2

+ 2b3θ(ip − i∗p)(iv − i∗v)
2 + 2b3ωv(iv − i∗v)

2]

(27)

If
dk

dt
= X − Y then,

X =2b1β(sp − s∗p)
2 + 2b1γ(sp − s∗p)

2(ip − i∗p) + 2b2αm(ip − i∗p)(sp − s∗p)(iv − i∗v)

+ 2b2γ(ip − i∗p)
3 + 2b3θ(iv − i∗v)(ip − i∗p)

and

Y =2b1αm(sp − s∗p)
2(iv − i∗v) + 2b1ϕ(sp − s∗p)

3 + 2b2ραm(ip − i∗p)(sp − s∗p)(iv − i∗v)

+ 2b2ϕ(sp − s∗p)(ip − i∗p)
2 + 2b2γ(ip − i∗p)

2 + 2b3θ(ip − i∗p)(iv − i∗v)
2 + 2b3ωv(iv − i∗v)

2

Hence,
dk

dt
< 0 and R0 > 1 if X < Y . Also,

dk

dt
< 0 if sp = s∗p, ip − i∗p, and iv − i∗v.

Therefore, the maximum invariant set in [(sp, ip, iv) :
dk

dt
= 0] is the singleton E∗

and by LaSalle’s invariant principle as in [3], E∗ is globally asymptotically stable
in T where E∗ is the endemic equilibrium of the model. ■



Faniran et al./ IJM2C, 11 - 01 (2021) 1-14. 9

4. Sensitivity analysis

In this section, we carried out sensitivity analysis of parameters of the model system
(11)-(13) in order to determine the relative importance of the model parameters
on the disease infection. To determine how best to reduce the infection, it is nec-
essary to know the relative importance of the different factors responsible for the
infections.
Sensitivity indices could be computed numerically so as to figure out parame-

ters that have high impact on basic reproduction number R0 and which of the
parameters should be given preferential treatment by intervention strategies.
Analytically, sensitivity analysis on all parameters which account for disease dy-

namics is done using Chitnis et al (2008) approach, we compute sensitivity indices
of the R0 which measures initial disease infection and allow us to measure relative
change in a state variable when a variable changes.
The normalized forward sensitivity index of a variable to a parameter is the ratio

of the relative change in the variable to the relative change in the parameter. When
the variable is a differentiable function of the parameter, the sensitivity index may
be alternatively defined using partial derivatives.

Definition 4.1 The normalized forward sensitivity index of a variable, u, that
depends differentiably on a parameter, p, is defined as:

Nu
p =

∂u

∂p
× p

u

for u ̸= 0.

Consequently, we derive analytical expression for the sensitivity index of R0 as

NR0
pi

=
∂R0

∂pi
× pi

R0

where pi, i ∈ N denotes each parameter involved in R0.

Using Ro =

√
αmθ − ραmθ

KTωv
where KT = γ + ϕ, γ = r+ µp and ϕ = ω+ r− h, we

compute sensitivity index of each parameter with respect to the R0, for instance:

NR0
α =

∂R0

∂α
× α

R0
= 0.125546425× 0.036386811 = 0.004568234

We have Table 2 which summarizes the sensitivity indices of R0 with respect to
parameters NR0

θ , NR0
m , NR0

ρ , NR0
r , NR0

µp
, NR0

w , NR0

h , and NR0
ωv

.

Interpretation of sensitivity indices obtained in Table 2

The computed sensitivity indices on R0 with respect to the involved parameters
give insights to the model system proposed. Provided all parameters remain con-
stant, most sensitive parameter is m (number of vector per banana plant) being
the highest positive index. The indication is that if m increases by 100%, then R0

increases by 150%. Thus, as R0 continues to be higher, epidemic of the disease
infection tends to occur. Similarly, sensitivity indices of α, θ show direct variation
with respect to R0. Precisely, increase in α, θ i.e ( contact rate between suscepti-
ble banana plants and infected vector,contact rate between susceptible vector and
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Table 2. Numerical values of sensitivity indices of R0 with respect to parameter involved.

Parameter symbol Sensitivity Index

α + 0.004568
m +1.501134
θ +0.004568
ρ -0.00162
r Complex number
µp Complex number
w Complex number
h 0.001529
ωv Complex number

infected banana plants respectively) increases R0 more than h. There is decrease
in R0 when the ρ(fraction of susceptible banana plant that are treated with fer-
tilizer) increases. On the other angle, r, µp, w, ωv give complex number which is
an indication that their sensitivity index is complicated due to some biological or
environmental factors.

5. Numerical simulations of the model

In order to understand the overall picture of the disease behaviour, this section
provides numerical simulations of each of the population classes using a Maple
software package for plant and vector population. In addition, with the aid of
figures, the results of the simulations are discussed. The parameter values used in
the simulations are found in Table 1.
We perform the numerical simulations of the system of differential equations

of the susceptible plants, infected plants and protected plants to determine the
changes in the various populations of these compartments with time. There is a
sharp decrease in the population of susceptible banana plant as the population of
protected banana plant (fraction of susceptible plants that are treated with fer-
tilizers) increases with time. Our findings show an inverse relationship between
the susceptible banana plant population and protected banana plant population as
shown in the diagram. This means that the susceptible banana plant population
decreases as a result of increase in the population of protected banana plant. Pro-
tecting the susceptible banana plant population through treatment with fertilizers
reduces their susceptibility to BXW. Also, there is a decrease in the magnitude of
the infected banana plant population as the population of protected banana plant
increases. This could be attributed to the population of susceptible banana plant
and population of protected banana plant having an inverse relationship. Moreover,
the susceptible vector population increases as a result of decrease in the magnitude
of the infected vector population as indicated in the diagram.

6. Conclusion

We present a compartmental mathematical model describing the transmission of
BXW between the interacting banana plant and vector populations. The model
incorporates a new class of protected banana plant(fraction of susceptible banana
plant that are treated with fertilizer), denoted by Fp, into the banana plant
compartment. The disease-free and endemic equilibria are determined and their
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Figure 1. Graph of susceptible banana plant.

 

Figure 2. Graph of protected banana plant.

 

Figure 3. Graph of infected banana plant.

stability properties are investigated through an explicit formula for a threshold
parameter, known as the basic reproduction number. In addition, sensitivity
analysis of the model is carried out with a view to examining the factors most
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Figure 4. Graph of susceptible vector.

 

Figure 5. Graph of infected vector.

responsible for the transmission and spread of BXW. It is found that Ro is most
sensitive to ρ (fraction of banana plants that are treated with fertilizers, i.e
protected banana plants) in a negative sense. This means that increase in the
fraction of susceptible banana plants that are treated with fertilizer, will bring Ro

below unity, thereby curtailing the spread of BXW.

Previous efforts have focused attention on the roguing of symptomatically and
asymptomatically infected plants but this study recommends that protecting the
susceptible banana plants from being infected by applying fertilizers, is more ef-
fective in order to stop the spread of BXW. Efforts should be made by regional
governments to produce fertilizers which can be sold to farmers at a cheaper price
so that they can apply to susceptible banana plants which will protect them from
being infected. Protection of susceptible banana plants, through application of fer-
tilizers, is crucial in managing BXW as it reduces the spread of the pathogen.
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Appendix

The algorithms of the method used in carrying out the numerical simulations of
the formulated model, in this manuscript, are displayed below:

Dear Sir, we have incorporated the algorithms used in carrying out the numerical simulations in our 

manuscript. It can be found under section 7 (Appendix). Below is the algorithms used in our manuscript: 

>  
>  

>  

>  

>  
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