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Abstract : In the current study, a deterministic mathematical model of HIV and Cholera co-

infection is developed to analyze the impact of treatments in the presence of diseases in the 

population. The model consists of nine classes of the human population and one class of bacteria 

population. The formulated model is mathematically well-posed and biologically meaningful. 

The reproduction number is employed to analyze the extinction or spreading of the disease in the 

population. it is observed that, cholera has a positive impact on HIV patients and HIV also has a 

positive impact on the cholera patients. The separate analysis of each infection model and co-

infection model are presented. Further, the stability analysis of equilibrium points is included. 

Finally, numerical simulations are performed using Matlab software. The result of numerical 

simulations shows that early treatment is very powerful for clearing or controlling cholera within 

specified period of time and supports HIV/AIDS patients to live more years. 
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1. Introduction 

In 1981 a disease known as acquired immunodeficiency syndrome shortened as AIDS 

was discovered. AIDS is caused by infection known as human immunodeficiency virus 

shortened as HIV. Since then, it has been a cause of death for millions of people all over 

the world. AIDS patients are very weaken groups and unable to resist other diseases [10, 

11, 1, 2, 4]. 

Nowadays, HIV/AIDS is the most threatening disease for all humans and exposes a 

body to be easily attacked by pathogens. HIV/AIDS disease attacks all human beings 

without distinguishing color and race. HIV infection drops the number of key cells called 

CD4+T cells, in the infected human body. These CD4+T-cells facilitate communication in 

controlling and regulating body immune system. HIV cannot be cured by any treatment, 

but antiretroviral therapy (ART) can reduce the number of virus cells duplicated in the 

body or slow the advanced stage of the virus. The transmission mode of HIV disease is 

through unsafe sex, blood transfusion, virus exposed. The transmission mode of HIV 

disease is through unsafe sex, blood transfusion, virus exposed materials, etc [10, 11]. 

Even though many scholars studied HIV, to control and prevent the transmission 
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dynamics of the disease, still it persist in the population. Today there are millions of 

people living with HIV and many people are killed because of this disease. Today there 

are millions of people living with HIV and many are facing different challenges because 

of this disease [4,5]. 

  Cholera is a contagious intestine disease that kills patients within hours if left 

untreated. Medical facts shows that cholera can be caused by bacterium called vibrio 

cholera that exists in aquatic environment. This infection results in dehydration and so far 

killed millions of people. Cholera was first described by a physician called Hippocrates, 

the most powerful and tough person in the history of medicine. Cholera infected person 

shows symptoms like continuous vomiting and diarrhea [6,9,8].  As log as our knowledge 

the previous study done on HIV and Cholera coinfections has not depicited the impact of 

treatments. Thus, this study is carried out to show the impact of treatments in the 

presence of HIV and cholera infections in the community. 

Organization of the paper: In Section 2, assumptions are stated and mathematical 

model is formulated. In sections 3-5, well possedness of the model, stability analysis of 

the equilibrium points and reproduction number of cholera only, HIV only and co-

infection model are presented respectively. In Section 6, numerical simulations are 

performed. In Section 7 discussion of sensitivity analysis is presented. In section 8, 

Result and Discussion are presented. Finally, the paper ends with concluding remarks in 

Section 9.  

2. Model formulation 

In this paper, a ten dimensional deterministic model is developed to analyze dynamics 

and impact of HIV, Cholera and HIV–Cholera infections in human population. Scholars 

devoted to study the impact of each disease for a long period of time. In this paper, we 

modified a model developed in [7] to include impact of treatment that has not studied in 

the base model. The current model describes the siginificant impact of treatment on both 

both infections in the population population. The base model has five compartments 

whereas the modified present model consists of ten compartment with nine classes of 

human population and one class of bacteria population. Each classes are described as 

follows: (i) Susceptible individuals. They are infection free class of human population but 

have a chance to be infected if exposed to bacterial environment. The size of susceptible 

population is denoted by 𝑆(𝑡) . (ii) Cholera individuals. They are classes of human 

population who are infected with cholera disease. The size of cholera individuals  at time 

 𝑡 is denoted by  𝐼𝑐(𝑡) . These individuals can be recovered from the disease at recovery 

rate  if  treated properly and on time (iii) Recovered individuals. They are individuals 

who get recovered from cholera infection. The size of recovered population is denoted by 

 𝑅(𝑡) . (iv) HIV individuals. They are individuals in human population who get infected 

with human immunodeficiency syndrome. The size of HIV individuals is denoted by by 

 𝐼ℎ(𝑡) . (v) HIV–Cholera individuals. They are individuals who get infected with both 

HIV and Cholera as consequence of exposure of HIV individuals to the bacterial 

environment. The size of HIV– Cholera individuals is denoted by  𝐼ℎ𝑐(𝑡) . (vi) Cholera 

recovered HIV individuals. They are HIV infected human individuals who get recovered 

from Cholera infection. The size of  this individuals at time  𝑡 is denoted by  𝑅ℎ(𝑡). (vii) 

AIDS individuals. They are human individuals who are at advanced stage of  HIV. 

Further, individuals in this class are very weak to resist other infections or at serious or 

high risk to be easily attacked.  The size of  this individuals at time  𝑡 is denoted by 

 𝐴(𝑡) . (viii) Cholera–AIDS individuals. They are individuals who get infected with both 

AIDS  and cholera infections. The size of these individuals at time  𝑡 is denoted by 

 𝐴𝑐(𝑡) .  (ix) Cholera recovered AIDS individuals. They are AIDS humans who get 

recovered from cholera infection. The size of  these individuals at time  𝑡 is denoted by 
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 𝑅𝐴(𝑡) . (x) Bacteria population. This is a bacteria region that can potentially affect 

human population provided that sufficient contact is made with the environment. The size 

of  these individuals at time  𝑡 is denoted by  𝐵(𝑡) . 
Moreover, the following assumptions are stated to describe HIV- Cholera model. 

(i) The total size of  population is assumed to be non-constant.  

(ii) The total population size at time  𝑡 is denoted by  𝑁(𝑡) is given by 

 𝑁(𝑡) = 𝑆(𝑡) + 𝐼𝑐(𝑡) + 𝑅(𝑡) + 𝐼ℎ(𝑡) + 𝐼ℎ𝑐(𝑡) + 𝐼ℎ(𝑡) + 𝑅ℎ(𝑡) + 𝐴(𝑡) +
𝐴𝑐(𝑡) + 𝐵(𝑡)                                                               

(iii) Susceptible humans are recruited to the compartment 𝑆(𝑡) at some constant rate 

𝜏. 

(iv) Susceptible humans get HIV infection at a constant rate  𝛽ℎ . 
(v) Susceptible humans get cholera infection from the environment at an ingestion 

rate  𝛽𝑐 . 
(vi)  𝜅 is half saturation constant of bacterium population. 

(vii)  
𝐵

𝜅+𝐵
  is the measure of probality of individuals with infection symptoms. 

(viii) All categories of humans face the same natural mortality at a rate  𝜇. 

(ix) Cholera individuals die, because of the disease, at the rate  𝛿1.  

(x) HIV-Cholera individuals die, because of the disease, at the rate  𝛿2.  

(xi) AIDS individuals die, because of the disease, at the rate  𝛿3.  

(xii) AIDS-Cholera individuals die, because of the disease, at the rate  𝛿4.  

(xiii) Cholera recovered AIDS individuals die, because of the disease, at the rate  𝛿5.  

(xiv) All parameters used in the dynamical system are non-negative. 

(xv) Bacteria population die natural at the rate 𝜈  . 
(xvi) Cholera only infected individuals release bacteria at the rate 𝜂. 

(xvii) HIV individuals transfer to AIDS individuals at the rate  𝛾. 

(xviii) Recovered HIV individuals transfer to AIDS at the rate  𝜃. 

(xix) AIDS–Cholera individuals recover at the rate  𝜙.  

 

Figure 1. Flow diagram of HIV-Cholera model. 
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Based on the facts and assumtions on diseases the developed new model is given by 

 𝑑𝑆 𝑑𝑡⁄ = 𝜏 −
𝛽𝑐𝐵𝑆

𝜅 + 𝐵
− 𝛽ℎ𝑆𝐼ℎ − 𝜇𝑆 (1) 

 𝑑𝐼𝑐 𝑑𝑡⁄ =
𝛽𝑐𝐵𝑆

𝜅 + 𝐵
− (𝜔 + 𝛿1 + 𝜇)𝐼𝑐 (2) 

  𝑑𝑅 𝑑𝑡⁄ = 𝜔𝐼𝑐 − 𝜇𝑅 (3) 

 𝑑𝐼ℎ 𝑑𝑡⁄ = 𝛽ℎ𝑆𝐼ℎ −
𝛽𝑐𝐵𝐼ℎ
𝜅 + 𝐵

 − (𝛾 + 𝜇)𝐼ℎ (4) 

 𝑑𝐼ℎ𝑐 𝑑𝑡⁄ =
𝛽𝑐𝐵𝐼ℎ
𝜅 + 𝐵

− (𝜌 + 𝜎 + 𝛿2 + 𝜇)𝐼ℎ𝑐 (5) 

 𝑑𝐴 𝑑𝑡⁄ = 𝛾𝐼ℎ −
𝛽𝑐𝐵𝐴

𝜅 + 𝐵
− (𝛿3 + 𝜇)𝐴 (6) 

 𝑑𝐴𝑐 𝑑𝑡⁄ =
𝛽𝑐𝐵𝐴

𝜅 + 𝐵
+ 𝜌𝐼ℎ𝑐 − (𝜙 + 𝛿4 + 𝜇)𝐴𝑐 (7) 

 𝑑𝑅ℎ 𝑑𝑡⁄ = 𝜎𝐼ℎ𝑐 − (𝜃 + 𝜇)𝑅ℎ (8) 

 𝑑𝑅𝐴 𝑑𝑡⁄ = 𝜃𝑅ℎ + 𝜙𝐴𝑐 − (𝛿5 + 𝜇)𝑅𝐴 (9) 

  𝑑𝐵 𝑑𝑡⁄ = 𝛼𝐵 + 𝜂𝐼𝑐 − 𝜈𝐵 (10) 

The non-negative initial conditions of the model equations (1) – (10) are denoted by 

 𝑆(0) ≥ 0, 𝐼𝑐(0) ≥ 0, 𝑅(0) ≥ 0, 𝐼ℎ(0) ≥ 0, 𝐼ℎ𝑐(0), 𝐴(0) ≥ 0, 𝐴𝑐 ≥ 0, 𝑅ℎ ≥ 0, 𝑅𝐴 ≥
0,   𝐵(0) ≥ 0 . This system consists of four first order non-linear ordinary differential 

equations. 

3. Mathematical analysis of the Cholera only model 

The Cholera only model is obtained from the model (1)-(10) by setting  𝐼ℎ = 𝐼ℎ𝑐 = 𝐴 =
𝑠𝐴𝑐 = 𝑅ℎ = 𝑅𝐴 = 0. Then we get:  

 𝑑𝑆 𝑑𝑡⁄ = 𝜏 −
𝛽𝑐𝐵𝑆

𝜅 + 𝐵
− 𝜇𝑆 (11) 

 𝑑𝐼𝑐 𝑑𝑡⁄ =
𝛽𝑐𝐵𝑆

𝜅 + 𝐵
− (𝜔 + 𝛿1 + 𝜇)𝐼𝑐 (12) 

 𝑑𝑅 𝑑𝑡⁄ = 𝜔𝐼𝑐 − 𝜇𝑅 (13) 

 𝑑𝐵 𝑑𝑡⁄ = 𝛼𝐵 + 𝜂𝐼𝑐 − 𝜈𝐵 (14) 

3.1 Invariant region 

Theorem 3.1 The model (11)-(14)  has a bounded solution in the region Ω for all  𝑡 > 0. 

Proof Let  x = (𝑆, 𝐼𝑐 , 𝑅, 𝐵) ∈ ℜ+
4   represents a solution of a considered model 

(11)–(14) with the given initial conditions in the invariant region Ω . In order to analyze  

boundedness we categorize total population into two groups: Human population and 

Bacteria population. Let  𝑁𝑇(𝑡)  represents total population size at time 𝑡 such that the 

following is true. 

𝑁𝑇(𝑡) = 𝑁(𝑡) + 𝐵(𝑡) 

where, 𝑁(𝑡) represents the total size of human population and 𝐵(𝑡) represents the total 

size of bacteria population. 

 Now systematically and logically, we consider two regions  Ω1 and  Ω2  to handle the 

proof of the theorem easily. (i) let  Ω1 be invariant region that consists of three solution 
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variables of human population with the given initial conditions. Moreover, consider total 

size of human population, 𝑁(𝑡), at time 𝑡 which is given by 

𝑁(𝑡)  = 𝑆(𝑡) + 𝐼𝑐(𝑡) + 𝑅(𝑡) 

Now differentiating both sides of equation of total population with respect to time 𝑡 we 

get 

 𝑑𝑁

𝑑𝑡
=

𝑑𝑆

𝑑𝑡
+

𝑑𝐼𝑐
𝑑𝑡

+
𝑑𝑅

𝑑𝑡
 

 
⇒

𝑑𝑁

𝑑𝑡
= 𝜏 − 𝜇𝑁 − 𝛿1𝐼𝑐 ≤ 𝜏 − 𝜇𝑁 

 ⇒ 𝑑𝑁 𝑑𝑡⁄ ≤ 𝜏 − 𝜇𝑁 

 ⇒ 𝑑𝑁 (𝜏 − 𝜇𝑁)⁄ ≤ 𝑑𝑡 

Integrating both sides of 𝑑𝑁 (𝜏 − 𝜇𝑁)⁄ ≤ 𝑑𝑡 over  [0 𝑡] we have, 

 
∫

1

𝜏 − 𝜇𝑁

𝑡

0

𝑑𝑁 ≤ ∫ 𝑑𝑡
𝑡

0

 

 ⇒
𝜏−𝜇𝑁(𝑡)

𝜏−𝜇𝑁(0)
 ≥ 𝑒−𝜇𝑡   [Assuming  𝑁(0) <

𝜏

𝜇
 ] 

 ⇒ 𝜏 − 𝜇𝑁(𝑡) ≥ (𝜏 − 𝜇𝑁(0))𝑒−𝜇𝑡 

 ⇒ 𝑁(𝑡) ≤ (𝜏 𝜇⁄ ) − (𝜏 𝜇⁄ − 𝑁(0))𝑒−𝜇𝑡 

Now as  𝑡 ⟶  ∞ , we conclude that, 

𝑁(𝑡) ≤ 𝜏 𝜇⁄  

Now it follows that, 0 ≤ 𝑁(𝑡) ≤ 𝜏 𝜇⁄  . Thus, all solution variables of human population 

are bounded in  Ω1 . That is, 

 Ω1 = {((𝑆, 𝐼𝑐 , 𝑅) ∈ ℜ+
3 ) ∈ ℜ+

3 : 0 ≤ 𝑁(𝑡) ≤ 𝜏 𝜇⁄  }  

Similarly, let  𝐵(𝑡) represents population size of bacterial population, with bounded 

initial condition. Now (4) gives,      

  𝑑𝐵 𝑑𝑡⁄ = 𝛼𝐵 + 𝜂𝐼𝑐 −  𝜈𝐵 ≤ (𝛼 − 𝜈)𝐵 +
𝜂𝜏

𝜇
 

 
⇒  

𝑑𝐵

(𝛼 − 𝜈)𝐵 + 𝜂𝜏 𝜇⁄
≤ 𝑑𝑡 

Integrating both sides of  
𝑑𝐵

(𝛼−𝜈)𝐵+𝜂𝜏 𝜇⁄
≤ 𝑑𝑡  over [0 t] and assuming  0 < 𝛼 <  𝜈, we get, 

𝐵(𝑡) = 𝜂𝜏 𝜇( 𝜈 − 𝛼)⁄ − (𝐵0 + 𝜂𝜏 𝜇(𝜈 − 𝛼)⁄ )𝑒−(𝜈−𝛼 )𝑡 

Now as  𝑡 ⟶  ∞ ,it follows that, 

𝐵(𝑡) ≤ 𝜂𝜏 𝜇( 𝜈 − 𝛼)⁄    

Hence,  𝐵(𝑡) is bounded in the region  Ω2 such that 

Ω2 = {𝐵(𝑡) ∈ ℜ+: 0 ≤ 𝐵(𝑡) ≤ 𝜂𝜏 𝜇( 𝜈 − 𝛼)⁄  } 

Therefore, the feasible solution set of the model (1)-(10) is the region  Ω , defined as 

Ω = Ω1 × Ω2 = {(𝑆, 𝐼𝑐 , 𝑅, 𝐵) ∈ ℜ+
4 : 0 ≤ 𝑁𝑇(𝑡) ≤ (𝜏 𝜇⁄ ) + 𝜂𝜏 𝜇( 𝜈 − 𝛼)⁄  } 
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3.2 Existence and uniqueness of a solution 

Theorem 3.2 The solution of a formulated Model (11)-(14) exists and unique. 

Proof  Let us consider the model (11)-(14) as functions. 

(i) We can write (11) as follows: 

 let 𝑑𝑆 𝑑𝑡⁄ = 𝑓1(𝑆, 𝑡) = 𝜏 − 
𝛽𝑐𝐵𝑆

𝜅+𝐵
− 𝜇𝑆. Clearly,  𝑓1(𝑆, 𝑡)  and its partial derivative with 

respect to variable 𝑆 are continuous. Further, observe that, 

|𝑓1(𝑆1, 𝑡) − 𝑓1(𝑆2, 𝑡)| = |  −  
𝛽𝑐𝐵𝑆1

𝜅 + 𝐵
   − 𝜇𝑆1 +  

𝛽𝑐𝐵𝑆1

𝜅 + 𝐵
 + 𝜇𝑆2  | 

 
= |−(𝑆1 − 𝑆2) (

𝛽𝑐𝐵

𝜅 + 𝐵
  + 𝜇)| 

 ≤ 𝑀|𝑠1 − 𝑠2| 

where,  𝑀 = 𝛽𝑐 + 𝜇 . Hence, lipschitz condition is satisfied. 

(ii) Also,  (11) can be rewrittsen as follows: 

Let  𝑑𝐼𝑐 𝑑𝑡⁄ = 𝑓2(𝐼𝑐 , 𝑡) =    
𝛽𝑐𝐵𝑆

𝜅+𝐵
   − (𝜔 + 𝛿1 + 𝜇)𝐼𝑐 . We observed that  𝑓2 and its partial 

derivative with respect to 𝐼𝑐are continuous.  To verify lipschitz condition consider, 

|𝑓2(𝐼𝑐1, 𝑡) − 𝑓2(𝐼𝑐2, 𝑡)| = |−(𝜔 + 𝛿1 + 𝜇)𝐼𝑐1 + (𝜔 + 𝛿1 + 𝜇)𝐼𝑐2| 

 = | −(𝜔 + 𝛿1 + 𝜇)(𝐼𝑐1 − 𝐼𝑐2)| 

 ≤ 𝑀|𝐼𝑐1 − 𝐼𝑐2| 

where,  𝑀 = 2(𝜔 + 𝛿1 + 𝜇) . Hence, lipischitz condition is satisfied. 

Similarly, the remaining expressions can be proved.  Hence, by Cauchy-Lipschitz 

theorem we can conclude that the formulated model has unique solution for all positive 

time 𝑡. 

3.3 Positivity of solutions 

Theorem 3.3 The solutions of the model (11)-(14) together with the initial 

conditions 𝑆(0) ≥ 0, 𝐼𝑐(0) ≥ 0, 𝑅(0) ≥ 0,   𝐵(0) ≥ 0  are always non-negative (OR) 

the model variables  𝑆, 𝐼𝑐 , 𝑅  and  𝐵  are non-negative for all 𝑡 and will remain in ℝ+
4 .  

Proof Positivity of the solutions of model equations is shown separately by showing the 

positivity of each variables 𝑆, 𝐼𝑐 , 𝑅  and  𝐵 . 

Positivity of  𝑆(𝑡): Consider the first equation of model (11)-(14), 

𝑑𝑆 𝑑𝑡⁄ = 𝜏 − 
𝛽𝑐𝐵𝑆

𝜅+𝐵
− 𝜇𝑆. 

Now excluding the positive term 𝜏, that appearing on the right hand side, we get an 

inequality 𝑑𝑆 𝑑𝑡⁄ ≥ − 
𝛽𝑐𝐵𝑆

𝜅+𝐵
− 𝜇𝑆. Now solving the foregoing differential inequality we 

obtain,  𝑆(𝑡) ≥ 𝑆(0)𝑒−𝜇𝑡−∫[
𝛽𝑐𝐵

𝜅+𝐵
 ]𝑑𝑡

. Since the exponential expression 𝑒−𝜇𝑡−∫[
𝛽𝑐𝐵

𝜅+𝐵
+𝛽ℎ𝐼ℎ ]𝑑𝑡

 

is a non-negative quantity, it can be concluded that  𝑆(𝑡) ≥ 0.  

Positivity of 𝐼𝑐(𝑡): Consider the second equation of model (11)-(14), 

𝑑𝐼𝑐 𝑑𝑡⁄ =
𝛽𝑐𝐵𝑆

𝜅+𝐵
   − (𝜔 + 𝛿1 + 𝜇)𝐼𝑐 . 

Now, excluding the positive term 
𝛽𝑐𝐵𝑆

𝜅+𝐵
 we get an inequality  𝑑𝑆 𝑑𝑡⁄ ≥  −(𝜔 + 𝛿1 + 𝜇)𝐼𝑐 . 

Solving the foregoing differential inequality we get 𝐼𝑐(𝑡) ≥ 𝐼𝑐(0)𝑒−(𝜔+𝛿1+𝜇)𝑡. Moreover, 
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the exponential expression 𝑒−(𝜔+𝛿1+𝜇)𝑡 is a non-negative quantity. Hence, it can be 

concluded that 𝐼𝑐(𝑡) ≥ 0.  

Positivity of  𝑅(𝑡): Consider the third equation of model (11)-(14), 

 𝑑𝑅 𝑑𝑡⁄ = 𝜔𝐼𝑐 − 𝜇𝑅 . 

Excluding the positive term  𝜔𝐼𝑐  , we obtain an inequality of the form  𝑑𝑅 𝑑𝑡⁄ ≥  −𝜇𝑅 . 
Now solving foregoing differential inequality we get 𝑅(𝑡) ≥ 𝑅(0)𝑒−𝜇𝑡. Further, 

exponential expression 𝑒−𝜇𝑡  is a non-negative quantity. Hence, it can be concluded 

that  𝑅(𝑡) ≥ 0.               

Positivity of  𝐵(𝑡): Consider  equation (14) of model (11)-(14), 

 𝑑𝐵 𝑑𝑡⁄ = 𝛼𝐵 + 𝜂𝐼𝑐 −  𝜈𝐵. 

Now, without loss of generality and after excluding the positive term, 𝛼𝐵 + 𝜂𝐼𝑐 , we get 

an inequality,   𝑑𝐵 𝑑𝑡⁄ ≥ − 𝜈𝐵. Also solving foregoing differential inequality we 

get 𝐵(𝑡) ≥ 𝐵0𝑒
−𝜈𝑡. Moreover, 𝑒−𝜈𝑡 is a non-negative quantity  for all time 𝑡 . Hence, it 

can be concluded that 𝐵(𝑡) ≥ 0. 

Thus, all solutions of the model are non-negative. Futheremore, the formulated model is 

biologically meaningful and mathematically well-posed. 

3.4 Equilibrium points 

In order to understand the dynamical behavior of the model, it is necessary to compute 

equilibrium points of the model. An equilibrium point is a steady state solution of the 

model (11) – (14) in the sense that if the system start at such state, it will stay there for all 

times. In other words, the population sizes remain unchanged. Thus, the rate of change of 

size of  a population with respect to a time vanishes. In this subsection we compute 

disease free equilibrium and endemic equilibrium points. 

3.4.1 Disease free equilibrium point 

Disease free equilibrium point is a steady state solution where there is no disease in the 

population. Now, setting 𝐼𝑐 = 𝐵 = 0 in model (11)-(14) we obtain the following 

equation. 

𝜏 − 𝜇𝑆 = 0 

Solving we get  𝑆 = 𝑆0 =
𝜏

𝜇
 .  Thus, the disease free equilibrium  𝐸0 is given by 

𝐸0 = (𝑆0, 0, 0, 0)  

3.4.2 Endemic equilibrium point 

An endemic equilibrium point is steady state point where disease persist in the 

population. At endemic equilibrium point disease compartment of the model never be 

zero, but the rate of change of size of  each state variable is zero. That is, 

 

𝜏 − 
𝛽𝑐𝐵𝑆

𝜅 + 𝐵
− 𝜇𝑆 = 0 

 𝛽𝑐𝐵𝑆

𝜅 + 𝐵
− (𝜔 + 𝛿1 + 𝜇)𝐼𝑐 = 0 

 𝜔𝐼𝑐 − 𝜇𝑅 = 0 
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 𝛼𝐵 + 𝜂𝐼𝑐 −  𝜈𝐵 = 0 

Now solving preceding equations we get  𝑆 =
𝜏(𝛽𝑐+𝜇𝑅0)

𝜇𝑅0(𝛽𝑐+𝜇)
= 𝑆1,     𝐼𝑐 =

𝜇𝜅(𝜈−𝛼)(𝑅0−1)

𝜂(𝛽𝑐+𝜇)
= 𝐼𝑐

1,

𝑅 =
𝜔𝜅(𝜈−𝛼)(𝑅0−1)

𝜂(𝛽𝑐+𝜇)
= 𝑅1, 𝐵 =

𝜇𝜅(𝑅0−1)

𝛽𝑐+𝜇
= 𝐵1 .  

Thus, the endemic equilibrium point  𝐸𝑐
1 = (𝑆1, 𝐼𝑐

1, 𝑅1, 𝐵1) is given by 

 𝐸𝑐
1 = (

𝜏(𝛽𝑐 + 𝜇𝑅0)

𝜇𝑅0(𝛽𝑐 + 𝜇)
,

𝜇(𝜈 − 𝛼)(𝑅0 − 1)

𝜂(𝛽𝑐 + 𝜇)
,

𝜔𝜇(𝜈 − 𝛼)(𝑅0 − 1)

𝜇𝜂(𝛽𝑐 + 𝜇)
,

𝜇𝜅(𝑅0 − 1)

𝛽𝑐 + 𝜇
) 

3.5 Basic reproduction number 

The basic reproduction number is defined as the expected number of people getting 

secondary infection because of infected person enters into wholly susceptible population. 

The basic reproductive number  𝑅0 is obtained from the computation of next generation 

matrix. The largest eigenvalue of the next generation matrix is known as basic 

reproductive number. The formulation of next generation matrix involves classification 

of all compartments of the model in to two classes: infected and non-infected. 

Let 𝑓 be  a matrix consists of newly infected cases and 𝑣 be a matrix consists of 

transition cases in model (11)-(14) . Consider model (11)-(14) 

 
𝑑𝑆 𝑑𝑡⁄ = 𝜏 − 

𝛽𝑐𝐵𝑆

𝜅 + 𝐵
− 𝜇𝑆 

 
𝑑𝐼𝑐 𝑑𝑡⁄ =

𝛽𝑐𝐵𝑆

𝜅 + 𝐵
 − (𝜔 + 𝛿1 + 𝜇)𝐼𝑐 

  𝑑𝑅 𝑑𝑡⁄ = 𝜔𝐼𝑐 − 𝜇𝑅 

 𝑑𝐵 𝑑𝑡⁄ = 𝛼𝐵 + 𝜂𝐼𝑐 −  𝜈𝐵 

Now 𝑓 and 𝑣 are given respectively as, 

𝑓 = [
𝛽𝑐𝐵𝑆

𝜅+𝐵

0
] ,     𝑣 = [

(𝜔 + 𝛿1 + 𝜇)𝐼𝑐
−𝛼𝐵 − 𝜂𝐼𝑐 +  𝜈𝐵

] , 

The Jacobian of 𝑓 and  𝑣  evaluated at disease free equilibrium point  𝐸0  is given by 

 𝐹  and  𝑉 respectively as follows, 

𝐹 = [0
𝛽𝑐𝑆

0

𝜅

0 0
] ,   𝑉 = [

𝜔 + 𝛿1 + 𝜇 0
−𝜂 𝜈 − 𝛼

] 

The next generation matrix,  𝐹𝑉−1  is computed and given by 

𝐹𝑉−1 = [
𝜂𝛽𝑐𝑆

0

𝜅(𝜈 − 𝛼)(𝛿1 + 𝜔 + 𝜇)

𝛽𝑐𝑆
0

𝜅(𝛿1 + 𝜔 + 𝜇)
 

0 0

] 

The eigenvalues of next generation matrix are computed and given by, 

𝜆1 =
𝜂𝛽𝑐𝑆

0

𝜅(𝜈−𝛼)(𝛿1+𝜔+𝜇)
, 𝜆2 = 0 with 𝜈 > 𝛼. 

Since reproduction number  𝑅0 is the largest eigenvalue of next generation matrix, it is 

given by, 

𝑅0𝑐 =
𝜂𝛽𝑐𝑆

0

𝜅(𝜈 − 𝛼)(𝛿1 + 𝜔 + 𝜇)
  (15) 
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3.6 Stability analysis of the disease free equilibrium point 

In absence of the disease, the model (11)-(14) have a unique disease free equilibrium 

point 𝐸0 . It is already computed that the DFE of model (11)-(14) is given by (14). Now, 

the stability analysis of DFE is performed as follows. 

3.6.1 Local stability of disease free equilibrium point 

Theorem 3.4 If the basic reproduction number (or threshold quantity)  𝑅0𝑐 is less than 

one, then disease free equilibrium 𝐸0
𝑐 of Cholera model (11)- (14) is unstable. 

Proof Consider the model (11)-(14) so that Jacobian matrix of the system at DFE is given 

by 

 𝐽 =

[
 
 
 
 
 −𝜇 0 0 −

𝜏𝛽𝑐

𝜇𝜅

0 −(𝜔 + 𝛿1 + 𝜇) 0
𝜏𝛽𝑐

𝜇𝜅

0 𝜔 −𝜇 0
0 𝜂 0 𝛼 − 𝜈]

 
 
 
 
 

    

Now mathematical computations gives the trace and determinant of the matrix as 

follows: 

Trace (𝐽)  = −𝜇 − (𝜔 + 𝛿1 + 𝜇) − 𝜇 + 𝛼 − 𝜈 < 0  , 

Det (𝐽) =  (𝜈 − 𝛼)((𝜔 + 𝛿1 + 𝜇))𝜇2(1 − 𝑅0𝑐)  > 0 

Here it can observed that, trace of a Jacobian matrix is less than zero and determinant of a 

matrix is greater than zero if  𝑅0 < 1 . Hence, by using trace-determinant principle we 

conclude that DFE is locally asymptotically stable if 𝑅0 < 1.   

3.6.2 Local stability of  endemic equilibrium point 

Theorem 3.5 Let  𝑅0𝑐  be basic reproduction number of Cholera model (11)-(14). Then 

the endemic equilibrium  𝐸1
𝑐  is locally asymptotically stable if 1 < 𝑅0𝑐 < (1 +

𝐵1

𝜅
)
2

. 

Proof Consider the model (11)-(14) so that Jacobian matrix of the system at  𝐸1
𝑐  is given 

by 

𝐽 =

[
 
 
 
 
 
 −𝜇 0 0 −

𝛽𝑐𝜅𝑆1

(𝜅 + 𝐵1)2

0 −(𝜔 + 𝛿1 + 𝜇) 0
𝛽𝑐𝜅𝑆1

(𝜅 + 𝐵1)2

0 𝜔 −𝜇 0
0 𝜂 0 𝛼 − 𝜈 ]

 
 
 
 
 
 

 

Now, mathematical computations gives the trace and determinant of the matrix as 

follows: 

Trace (𝐽)  = −𝜇 − (𝜔 + 𝛿1 + 𝜇) − 𝜇 + 𝛼 − 𝜈, 

Det (𝐽) =  𝜇2 (1 − (
𝜅

𝜅+𝐵1)
2
𝑅0). 
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Here it can be observed that, trace of a Jacobian matrix is less than zero and determinant 

of a matrix is greater than zero if  (
𝜅

𝜅+𝐵1)
2
𝑅0 < 1 ⇒ 𝑅0 < (

𝜅+𝐵1

𝜅
)
2

 . Hence, by using 

trace-determinant principle we conclude that endemic equilibrium is locally 

asymptotically stable if 𝑅0 < 1.   

3.6.3 Global stability of disease free equilibrium point 

To show global stability we follow the procedures given in [6, 1] . That is, let  𝑥 ∈ 𝑅2  is 

disease compartment and   𝑦 ∈ 𝑅2 be disease free compartment. The disease transmission 

model (11)- (14) can be written in the form: 

�̇� = −(𝑉 − 𝐹)𝑥 − ℎ(𝑥, 𝑦) ,        �̇� = 𝑔(𝑥, 𝑦), 

where,  𝑥 = (𝐼𝑐 , 𝐵)  and  𝑦 = (𝑆, 𝑅). Further,  𝐹  and  𝑉 are given in subsection 3.5. 

Theorem 3.6 Let  𝑉 − 𝐹 is a non-singular M-matrix and   ℎ ≥ 0 . Then a disease-free 

equilibrium of model (11)-(14) is globally asymptotically stable if 𝑅0 < 1. 

Proof Now, the rate of change of the variables in the model equations (11)-(14) can be 

rewritten as  

 
�̇� = −(𝑉 − 𝐹)𝑥 − [(

𝛽𝑆0

𝜅
−

𝛽𝑆

𝜅 + 𝐵
)] 

 
�̇� = 𝜏 −   

𝛽𝑐𝐵𝑆

𝜅 + 𝐵
− 𝜇𝑆 

 �̇� = 𝜔𝐼𝑐 − 𝜇𝑅 

where  𝐹  and  𝑉 are computed in subsection 3.5 and  given by  

𝐹 = [0
𝛽𝑐𝑆

0

𝜅

0 0
] , 𝑉 = [[

𝜔 + 𝛿1 + 𝜇 0
−𝜂 𝜈 − 𝛼

]] 

Consider 𝑉 − 𝐹 = [𝜔 + 𝛿1 + 𝜇 −
𝛽𝑐𝑆

0

𝜅
−𝜂 𝜈 − 𝛼

] = 𝑠𝐼 − 𝐵. Where, 𝑠 = max {𝜔 + 𝛿1 + 𝜇, 𝜈 −

𝛼}  and 𝐵 = [
0

𝛽𝑐𝑆
0

𝜅

𝜂 0
] . Thus, 𝑉 − 𝐹  has Z sign pattern. Further, det (𝑉 − 𝐹) =

(𝜔 + 𝛿1 + 𝜇 )(𝜈 − 𝛼) − 𝜂 (
𝛽𝑐𝑆

0

𝜅
) = (𝜔 + 𝛿1 + 𝜇 )(𝜈 − 𝛼)(1 − 𝑅0) > 0 if  𝑅0 < 1 . 

Thus, 𝑉 − 𝐹 is non-singular matrix if 𝑅0 < 1 . Now it follows that 𝑉 − 𝐹  is non-singular 

M–matrix if 𝑠 > 𝜌(𝐵) = √
𝜂𝛽𝑐𝑆

0

𝜅
 . Next, we want show that  ℎ(𝑥, 𝑦) ≥ 0 . Consider 

 ℎ(𝑥, 𝑦) = [(
𝛽𝑆0

𝜅
−

𝛽𝑆

𝜅+𝐵
)] . At disease free equilibrium, we observe that   𝑆(𝑡) ⟶ 𝑆0 as 

 𝑡 ⟶ ∞ . Hence,  ℎ(𝑥, 𝑦) ⟶ 𝟎 as (𝑆, 𝐼𝑐 , 𝑅, 𝐵) ⟶ (𝑆0, 0, 0, 0) . Therefore, 

taking  ℎ(𝑥, 𝑦) = 𝟎  and using the above hypothesis the disease-free equilibrium point of 

model (11) – (14) is globally asymptotically stable for 𝑅0 < 1. 

4. Mathematical analysis of HIV only model 

The HIV only model follows from the model (1)-(10) by setting  𝐼𝑐 = 𝐼ℎ𝑐 = 𝐴𝑐 = 0 . 
Then we get: 

 𝑑𝑆 𝑑𝑡⁄ = 𝜏 − 𝛽ℎ𝑆𝐼ℎ − 𝜇𝑆                                  (16) 

 𝑑𝐼ℎ 𝑑𝑡⁄ = 𝛽ℎ𝑆𝐼ℎ  − (𝛾 + 𝜇)𝐼ℎ                              (17) 
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 𝑑𝐴 𝑑𝑡⁄ = 𝛾𝐼ℎ   − (𝛿3 + 𝜇)𝐴 (18) 

With  𝑆(0) ≥ 0, 𝐼ℎ(0) ≥ 0, 𝐴(0) ≥ 0 . 

4.1 Invariant region 

Theorem 4.1 The model (16)-(18)  has a bounded solution in the region Ω  for all  𝑡 > 0. 

Proof Let  x = (𝑆, 𝐼ℎ, 𝐴) ∈ ℜ+
4   represents a solution of a model (16)-(18) with the 

given initial conditions in the invariant region. let  Ω1 be invariant region that consists of 

three solution variables of human population with the given initial conditions. Moreover, 

consider total size of human population,  𝑁(𝑡), at time  𝑡  which is given by 

𝑁(𝑡)  = 𝑆(𝑡) + 𝐼ℎ(𝑡) + 𝐴(𝑡) (19) 

Now differentiating both sides of (19) with respect to time 𝑡 we get 

 𝑑𝑁

𝑑𝑡
=

𝑑𝑆

𝑑𝑡
+

𝑑𝐼ℎ
𝑑𝑡

+
𝑑𝐴

𝑑𝑡
 

 

 
⇒

𝑑𝑁

𝑑𝑡
= 𝜏 − 𝜇𝑁 − 𝛿2𝐴 ≤ 𝜏 − 𝜇𝑁 

 

 ⇒ 𝑑𝑁 𝑑𝑡⁄ ≤ 𝜏 − 𝜇𝑁  

 ⇒ 𝑑𝑁 (𝜏 − 𝜇𝑁)⁄ ≤ 𝑑𝑡 (20) 

Integrating both sides of (20) over  [0 , 𝑡] we have, 

 
∫

1

𝜏 − 𝜇𝑁

𝑡

0

𝑑𝑁 ≤ ∫ 𝑑𝑡
𝑡

0

 
 

 ⇒  
𝜏−𝜇𝑁(𝑡)

𝜏−𝜇𝑁(0)
 ≥ 𝑒−𝜇𝑡   [ Assuming  𝑁(0) <

𝜏

𝜇
  ]  

 ⇒ 𝜏 − 𝜇𝑁(𝑡)    ≥ (𝜏 − 𝜇𝑁(0))𝑒−𝜇𝑡  

 ⇒ 𝑁(𝑡) ≤ (𝜏 𝜇⁄ ) − (𝜏 𝜇⁄ − 𝑁(0))𝑒−𝜇𝑡 (21) 

Now as  𝑡 ⟶  ∞ (21) reduced to the form, 

𝑁(𝑡) ≤ 𝜏 𝜇⁄  (22) 

Now using (22) and general biological truth about human population, we have, 0 ≤
𝑁(𝑡) ≤ 𝜏 𝜇⁄  . Thus, all solution variables of human population are bounded in  Ω1 . That 

is, 

Ω1 = {((𝑆, 𝐼ℎ , 𝐴) ∈ ℜ+
3 ) ∈ ℜ+

3 : 0 ≤ 𝑁(𝑡) ≤ 𝜏 𝜇⁄  }. 

4.2 Existence and uniqueness of a solution 

Theorem 4.2 The solution of a formulated Model (16)-(18) exists and unique. 

Proof Let us consider the model (16)-(18) as functions. We can write (16) as follows: 

 Let  𝑑𝑆 𝑑𝑡⁄ = 𝑓1(𝑆, 𝑡) = 𝜏 − 𝛽ℎ𝑆𝐼ℎ − 𝜇𝑆 . Clearly,  𝑓1(𝑆, 𝑡)  and its partial derivative 

with respect to a variable 𝑆 are continuous. Further, observe that, 

|𝑓1(𝑆1, 𝑡) − 𝑓1(𝑆2, 𝑡)| = |  −𝛽ℎ𝑆1𝐼ℎ − 𝜇𝑆1 + 𝛽ℎ𝑆2𝐼ℎ + 𝜇𝑆2  | 

 = |−(𝑆1 − 𝑆2)(𝛽ℎ𝐼ℎ  + 𝜇)| 

 ≤ 𝑀|𝑠1 − 𝑠2| 

where, 𝑀 =
𝛽ℎ𝜏

𝜇
+ 𝜇. Hence, lipschitz condition is satisfied. 
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Similarly, the remaining expressions can be proved. Hence, by Cauchy-Lipschitz 

theorem we can conclude that the formulated HIV only model has unique solution for all 

positive time 𝑡. 

4.3 Positivity of solutions 

Theorem 4.3 The solutions of the model (16)-(18) together with the given the initial 

conditions 𝑆(0) ≥ 0, 𝐼ℎ(0) ≥ 0, 𝐴(0) ≥ 0  are always non-negative (OR) the model 

variables  𝑆, 𝐼ℎ  and  𝐴  are non-negative for all 𝑡 and remain in ℝ+
3 .  

Proof Positivity of the solutions of model equations follows from the positivity of each 

variables 𝑆, 𝐼ℎ, and 𝐴 . 

Positivity of  𝑆(𝑡): Consider the first equation of model (16)-(18), 

 𝑑𝑆 𝑑𝑡⁄ = 𝜏 − 𝛽ℎ𝑆𝐼ℎ − 𝜇𝑆 

 ⇒ 𝑑𝑆 𝑑𝑡⁄ ≥ − 𝛽ℎ𝑆𝐼ℎ − 𝜇𝑆 

 ⇒  𝑆(𝑡) ≥ 𝑆(0)𝑒−𝜇𝑡−𝛽ℎ ∫ 𝐼ℎ𝑑𝑡 

Since the exponential expression 𝑒−𝜇𝑡−𝛽ℎ ∫ 𝐼ℎ𝑑𝑡 is a non-negative quantity, it can be 

concluded that  𝑆(𝑡) ≥ 0.  

Positivity of 𝐼ℎ(𝑡): Consider the second equation of the model (16)-(18), 

 𝑑𝐼ℎ 𝑑𝑡⁄ = 𝛽ℎ𝑆𝐼ℎ  − (𝛾 + 𝜇)𝐼ℎ 

 ⇒ 𝑑𝐼ℎ 𝑑𝑡⁄ ≥ −(𝛾 + 𝜇)𝐼ℎ 

 ⇒ 𝐼ℎ(𝑡) ≥ 𝐼ℎ(0)𝑒−(𝛾+𝜇)𝑡 

Moreover, the exponential expression 𝑒−((𝛾+𝜇))𝑡 is a non-negative quantity. Hence, it can 

be concluded that 𝐼ℎ(𝑡) ≥ 0.  

Positivity of  𝐴(𝑡): Consider the third equation of model (16)-(18), 

 𝑑𝐴 𝑑𝑡⁄ = 𝛾𝐼ℎ   − (𝛿3 + 𝜇)𝐴 

 ⇒ 𝑑𝐴 𝑑𝑡⁄ ≥ −(𝛿3 + 𝜇)𝐴 

 ⇒  𝐴(𝑡) ≥ 𝐴(0)𝑒−(𝛿3+𝜇)𝑡 

Further, exponential expression 𝑒−(𝛿3+𝜇)𝑡  is a non-negative quantity. Hence, it can be 

concluded that  𝐴(𝑡) ≥ 0.                                     

Thus, all solutions of the model are non-negative. Futheremore, the formulated model 

is biologically meaningful and mathematically well-posed. 

4.4 Equilibrium points 

4.4.1 Disease free equilibrium point 

Disease free equilibrium point (DFE) is a steady state solution where there is no disease 

in the population. Now, setting 𝐼𝑐 = 𝐵 = 0 in model (16)-(18) we obtain the following 

equation 

𝜏 − 𝜇𝑆 = 0. 

Solving we get 𝑆 = 𝑆0 =
𝜏

𝜇
 .  Thus, the disease free equilibrium  𝐸0 is given by 

𝐸0 = (𝑆0, 0, 0) . 
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4.4.2 Endemic equilibrium point 

An endemic equilibrium point is steady state point where disease persist in the 

population. At endemic equilibrium point disease compartment of the model never be 

zero, but the rate of change of size of  each state variable is zero. That is, 

 𝑑𝑆 𝑑𝑡⁄ = 𝜏 − 𝛽ℎ𝑆𝐼ℎ − 𝜇𝑆 

 𝑑𝐼ℎ 𝑑𝑡⁄ = 𝛽ℎ𝑆𝐼ℎ  − (𝛾 + 𝜇)𝐼ℎ 

 𝑑𝐴 𝑑𝑡⁄ = 𝛾𝐼ℎ   − (𝛿3 + 𝜇)𝐴 

Now, solving preceding equations we get 𝑆 =
𝛾+𝜇

𝛽ℎ
= 𝑆1, 𝐼ℎ

1 =
𝜏𝛽ℎ−𝜇(𝛾+𝜇)

𝛽ℎ(𝛾+𝜇)
, 𝐴1 =

𝛾

𝛿3+𝜇
 . 

Thus, the endemic equilibrium point  𝐸ℎ
1 = (𝑆1, 𝐼ℎ

1, 𝐴1) is given by 

𝐸ℎ
1 = (

𝜏

𝜇𝑅ℎ0
,

𝜇(𝑅0ℎ−1)

𝛽ℎ
,

𝛾

𝛿3+𝜇
). 

4.5 Basic reproduction number 

The basic reproduction number is defined as the expected number of people getting 

secondary infection because of infected person enters into wholly susceptible population. 

The basic reproductive number  𝑅0 is obtained from the computation of next generation 

matrix. The largest eigenvalue of the next generation matrix is known as basic 

reproductive number. The formulation of next generation matrix involves classification 

of all compartments of the model in to two classes: infected and non-infected.  

Let 𝑓  be  a matrix consists of newly infected cases and  𝑣  be a matrix consists of 

transition cases in model (16)-(18). Consider model (16)-(18) 

 𝑑𝑆 𝑑𝑡⁄ = 𝜏 − 𝛽ℎ𝑆𝐼ℎ − 𝜇𝑆 

 𝑑𝐼ℎ 𝑑𝑡⁄ = 𝛽ℎ𝑆𝐼ℎ − (𝛾 + 𝜇)𝐼ℎ 

 𝑑𝐴 𝑑𝑡⁄ = 𝛾𝐼ℎ − (𝛿3 + 𝜇)𝐴 

Now, 𝑓 and 𝑣 are given respectively as, 

𝑓 = [
𝛽ℎ𝑆𝐼ℎ 

0
] ,                𝑣 = [

(𝛾 + 𝜇)𝐼ℎ
−𝛾𝐼ℎ + (𝛿3 + 𝜇)𝐴

]. 

The Jacobean of 𝑓 and  𝑣  evaluated at disease free equilibrium point  𝐸0  is given by 

 𝐹  and  𝑉 respectively as follows, 

𝐹 = [𝛽ℎ𝑆0 0
0 0

] ,             𝑉 = [
𝛾 + 𝜇 0
−𝛾 𝛿3 + 𝜇

]. 

 The next generation matrix,  𝐹𝑉−1  is computed and given by 

𝐹𝑉−1 = [
𝛽ℎ𝑆0

𝛾+𝜇
0 

0 0
]. 

The eigenvalues of next generation matrix are computed and given by, 

𝜆1 =
𝛽ℎ𝑆0

𝛾+𝜇
,      𝜆2 = 0. 

Since reproduction number  𝑅0ℎ is the largest eigenvalue of next generation matrix, it is 

given by, 
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𝑅0ℎ =
𝛽ℎ𝑆0

𝛾+𝜇
. (22) 

4.6 Stability analysis of the disease free equilibrium point 

In absence of the disease, the model (16)-(18) have a unique disease free equilibrium 

point 𝐸0 . The DFE of model (16)-(18) is already computed and given by 𝐸0
ℎ =

𝜏

𝜇
. Now, 

the stability analysis of DFE is performed as follows. 

4.6.1 Local stability of disease free equilibrium point 

Theorem 4.4 If the basic reproduction number (or threshold quantity)  𝑅0ℎ is less than 

one, then disease free equilibrium  𝐸0
ℎ  of Cholera model (16)-(18) is unstable. 

Proof Consider the model (16)-(18) so that Jacobian matrix of the system at DFE is given 

by 

𝐽 = [

−𝜇 −𝛽ℎ(𝜏 𝜇⁄ ) 0

0 𝛽ℎ(𝜏 𝜇⁄ ) − (𝛾 + 𝜇) 0

0 𝛾 −(𝛿3 + 𝜇)
] 

Now mathematical computations gives eigenvalues of Jacobean matrix  𝐽 as follows: 

𝜆1 = −𝜇 , 𝜆2 = (𝛾 + 𝜇)(𝑅0 − 1), 𝜆3 = −(𝛿3 + 𝜇). 

Here, it can be observed that, all eigenvalues of Jacobian matrix is less than zero if  𝑅0 <
1. Hence, by linearity principle the DFE is locally asymptotically stable if 𝑅0 < 1.   

4.6.2 Global stability of disease free equilibrium point 

Let 𝑥 ∈ 𝑅2 is disease compartment and 𝑦 ∈ 𝑅1 be disease free compartment. The disease 

transmission model (16)-(18) can be written in the form: 

�̇� = −(𝑉 − 𝐹)𝑥 − ℎ(𝑥, 𝑦) 

�̇� = 𝑔(𝑥, 𝑦) 

where,  𝑥 = (𝐼ℎ, 𝐴)  and  𝑦 = 𝑆. Further, 𝐹 and  𝑉 are given in subsection 4.5.  

Theorem 4.5 Let 𝑉 − 𝐹 is a non-singular M-matrix and ℎ ≥ 0. Then a disease-free 

equilibrium of model (16)-(18) is globally asymptotically stable if 𝑅0 < 1. 

Proof The rate of change of the variables in the model equations (16)-(18) can be 

rewritten as  

�̇� = −(𝑉 − 𝐹)𝑥 − 𝛽ℎ(𝑆0 − 𝑆) 

�̇� = 𝜏 − 𝛽ℎ𝐼ℎ𝑆 − 𝜇𝑆 

The computed  𝐹  and  𝑉 are given by 

𝐹 = [𝛽ℎ𝑆0 0
0 0

] ,   𝑉 = [
𝛾 + 𝜇 0
−𝛾 𝛿3 + 𝜇

] 

Consider 𝑉 − 𝐹 = [
𝛾 + 𝜇 − 𝛽ℎ𝑆0 0

−𝛾 𝛿3 + 𝜇
] = 𝑠𝐼 − 𝐵. Where,  𝑠 = max {𝛾 + 𝜇, 𝛿3 + 𝜇}  

and 𝐵 = [𝛽ℎ𝑆0 0
0 0

]. Thus, 𝑉 − 𝐹 has Z sign pattern. Further, det (𝑉 − 𝐹) =

(𝛾 + 𝜇 )(1 − 𝑅0ℎ) > 0  if  𝑅0 < 1 . Thus, 𝑉 − 𝐹 is non-singular matrix if 𝑅0 < 1. Now it 

follows that 𝑉 − 𝐹  is non-singular M–matrix if 𝑠 > 𝜌(𝐵) = 𝛽ℎ𝑆0. Next, we want show 
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that  ℎ(𝑥, 𝑦) ≥ 0. Consider ℎ(𝑥, 𝑦) = 𝛽ℎ𝑆0. At disease free equilibrium, we observe 

that 𝑆(𝑡) ⟶ 𝑆0 as 𝑡 ⟶ ∞ . Hence, ℎ(𝑥, 𝑦) ⟶ 𝟎 as (𝑆, 𝐼ℎ, 𝐴) ⟶ (𝑆0, 0, 0). 

Therefore, taking  ℎ(𝑥, 𝑦) = 𝟎 and using the above hypothesis the disease-free 

equilibrium point of model (16)-(18) is globally asymptotically stable for 𝑅0 < 1 . 

5. Mathematical analysis of HIV– Cholera model 

5.1 Invariant region 

Theorem 5.1 The solutions of the model (1)-(10)  are bounded for all 𝑡 > 0 if they enter 

invariant region  Ω = ℜ+
10 . 

Proof Let x = (𝑆, 𝐼𝑐 , 𝑅, 𝐼ℎ, 𝐼ℎ𝑐 , 𝐴, 𝐴𝑐 , 𝑅ℎ, 𝑅𝐴) ∈ ℜ+
10  be a solution of 

model (1)-(10) with initial conditions in the invariant region Ω . We divide total 

population into two categories: Human population and Bacteria population. Let  𝑁𝑇(𝑡)  
be total population size at time 𝑡 such that 

𝑁𝑇(𝑡) = 𝑁(𝑡) + 𝐵(𝑡) 

Where, 𝑁(𝑡) be the size of total human population and 𝐵(𝑡) be the size of bacteria 

population. 

 Now, (i) let  Ω1 be invariant region consisting of nine solution variables that represents 

human population with initial conditions. Moreover, let total human population size, 

 𝑁(𝑡), at time  𝑡  is given by 

𝑁(𝑡)  = 𝑆(𝑡) + 𝐼𝑐(𝑡) + 𝑅(𝑡) + 𝐼ℎ(𝑡) + 𝐼ℎ𝑐(𝑡) + 𝐴(𝑡) + 𝐴𝑐(𝑡) + 𝑅ℎ(𝑡) + 𝑅𝐴(𝑡) (24) 

Now, differentiating both sides of equation (5) with respect to time 𝑡 we have 

 𝑑𝑁

𝑑𝑡
=

𝑑𝑆

𝑑𝑡
+

𝑑𝐼𝑐
𝑑𝑡

+
𝑑𝑅

𝑑𝑡
+

𝑑𝐼ℎ
𝑑𝑡

+
𝑑𝐼ℎ𝑐

𝑑𝑡
+

𝑑𝐴

𝑑𝑡
+

𝑑𝐴𝑐

𝑑𝑡
+

𝑑𝑅ℎ

𝑑𝑡
+

𝑑𝑅𝐴

𝑑𝑡
 

 

 
⇒

𝑑𝑁

𝑑𝑡
=  𝜏 − 𝜇𝑁 − 𝛿1𝐼𝑐 − 𝛿2𝐼ℎ𝑐 − 𝛿3𝐴 − 𝛿4𝐴𝑐 − 𝛿5𝑅𝐴 ≤  𝜏 − 𝜇𝑁 

 

 ⇒ 𝑑𝑁 𝑑𝑡⁄ ≤  𝜏 − 𝜇𝑁  

 ⇒ 𝑑𝑁 (𝜏 − 𝜇𝑁)⁄ ≤ 𝑑𝑡 (25) 

Integrating both sides of (25) over  [0 𝑡] we have, 

 
∫

1

𝜏 − 𝜇𝑁

𝑡

0

𝑑𝑁 ≤ ∫ 𝑑𝑡
𝑡

0

 
 

 ⇒ 𝑙𝑛|𝜏 − 𝜇𝑁|0
𝑡 ≥ −𝜇𝑡   

 ⇒ 𝑙𝑛 |
𝜏−𝜇𝑁(𝑡)

𝜏−𝜇𝑁(0)
| ≥ −𝜇𝑡   

 ⇒ |
𝜏−𝜇𝑁(𝑡)

𝜏−𝜇𝑁(0)
| ≥ 𝑒−𝜇𝑡    

 ⇒ 
𝜏−𝜇𝑁(𝑡)

𝜏−𝜇𝑁(0)
 ≥ 𝑒−𝜇𝑡   [Assuming  𝑁(0) <

𝜏

𝜇
]  

 ⇒ 𝜏 − 𝜇𝑁(𝑡) ≥ (𝜏 − 𝜇𝑁(0))𝑒−𝜇𝑡  

 ⇒ 𝜏 − (𝜏 − 𝜇𝑁(0))𝑒−𝜇𝑡 ≥ 𝜇𝑁(𝑡)  

 ⇒ 𝑁(𝑡) ≤ (𝜏 𝜇⁄ ) − (𝜏 𝜇⁄ − 𝑁(0))𝑒−𝜇𝑡 (26) 

Now as  𝑡 ⟶  ∞ equation (26) reduced to the form, 
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𝑁(𝑡) ≤ 𝜏 𝜇⁄  (27) 

Now using (27) and general truth about population, we have, 0 ≤ 𝑁(𝑡) ≤ 𝜏 𝜇⁄  . Thus, all 

solution variables of human population are bounded in  Ω1 . That is, 

 Ω1 = {(𝑆, 𝐼𝑐 , 𝑅, 𝐼ℎ, 𝐼ℎ𝑐 , 𝐴, 𝐴𝑐 , 𝑅ℎ, 𝑅𝐴) ∈ ℜ+
9 : 0 ≤ 𝑁(𝑡) ≤ 𝜏 𝜇⁄  }  

Similarly, let 𝐵(𝑡) be population size of bacterial population, with bounded initial 

conditions. Now considering boundedness of state variables, that represent human 

population, (6) gives, 

 𝑑𝐵 𝑑𝑡⁄ = 𝛼𝐵 + 𝜂𝐼𝑐 −  𝜈𝐵  

 ⇒ 𝑑𝐵 𝐵 + 𝜏 𝜇⁄⁄  ≤ 𝑑𝑡  

 ⇒ 𝑑𝐵 (𝛼 −  𝜈)𝐵 + 𝜏 𝜇⁄⁄ ≤ (𝛼 −  𝜈)𝑡 (28) 

Integrating both sides of (28) over [0,t] and assuming  0 < 𝛼 < 𝜈, we get, 

𝐵(𝑡) = 𝜏 𝜇( 𝜈 − 𝛼)⁄ − (𝐵0 + 𝜏 𝜇(𝜈 − 𝛼)⁄ )𝑒−(𝜈−𝛼 )𝑡   (29) 

Now as  𝑡 ⟶  ∞ equation (29) reduced to the form, 

𝐵(𝑡) ≤ 𝜏 𝜇( 𝜈 − 𝛼)⁄    

Hence,  𝐵(𝑡) is bounded in the region  Ω2 such that 

Ω2 = {𝐵(𝑡) ∈ ℜ+: 0 ≤ 𝐵(𝑡) ≤ 𝜏 𝜇( 𝜈 − 𝛼)⁄  } (30) 

Therefore, the feasible solution set of the model (1)-(10) is the region Ω , defined as 

Ω = Ω1 × Ω2 = {(𝑆, 𝐼𝑐 , 𝑅, 𝐼ℎ, 𝐼ℎ𝑐 , 𝐴, 𝐴𝑐 , 𝑅ℎ, 𝑅𝐴, 𝐵) ∈ ℜ+
10: 0 ≤ 𝑁𝑇(𝑡)

≤ 𝜏
𝜇⁄ + 𝜏 𝜇( 𝜈 − 𝛼)⁄  } 

5.2 Existence and Uniqueness of a Solution 

Theorem 5.2 The solution of a model (1)-(10) with initial conditions exist and unique. 

Proof let us consider the model (1)-(10) as functions. 

(i) The first equation of  model (1)-(10) can be written in the function form as follows: 

 Let  𝑑𝑆 𝑑𝑡⁄ = 𝑓1(𝑆, 𝑡) = 𝜏 −  
𝛽𝑐𝐵𝑆

𝜅+𝐵
− 𝛽ℎ𝑆𝐼ℎ − 𝜇𝑆 . Clearly,  𝑓1(𝑆, 𝑡)  and its partial 

derivative with respect to variable  𝑆 are continuous. Further, observe that, 

|𝑓1(𝑆1, 𝑡) − 𝑓1(𝑆2, 𝑡)| = |− 
𝛽𝑐𝐵𝑆1

𝜅 + 𝐵
− 𝛽ℎ𝑆1𝐼ℎ − 𝜇𝑆1 +

𝛽𝑐𝐵𝑆1

𝜅 + 𝐵
+ 𝛽ℎ𝑆2𝐼ℎ + 𝜇𝑆2| 

 
= |−(𝑆1 − 𝑆2) (

𝛽𝑐𝐵

𝜅 + 𝐵
  + 𝛽ℎ𝐼ℎ + 𝜇)| 

 ≤ 𝑀|𝑠1 − 𝑠2| 

where, 𝑀 = 𝛽𝑐 + 𝛽ℎ(𝜏 𝜇⁄ ) + 𝜇. Hence, lipschitz condition is satisfied. 

(ii) The second equation of model (1)-(10) can be rewrittsen as as follows: 

Let  𝑑𝐼𝑐 𝑑𝑡⁄ = 𝑓2(𝐼𝑐 , 𝑡) =
𝛽𝑐𝐵𝑆

𝜅+𝐵
− (𝜔 + 𝛿1 + 𝜇)𝐼𝑐 . Here,  𝑓2 and its partial derivative with 

respect to 𝐼𝑐 are continuous. Le consider the following expression to verify lipschitz 

condition. 

|𝑓2(𝐼𝑐1, 𝑡) − 𝑓2(𝐼𝑐2, 𝑡)| = |−(𝜔 + 𝛿1 + 𝜇)𝐼𝑐1 + (𝜔 + 𝛿1 + 𝜇)𝐼𝑐2| 
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 = | −(𝜔 + 𝛿1 + 𝜇)(𝐼𝑐1 − 𝐼𝑐2)| 

 ≤ 𝑀|𝐼𝑐1 − 𝐼𝑐2| 

where,  𝑀 = 2(𝜔 + 𝛿1 + 𝜇). Hence, lipischitz condition is satisfied 

(iii) From third equation of model (1)-(10) we have: 

 𝑑𝑅 𝑑𝑡⁄ = 𝑓3(𝑅, 𝑡) = 𝜔𝐼𝑐 − 𝜇𝑅.  Here, 𝑓3 and its partial derivatives with respect to  𝑅  are 

continuous. On the other hand, consider expression, 

|𝑓3(𝑅1, 𝑡) − 𝑓3(𝑅2, 𝑡)| = |−𝜇𝑅1 + 𝜇𝑅2| 

 = 𝜇|𝑅1 − 𝑅2| 

 ≤ 𝑀|𝑅1 − 𝑅2|   

where, 𝑀 = 2𝜇. Hence, Lipischitz condition is fulfilled. 

Similarly, the remaining expressions can be proved. Hence, by Cauchy-Lipschitz 

theorem we can conclude that the formulated model has unique solution for all positive 

time 𝑡. 

5.3 Positivity of model solutions 

Theorem 5.3 Solutions of the model (1) – (10) together with the initial 

conditions 𝑆(0) ≥ 0, 𝐼𝑐(0) ≥ 0, 𝑅(0) ≥ 0, 𝐼ℎ(0) ≥ 0, 𝐼ℎ𝑐(0) ≥ 0, 𝐴(0) ≥ 0, 𝐴𝑐(0) ≥
0, 𝑅ℎ(𝑡) ≥ 0, 𝑅𝐴(0) ≥ 0, 𝐵(0) ≥ 0  are always non-negative (OR) the model variables 

 𝑆, 𝐼𝑐 , 𝑅, 𝐼ℎ , 𝐼ℎ𝑐 , 𝐴 , 𝐴𝑐  , 𝑅ℎ , 𝑅𝐴  and  𝐵  are non-negative for all 𝑡 and will remain 

in ℝ+
10 .  

Proof Positivity of the solutions of model equations is shown separately by showing the 

positivity of each variables 𝑆, 𝐼𝑐 , 𝑅, 𝐼ℎ , 𝐼ℎ𝑐 , 𝐴 , 𝐴𝑐 , 𝑅ℎ , 𝑅𝐴  and 𝐵. 

Positivity of  𝑆(𝑡) : Consider the first equation of model (1)-(10), 

𝑑𝑆 𝑑𝑡⁄ = 𝜏 −  
𝛽𝑐𝐵𝑆

𝜅+𝐵
− 𝛽ℎ𝑆𝐼ℎ − 𝜇𝑆. 

It can be expressed as, after eliminating the positive term 𝜏 that appearing on the right 

hand side, an inequality  𝑑𝑆 𝑑𝑡⁄ ≥ −
𝛽𝑐𝐵𝑆

𝜅+𝐵
− 𝛽ℎ𝑆𝐼ℎ − 𝜇𝑆. Using variables separ`ation 

method and on applying integration, the solution of the foregoing differential inequality 

can be obtained as   𝑆(𝑡) ≥ 𝑆(0)𝑒−𝜇𝑡−∫[
𝛽𝑐𝐵

𝜅+𝐵
+𝛽ℎ𝐼ℎ ]𝑑𝑡

. Recall that an exponential function 

is always non–negative irrespective of the sign of the exponent i.e., the exponential 

function 𝑒−𝜇𝑡−∫[
𝛽𝑐𝐵

𝜅+𝐵
+𝛽ℎ𝐼ℎ ]𝑑𝑡

 is a non-negative quantity. Hence, it can be concluded 

that  𝑆(𝑡) ≥ 0.  

Positivity of 𝐼𝑐(𝑡): Consider the second equation of model (1)-(6), 

𝑑𝐼𝑐 𝑑𝑡⁄ =
𝛽𝑐𝐵𝑆

𝜅+𝐵
   − (𝜔 + 𝛿1 + 𝜇)𝐼𝑐. 

It can be expressed as, after eliminating the positive term 
𝛽𝑐𝐵𝑆

𝜅+𝐵
 that appearing on the right 

hand side, an inequality  𝑑𝑆 𝑑𝑡⁄ ≥  −(𝜔 + 𝛿1 + 𝜇)𝐼𝑐 . Using variables separation method 

and on applying integration, the solution of the foregoing differential inequality can be 

obtained as   𝐼𝑐(𝑡) ≥ 𝐼𝑐(0)𝑒−(𝜔+𝛿1+𝜇)𝑡. Recall that an exponential function is always 

non–negative irrespective of the sign of the exponent i.e. the exponential function 

 𝑒−(𝜔+𝛿1+𝜇)𝑡 is a non-negative quantity. Hence, it can be concluded that  𝐼𝑐(𝑡) ≥ 0.  

Positivity of  𝑅(𝑡): Consider the third equation of model (1)-(10), 



350                                            K. R. Cheneke et al./𝐼𝐽𝑀2𝐶, 10 -04 (2020) 333-360.  

 𝑑𝑅 𝑑𝑡⁄ = 𝜔𝐼𝑐 − 𝜇𝑅. 

It can be expressed as, after eliminating the positive term  𝜔𝐼𝑐 , that appearing on the 

right hand side,  we obtain an inequality  𝑑𝑅 𝑑𝑡⁄ ≥  −𝜇𝑅 . Using variables separation 

method and on applying integration, the solution of the foregoing differential inequality 

can be obtained as   𝑅(𝑡) ≥ 𝑅(0)𝑒−𝜇𝑡. Recall that an exponential function is always non–

negative irrespective of the sign of the exponent i.e. the exponential function 𝑒−𝜇𝑡  is a 

non-negative quantity. Hence, it can be concluded that  𝑅(𝑡) ≥ 0.                                     

Positivity of  𝐼ℎ(𝑡): Consider the equation (4) of model (1)-(10). That is, 

𝑑𝐼ℎ 𝑑𝑡⁄ = 𝛽ℎ𝑆𝐼ℎ −
𝛽𝑐𝐵𝐼ℎ

𝜅+𝐵
  − (𝛾 + 𝜇)𝐼ℎ. 

After eliminating the positive term   𝛽ℎ𝑆𝐼ℎ   which is appearing on the right hand side, it 

can be expressed as inequality  𝑑𝐼ℎ 𝑑𝑡⁄ ≥ −
𝛽𝑐𝐵𝐼ℎ

𝜅+𝐵
  − (𝛾 + 𝜇)𝐼ℎ . Now, using variables 

separation method and on applying integration, the solution of the foregoing differential 

inequality can be obtained as  𝑑𝐼ℎ 𝑑𝑡⁄ ≥ 𝐼ℎ(0) 𝑒−(𝛾+𝜇)𝑡−𝛽𝑐 ∫
𝐵

𝜅+𝐵
𝑑𝑡

. Recall that an 

exponential function is always a non–negative irrespective of the sign of the exponent i.e. 

the exponential function 𝑒−(𝛾+𝜇)𝑡−𝛽𝑐 ∫
𝐵

𝜅+𝐵
𝑑𝑡

 is a non-negative quantity. Hence, it can be 

concluded that  𝐼ℎ(𝑡) ≥ 0 .  

Positivity of  𝐼ℎ𝑐(𝑡): Consider the equation (5) of model (1)-(10). That is,  

𝑑𝐼ℎ𝑐 𝑑𝑡⁄ =
𝛽𝑐𝐵𝐼ℎ

𝜅+𝐵
 − (𝜌 + 𝜎 + 𝛿2 + 𝜇)𝐼ℎ𝑐. 

After eliminating the positive term 
𝛽𝑐𝐵𝐼ℎ

𝜅+𝐵
  which is appearing on the right hand side, it can 

be expressed as inequality  𝑑𝐼ℎ𝑐 𝑑𝑡⁄ ≥ −(𝜌 + 𝜎 + 𝛿2 + 𝜇)𝐼ℎ𝑐.  Now, using variables 

separation method and on applying integration, the solution of the foregoing differential 

inequality is, 𝐼ℎ𝑐 ≥ 𝐼ℎ𝑐(0)𝑒−(𝜌+𝜎+𝛿2+𝜇)𝑡.  Recall that an exponential function is always a 

non–negative irrespective of the sign of the exponent i.e. the exponential function 

  𝑒−(𝜌+𝜎+𝛿2+𝜇)𝑡  is a non-negative quantity. Hence, it can be concluded that  𝐼ℎ𝑐(𝑡) ≥ 0.  

Positivity of  𝐴(𝑡): Consider the equation (6) of model (1)-(10). That is, 

𝑑𝐴 𝑑𝑡⁄ = 𝛾𝐼ℎ −
𝛽𝑐𝐵𝐴

𝜅+𝐵
  − (𝛿3 + 𝜇)𝐴. 

After eliminating the positive term 𝛾𝐼ℎ , which is appearing on the right hand side, it can 

be expressed as inequality 𝑑𝐴 𝑑𝑡⁄ ≥ −
𝛽𝑐𝐵𝐴

𝜅+𝐵
  − (𝛿3 + 𝜇)𝐴. Now, using variables 

separation method and on applying integration, the solution of the foregoing differential 

inequality is, 𝐴(𝑡) ≥  𝐴(0)𝑒−(𝛿3+𝜇)𝑡−𝛽𝑐 ∫
𝐵

𝜅+𝐵
  𝑑𝑡

.  Recall that an exponential function is 

always a non–negative irrespective of the sign of the exponent i.e. the exponential 

function 𝑒−(𝛿3+𝜇)𝑡−𝛽𝑐 ∫
𝐵

𝜅+𝐵
  𝑑𝑡  is a non-negative quantity. Hence, it can be concluded 

that  𝐴(𝑡) ≥ 0 .  

Positivity of  𝐴𝑐(𝑡): Consider the equation (7) of model (1)-(10). That is, 

𝑑𝐴𝑐 𝑑𝑡⁄ =
𝛽𝑐𝐵𝐴

𝜅+𝐵
+ 𝜌𝐼ℎ𝑐 − (𝜙 + 𝛿4 + 𝜇)𝐴𝑐. 

After eliminating the positive term  
𝛽𝑐𝐵𝐴

𝜅+𝐵
+ 𝜌𝐼ℎ𝑐 , which is appearing on the right hand 

side, it can be expressed as inequality 𝑑𝐴𝑐 𝑑𝑡⁄ ≥ −(𝜙 + 𝛿4 + 𝜇)𝐴𝑐.  Now, using 

variables separation method and on applying integration, the solution of the foregoing 

differential inequality is, 𝐴𝑐(𝑡) ≥ 𝐴𝑐(0)𝑒−(𝜙+𝛿4+𝜇)𝑡.  Recall that an exponential function 
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is always a non–negative irrespective of the sign of the exponent i.e. the exponential 

function  𝑒−(𝜙+𝛿4+𝜇)𝑡 is a non-negative quantity. Hence, it can be concluded that 

𝐴𝑐(𝑡) ≥ 0 .  

Positivity of  𝑅ℎ(𝑡): Consider the equation (8) of model (1)-(10). That is, 

 𝑑𝑅ℎ 𝑑𝑡⁄ = 𝜎𝐼ℎ𝑐 − (𝜃 + 𝜇)𝑅ℎ. 

 After eliminating the positive term 𝜎𝐼ℎ𝑐, which is appearing on the right hand side, it can 

be expressed as inequality 𝑑𝑅ℎ 𝑑𝑡⁄ ≥ −(𝜃 + 𝜇)𝑅ℎ. Now, using variables separation 

method and on applying integration, the solution of the foregoing differential inequality 

is, 𝑅ℎ(𝑡) ≥ 𝑅ℎ(0)𝑒−(𝜃+𝜇)𝑡 .  Recall that an exponential function is always a non–

negative irrespective of the sign of the exponent i.e. the exponential function  𝑒−(𝜃+𝜇)𝑡  is 

a non-negative quantity. Hence, it can be concluded that  𝑅ℎ(𝑡) ≥ 0.  

Positivity of 𝑅𝐴(𝑡): Consider the equation (9) of model (1)-(10). That is, 

𝑑𝑅𝐴 𝑑𝑡⁄ = 𝜃𝑅ℎ + 𝜙𝐴𝑐  − (𝛿5 + 𝜇)𝑅𝐴. 

After eliminating the positive term 𝜃𝑅ℎ + 𝜙𝐴𝑐  , which is appearing on the right hand 

side, it can be expressed as inequality  𝑑𝑅𝐴 𝑑𝑡⁄ ≥ −(𝛿5 + 𝜇)𝑅𝐴. Now, using variables 

separation method and on applying integration, the solution of the foregoing differential 

inequality is, 𝑅𝐴(𝑡) ≥ 𝑅𝐴(0)𝑒−(𝛿5+𝜇)𝑡.  Recall that an exponential function is always a 

non–negative irrespective of the sign of the exponent i.e. the exponential function  

𝑒−(𝛿5+𝜇)𝑡  is a non-negative quantity. Hence, it can be concluded that  𝑅𝐴(𝑡) ≥ 0 .  

Positivity of  𝐵(𝑡): Consider  equation (10) of model (1)-(10),  

 𝑑𝐵 𝑑𝑡⁄ = 𝛼𝐵 + 𝜂𝐼𝑐 −  𝜈𝐵. 

Now, without loss of generality and after eliminating the positive term 𝛼𝐵 + 𝜂𝐼𝑐 which is 

appearing on the right hand side of equation (10) we have an inequality,   𝑑𝐵 𝑑𝑡⁄ ≥ −𝜈𝐵. 
Using variables separation method and on applying integration, the solution of the 

foregoing differential inequality can be obtained as  𝐵(𝑡) ≥ 𝐵0𝑒
−𝜈𝑡. Recall that an 

exponential function is always non–negative irrespective of the sign of the exponent i.e. 

the exponential function 𝑒−𝜈𝑡 is a non-negative quantity  for all time 𝑡. Hence, it can be 

concluded that 𝐵(𝑡) ≥ 0. Thus, all solutions of the model are non-negative. Futheremore, 

the formulated model is biologically meaningful and mathematically well-posed. 

5.4 Equilibrium points 

In order to understand the dynamics of the model, it is necessary to determine 

equilibrium points of the solution region. An equilibrium solution is a steady state 

solution of the model equations (1)-(10) in the sense that if the system begins at such a 

state, it will remain there for all times. In other words, the population sizes remain 

unchanged and thus the rate of change for each population vanishes. Equilibrium points 

of the model are found, categorized, stability analysis is conducted and the results have 

been presented in the following sub-sections: 

5.4.1 Disease free equilibrium point 

Disease free equilibrium point is a steady state solution where there is no disease in the 

population. Now, setting  𝐼𝑐 = 𝐼ℎ = 𝐼ℎ𝑐 = 𝐴 = 𝐴𝑐 = 𝑅ℎ = 𝑅𝐴 = 𝐵 = 0 in model (1)-(10) 

we obtain the following equation 

𝜏 − 𝜇𝑆 = 0. 
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Solving we get  𝑆 = 𝑆0 =
𝜏

𝜇
 .  Thus, the disease free equilibrium  𝐸0 is given by 𝐸0 =

(𝑆0, 𝐼𝑐
0, 𝑅0, 𝐼ℎ

0, 𝐼ℎ𝑐
0 , 𝐴0, 𝐴𝑐

0, 𝑅ℎ
0, 𝑅𝐴

0, 𝐵0) of the model (1)-(10) is given by 

𝐸0 = (
𝜏

𝜇
, 0, 0, 0, 0, 0, 0, 0, 0, 0). (31) 

5.4.2 Endemic equilibrium point 

An endemic equilibrium point is steady state point where disease persist in the 

population. At endemic equilibrium point disease compartment of the model never be 

zero, but the rate of change of size of  each state variable is zero. That is, 

𝑑𝑆 𝑑𝑡⁄ = 𝑑𝐼𝑐 𝑑𝑡⁄ =  𝑑𝑅 𝑑𝑡⁄ = 𝑑𝐼ℎ 𝑑𝑡⁄ = 𝑑𝐼ℎ𝑐 𝑑𝑡⁄ = 𝑑𝐴 𝑑𝑡⁄ = 𝑑𝐴𝑐 𝑑𝑡⁄ =  𝑑𝑅ℎ 𝑑𝑡⁄ =

 𝑑𝑅𝐴 𝑑𝑡⁄ =  𝑑𝐵 𝑑𝑡⁄ = 0, 

 𝜏 −
𝛽𝑐𝐵𝑆

𝜅+𝐵
− 𝛽ℎ𝑆𝐼ℎ − 𝜇𝑆 = 0, 

 𝛽𝑐𝐵𝑆

𝜅+𝐵
− (𝜔 + 𝛿1 + 𝜇)𝐼𝑐 = 0, 

 𝜔𝐼𝑐 − 𝜇𝑅 = 0, 

 𝛽ℎ𝑆𝐼ℎ −
𝛽𝑐𝐵𝐼ℎ

𝜅+𝐵
  − (𝛾 + 𝜇)𝐼ℎ = 0, 

 𝛽𝑐𝐵𝐼ℎ

𝜅+𝐵
− (𝜌 + 𝜎 + 𝛿2 + 𝜇)𝐼ℎ𝑐  = 0, 

 𝛾𝐼ℎ −
𝛽𝑐𝐵𝐴

𝜅+𝐵
− (𝛿3 + 𝜇)𝐴 = 0, 

 𝛽𝑐𝐵𝐴

𝜅+𝐵
+ 𝜌𝐼ℎ𝑐 − (𝜙 + 𝛿4 + 𝜇)𝐴𝑐 = 0, 

 𝜎𝐼ℎ𝑐 − (𝜃 + 𝜇)𝑅ℎ = 0, 

 𝜃𝑅ℎ + 𝜙𝐴𝑐 − (𝛿5 + 𝜇)𝑅𝐴 = 0, 

 𝛼𝐵 + 𝜂𝐼𝑐 − 𝜈𝐵 = 0. 

Solving the above equations we get: 

 𝑆 = 𝛽𝑐 + 𝛾 + 𝜇 − √(𝛽𝑐 + 𝛾 + 𝜇)2 − 4𝛽ℎ(𝜔 + 𝛿` + 𝜇)(𝜅(𝜈 − 𝛼) 𝜂⁄ ) = 𝑆1, 

 𝐵 =
(𝛽ℎ𝑆1−𝛾−𝜇)𝜅

𝛽𝑐−(𝛽ℎ𝑆1−𝛾−𝜇)
= 𝐵1, 

 𝐼𝑐 =
(𝜈−𝛼)𝐵1

𝜂
= 𝐼𝑐

1, 

 𝑅 =  
𝜔𝐼𝑐

1

𝜇
= 𝑅1, 

 𝐼ℎ =
𝜏

𝛽ℎ𝑆1 −
𝛽𝑐𝐵

1

𝛽ℎ(𝜅+𝐵1)
−

𝜇

𝛽ℎ
= 𝐼ℎ

1, 

 𝐼ℎ𝑐 =
𝛽𝑐𝐵

1𝐼ℎ
1

(𝜅+𝐵1)(𝜌+𝜎+𝛿2+𝜇)
= 𝐼ℎ𝑐

1 , 

 𝐴 =
𝛾𝐼ℎ

1(𝜅+𝐵1)

𝛽𝑐𝐵
1+(𝜅+𝐵1)(𝛿3+𝜇)

= 𝐴1, 

 𝐴𝑐 =
𝛽𝑐𝐵

1𝐴1

(𝜅+𝐵1)(𝜙+𝛿4+𝜇)
+

𝜌𝐼ℎ𝑐
1

(𝜙+𝛿4+𝜇)
= 𝐴𝑐

1, 

 𝑅ℎ =
𝜎𝐼ℎ𝑐

1

𝜃+𝜇
= 𝑅ℎ

1, 

 𝑅𝐴 = 
𝜃𝑅ℎ

1+𝜙𝐴𝑐
1

𝛿5+𝜇
= 𝑅𝐴

1. 

5.5 Basic reproduction number 

The basic reproduction number is denoted by  𝑅0  and is defined as the expected number 
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of people getting secondary infection because of infected person enters into wholly 

susceptible population. This number determines the potential for the spread of disease 

within a population. When 𝑅0 < 1 each infected individual produces on average less than 

one new infected individual so that the disease is expected to die out. On the other hand if 

𝑅0 > 1  then each individual produces more than one new infected individual so that the 

disease is expected to continue spreading in the population. This means that the threshold 

quantity for eradicating the disease is to reduce the value of  𝑅0 to less than one.  

The basic reproductive number 𝑅0 can be determined using the next generation 

matrix. In this method  𝑅0  is defined as the largest eigenvalue of the next generation 

matrix. The formulation of this matrix involves classification of all compartments of the 

model in to two classes: infected and non-infected.  

Let 𝑓 be  a matrix of newly infected cases and 𝑣 be a matrix of transition cases in 

model (1)-(10). Consider model (1)-(10) 

 
𝑑𝑆 𝑑𝑡⁄ = 𝜏 −

𝛽𝑐𝐵𝑆

𝜅 + 𝐵
− 𝛽ℎ𝑆𝐼ℎ − 𝜇𝑆 

 
𝑑𝐼𝑐 𝑑𝑡⁄ =

𝛽𝑐𝐵𝑆

𝜅 + 𝐵
− (𝜔 + 𝛿1 + 𝜇)𝐼𝑐 

 𝑑𝑅 𝑑𝑡⁄ = 𝜔𝐼𝑐 − 𝜇𝑅 

 
𝑑𝐼ℎ 𝑑𝑡⁄ = 𝛽ℎ𝑆𝐼ℎ −

𝛽𝑐𝐵𝐼ℎ
𝜅 + 𝐵

  − (𝛾 + 𝜇)𝐼ℎ 

 
𝑑𝐼ℎ𝑐 𝑑𝑡⁄ =

𝛽𝑐𝐵𝐼ℎ
𝜅 + 𝐵

− (𝜌 + 𝜎 + 𝛿2 + 𝜇)𝐼ℎ𝑐 

 
𝑑𝐴 𝑑𝑡⁄ = 𝛾𝐼ℎ −

𝛽𝑐𝐵𝐴

𝜅 + 𝐵
− (𝛿3 + 𝜇)𝐴 

 
𝑑𝐴𝑐 𝑑𝑡⁄ =

𝛽𝑐𝐵𝐴

𝜅 + 𝐵
+ 𝜌𝐼ℎ𝑐 − (𝜙 + 𝛿4 + 𝜇)𝐴𝑐 

 𝑑𝑅ℎ 𝑑𝑡⁄ = 𝜎𝐼ℎ𝑐 − (𝜃 + 𝜇)𝑅ℎ 

 𝑑𝑅𝐴 𝑑𝑡⁄ = 𝜃𝑅ℎ + 𝜙𝐴𝑐 − (𝛿5 + 𝜇)𝑅𝐴 

 𝑑𝐵 𝑑𝑡⁄ = 𝛼𝐵 + 𝜂𝐼𝑐 − 𝜈𝐵 

Now, 𝑓 and  𝑣 are given respectively as, 

𝑓 =

[
 
 
 
 
 
 
 
 
 

𝛽𝑐𝐵𝑆

𝜅+𝐵

𝛽ℎ𝑆𝐼ℎ
𝛽𝑐𝐵𝐼ℎ

𝜅+𝐵
𝛽𝑐𝐵𝐴

𝜅+𝐵

0
0
0
0 ]

 
 
 
 
 
 
 
 
 

 ,     𝑣 =

[
 
 
 
 
 
 
 
 
 

(𝜔 + 𝛿1 + 𝜇)𝐼𝑐
𝛽𝑐𝐵𝐼ℎ

𝜅+𝐵
 + (𝛾 + 𝜇)𝐼ℎ

(𝜌 + 𝜎 + 𝛿2 + 𝜇)𝐼ℎ𝑐

−𝛾𝐼ℎ +
𝛽𝑐𝐵𝐴

𝜅+𝐵
 + (𝛿3 + 𝜇)𝐴

−𝜌𝐼ℎ𝑐 + (𝜙 + 𝛿4 + 𝜇)𝐴𝑐

−𝜎𝐼ℎ𝑐 + (𝜃 + 𝜇)𝑅ℎ

−𝜃𝑅ℎ − 𝜙𝐴𝑐 + (𝛿5 + 𝜇)𝑅𝐴

−𝛼𝐵 − 𝜂𝐼𝑐 +  𝜈𝐵 ]
 
 
 
 
 
 
 
 
 

 , 

The Jacobian of 𝑓 and  𝑣  evaluated at disease free equilibrium point  𝐸0  is given by 

 𝐹  and  𝑉 respectively as follows, 
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𝐹 =

[
 
 
 
 
 
 
 
 0 0 0 0 0 0 0

𝛽𝑐𝑆
0

𝜅
0 𝛽ℎ𝑆0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 ]

 
 
 
 
 
 
 
 

 

𝑉

=

[
 
 
 
 
 
 
 
𝜔 + 𝛿1 + 𝜇 0 0 0 0 0 0 0

0 𝛾 + 𝜇 0 0 0 0 0 0
0 0 𝜌 + 𝜎 + 𝛿2 + 𝜇 0 0 0 0 0
0 −𝛾 0 𝛿3 + 𝜇 0 0 0 0
0 0 −𝜌 0 𝜙 + 𝛿4 + 𝜇 0 0 0
0 0 −𝜎 0 0 𝜃 + 𝜇 0 0
0 0 0 0 −𝜙 −𝜃 𝛿5 + 𝜇 0

−𝜂 0 0 0 0 0 0 𝜈 − 𝛼]
 
 
 
 
 
 
 

 

The next generation matrix,  𝐹𝑉−1  is computed and given by  

  𝐹𝑉−1 =

[
 
 
 
 
 
 
 
 
 
 

𝜂𝛽𝑐𝑆
0

𝜅(𝜈 − 𝛼)(𝛿1 + 𝜔 + 𝜇)
0 0 0 0 0 0

𝛽𝑐𝑆
0

𝜅(𝜈 − 𝛼)

0
 𝛽ℎ𝑆0 

𝜇 + 𝛾
0 0 0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 ]

 
 
 
 
 
 
 
 
 
 

 

The eigenvalues of next generation matrix are computed and given by, 

𝜆1 =
𝜂𝛽𝑐𝑆

0

𝜅(𝜈 − 𝛼)(𝛿1 + 𝜔 + 𝜇)
= 𝑅0𝑐 , 𝜆2 =

 𝛽ℎ𝑆0 

𝜇 + 𝛾
= 𝑅0ℎ,  

𝜆3 = 𝜆4 = 𝜆5 = 𝜆6 = 𝜆7 = 𝜆8 = 0  with  𝜈 > 𝛼. 

Since reproduction number  𝑅0 is the largest eigenvalue of next generation matrix, it is 

given by, 

𝑅0 = 𝑚𝑎𝑥{𝑅0𝑐 , 𝑅0ℎ}    (32) 

5.6 Stability analysis of the disease free equilibrium point 

In the absence of the infectious disease, the model (1)-(10) have a unique disease free 

steady state 𝐸0 . It is already shown that the DFE of model (1)-(10) is given by equation 

(31). The stability analysis of DFE is conducted and the results are presented in the form 

of theorems and proofs in the following sub-sections. 
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5.6.1 Local stability of disease free equilibrium point 

Theorem 5.4 The DFE 𝐸0 of the model (1)-(10) is locally asymptotically stable if  𝑅0 <
1  and unstable otherwise. 

Proof Consider the model (1)-(10) so that Jacobian matrix of the system at DFE is given 

by 

𝐽 =

[
 
 
 
 
 
 
 
 
 
 
 
 −𝜇 0 0 𝛽ℎ𝑆0 0 0 0 0 0 −

𝛽𝑐𝑆
0

𝜅

0 −𝑎 0 0 0 0 0 0 0
𝛽𝑐𝑆

0

𝜅
0 𝜔 −𝜇 0 0 0 0 0 0 0

0 0 0 𝛽ℎ𝑆0 − 𝑏 0 0 0 0 0 0
0 0 0 0 −𝑐 0 0 0 0 0
0 0 0 𝛾 0 −𝑑 0 0 0 0
0 0 0 0 𝜌 0 −𝑒 0 0 0
0 0 0 0 𝜎 0 0 −𝑓 0 0
0 0 0 0 0 0 𝜙 𝜃 −𝑔 0
0 𝜂 0 0 0 0 0 0 0 𝛼 − 𝜈 ]

 
 
 
 
 
 
 
 
 
 
 
 

 

where 𝑎 = 𝜔 + 𝛿1 + 𝜇, 𝑏 = 𝛾 + 𝜇, 𝑐 = 𝜌 + 𝜎 + 𝛿2 + 𝜇, 𝑑 = 𝛿3 + 𝜇, 𝑒 = 𝜙 + 𝛿4 + 𝜇,
𝑓 = 𝜃 + 𝜇, 𝑔 = 𝛿5 + 𝜇 . Now we compute the trace and determinant of Jacobian matrix 

to determine local stability of disease free equilibrium point. Simple mathematical 

computations gives the trace and determinant of the matrix as follows: Trace of 𝐽 < 0 if 

𝑅0ℎ < 1 and det (𝐽) =
𝑏𝑐𝜇(𝑅0ℎ−1)(𝑑𝑒𝑓𝑔𝑢𝛼𝜅(𝜈−𝑎)(𝑅0ℎ−1))

𝜅
> 0 if 𝑅0ℎ < 1 and 𝑅0𝑐 < 1. 

Here, it can observed that, trace of a Jacobian matrix is less than zero and determinant of 

a matrix is greater than zero if  𝑅0 < 1 . Hence, by using trace-determinant principle we 

conclude that DFE is locally asymptotically stable if 𝑅0 < 1 .   

6.5.2 Global stability of disease free equilibrium point 

Let 𝑥 ∈ 𝑅8 is disease compartment and 𝑦 ∈ 𝑅2 be disease free compartment. The disease 

transmission model (1)-(10) can be written in the form: 

�̇� = −(𝑉 − 𝐹)𝑥 − ℎ(𝑥, 𝑦) 

�̇� = 𝑔(𝑥, 𝑦) 

where, 𝑥 = (𝐼𝑐 , 𝐼ℎ , 𝐼ℎ𝑐 , 𝐴, 𝐴𝑐 , 𝑅ℎ, 𝑅𝐴, 𝐵)  and 𝑦 = (𝐼𝑐 , 𝐵) . Further, the 

notations  𝐹  and  𝑉 are computed in subsection 5.5. 

Theorem 5.5 If  𝑉 − 𝐹 is a non-singular M-matrix and   ℎ ≥ 0  then the disease-free 

equilibrium point of model (1)-(10) is globally asymptotically stable if 𝑅0 < 1. 

Proof The rate of change of the variables in the model equations (1)-(10) can be rewritten 

as 

 �̇� = −(𝑉 − 𝐹)𝑥 − [(
𝛽𝑆0

𝜅
−

𝛽𝑆

𝜅+𝐵
)]  

 �̇� = 𝜏 −   
𝛽𝑐𝐵𝑆

𝜅+𝐵
− 𝛽ℎ𝑆𝐼ℎ − 𝜇𝑆  

 �̇� = 𝜔𝐼𝑐 − 𝜇𝑅 

where, 𝐹  and  𝑉 are computed and  given  by 
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𝐹 =

[
 
 
 
 
 
 
 
 0 0 0 0 0 0 0

𝛽𝑐𝑆
0

𝜅

0 𝛽ℎ𝑆0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 ]

 
 
 
 
 
 
 
 

 , 

𝑉 =

[
 
 
 
 
 
 
 

𝑎 0 0 0 0 0 0 0
0 𝑏 0 0 0 0 0 0
0 0 𝑐 0 0 0 0 0
0 −𝛾 0 𝑑 0 0 0 0
0 0 −𝜌 0 𝑒 0 0 0
0 0 −𝜎 0 0 𝑓 0 0
0 0 0 0 −𝜙 −𝜃 𝑔 0

−𝜂 0 0 0 0 0 0 𝜈 − 𝛼]
 
 
 
 
 
 
 

. 

Consider, 

𝑉 − 𝐹 =

[
 
 
 
 
 
 
 
 𝑎 0 0 0 0 0 0 −

𝛽𝑐𝑆
0

𝜅

0 𝑏 − 𝛽ℎ𝑆0 0 0 0 0 0 0
0 0 𝑐 0 0 0 0 0
0 −𝛾 0 𝑑 0 0 0 0
0 0 −𝜌 0 𝑒 0 0 0
0 0 −𝜎 0 0 𝑓 0 0
0 0 0 0 −𝜙 −𝜃 𝑔 0

−𝜂 0 0 0 0 0 0 𝜈 − 𝛼]
 
 
 
 
 
 
 
 

= 𝑠𝐼 − 𝐵, 

where, 

𝑠 = max {𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓, 𝑔, 𝜈 − 𝛼}, 
 and 

𝐵 =

[
 
 
 
 
 
 
 
 0 0 0 0 0 0 0

𝛽𝑐𝑆
0

𝜅

0 𝛽ℎ𝑆0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 𝛾 0 0 0 0 0 0
0 0 𝜌 0 0 0 0 0
0 0 𝜎 0 0 0 0 0
0 0 0 0 𝜙 𝜃 0 0
𝜂 0 0 0 0 0 0 0 ]

 
 
 
 
 
 
 
 

  . 

Thus, 𝑉 − 𝐹 has Z sign pattern. Further, since det (𝑉 − 𝐹) = 𝑏𝑐𝑑𝑒𝑓𝑔𝛼(𝑣 − 𝑎 )(𝑅0ℎ −
1)(𝑅0𝑐 − 1) ≠ 0, it is clear that 𝑉 − 𝐹 is non-singular matrix if 𝑅0 < 1 . Therefore, 𝑉 −

𝐹  is non-singular M–matrix if 𝑠 > 𝜌(𝐵) = 𝑚𝑎𝑥 {𝛽ℎ𝑆0, √
𝜂𝛽𝑐𝑆

0

𝜅
 }. Next, we want show 

that  ℎ(𝑥, 𝑦) ≥ 0 . Consider  ℎ(𝑥, 𝑦) = [(
𝛽𝑆0

𝜅
−

𝛽𝑆

𝜅+𝐵
)] . At disease free equilibrium 

point, we observe that   𝑆(𝑡) ⟶ 𝑆0 as  𝑡 ⟶ ∞ . Hence, ℎ(𝑥, 𝑦) ⟶ 𝟎 as 

((𝑆, 𝐼𝑐 , 𝑅, 𝐼ℎ, 𝐼ℎ𝑐 , 𝐴, 𝐴𝑐 , 𝑅ℎ, 𝑅𝐴, 𝐵)) ⟶
(𝑆0, 0, 0, 0, 0, 0, 0, 0 0, 0) . 
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Therefore, from the above hypothesis the disease-free equilibrium point of model (1)-

(10) is globally asymptotically stable for  𝑅0 < 1. 

5.6.3 Impact of HIV on Cholera infection 

In order to express the impact of Cholera on HIV and impact of HIV on Cholera, we 

express  𝑅0𝑐 interms  𝑅0ℎ. Since 

 𝑅0ℎ = 
𝛽ℎ𝜏 

𝜇(𝜇 + 𝛾)
 ⇒ 𝜇 =  

𝛽ℎ𝜏 

𝑅0ℎ(𝜇 + 𝛾)
  

Now, substituting the expression for  𝜇  in  𝑅0𝑐 gives 

 𝑅0𝑐 =
𝜂𝛽𝑐𝑅0ℎ(𝜇 + 𝛾)

𝛽ℎ𝜅(𝜈 − 𝛼)(𝛿1 + 𝜔 + 𝜇)
  . 

To know the impact of diseases on each other we compute  
𝜕𝑅0𝑐

𝜕𝑅0ℎ
 as 

𝜕𝑅0𝑐

𝜕𝑅0ℎ
=

𝜂𝛽𝑐(𝜇 + 𝛾)

𝛽ℎ𝜅(𝜈 − 𝛼)(𝛿1 + 𝜔 + 𝜇)
> 0. (33) 

Equation (33) shows that increasing HIV cases increases Cholera cases and similarly 

increasing HIV cases increases Cholera cases.  

6. Numerical simulation 

In this section, numerical simulation study of model equations (1)-(10) is carried out 

using the software MATLAB. To conduct the study, a set of physically meaningful 

values are assigned to the model parameters. These values are either taken from literature 

or assumed on the basis of reality. These sets of parametric values are given under 

figures. 

Figure 2 shows the change of human population with time. As it is seen on the figure 

2 we observe the followings points (i) susceptible individuals decrease slowly as time 

increases whereas cholera only, HIV-Cholera only and AIDS-Cholera individuals 

decrease quickly with a significant number, due to impact of treatment, as time increases 

(ii) Recovered (R) individuals initially increase rapidly with a siginificant number and 

remain constant due to treatment impact as time increases (iii) HIV only, AIDS only, 

cholera recovered HIV only, and cholera recovered AIDS only individuals increase 

significantly. Moreover, the number of individuals with HIV only has a priority to AIDS 

only individuals to be recovered from cholera epidemics. 

In Figure 3, we observe that the bacteria population decrease siginificantly over the 

first seven days  and increase slowly as time increases. 

7. Sensitivity analysis 

Sensitivity analysis is used to determine the sensitivity of the model with respect to the 

parameters involved in it.  That is, how changes in the value of the parameters of the 

model result in changing the dynamics of the infection. It is used to discover parameters 

that have a high impact on  𝑅0 and should be targeted by intervention strategies. More 

precisely, sensitivity indices allow measuring the relative change in a variable when 

parameter changes. If the result is negative, then the relationship between the parameters 

and  𝑅0  is inversely proportional. In this case, the modulus of the sensitivity index will 

be taken so that the size of the effect of changing that parameter can be deduced.  
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Figure 2. Simulations of human population variation with time with parameters value 𝜏 =
0.045

day
, 𝛽𝑐 =

0.01694

day
, 𝛽ℎ =

0.0000085

day
, 𝜔 =

0.2

day
, 𝛾 =

0.0027

day
, 𝜌 =

0.0085

day
, 𝜎 =

0.08

day
, 𝜙 =

0.01

day
,

𝜃 =
0.0027

day
, 𝛿1 =

0.015

day
, 𝛿2 =

0.045

day
, 𝛿3 =

0.00065

day
, 𝛿4 =

0.075

day
, 𝛿5 =

0.00065

day
, 𝜇 =

0.000048

day
,

𝜅 = 107 (
cell

ml
) , 𝜈 =

1.06

day
, 𝜂 = 10 (cell/ml /day / person), 𝛼 = 0.073/day. 

 
Figure 3. Simulation of bactreria population variation with time. with parameters value 𝜏 =

 
0.045

day
, 𝛽𝑐 =

0.01694

day
, 𝛽ℎ =

0.0000085

day
, 𝜔 =

0.2

day
, 𝛾 =

0.0027

day
, 𝜌 =

0.0085

day
, 𝜎 =

0.08

day
, 𝜙 =

0.01

day
,

𝜃 =
0.0027

day
, 𝛿1 =

0.015

day
, 𝛿2 =

0.045

day
, 𝛿3  =

0.00065

day
,   𝛿4 =

0.075

day
 , 𝛿5 =

0.00065

day
, 𝜇 =

0.000048

day
, 𝜅 =

107 (
cell

ml
) , 𝜈 =

1.06

day
, 𝜂 = 10 (cell/ml /day / person), 𝛼 = 0.073/day. 

On the other hand, a positive sensitivity index means that both the function and the 

parameter are proportional to each other i.e. both of them grow or decay together. 
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It is already shown that the explicit expression of 𝑅0 is given by 𝑅0 =
𝛽ℎ𝜏 

𝜇(𝜇+𝛾)
. 

Since,  𝑅0  depends only on four parameters, an analytical expression will be derived for 

its sensitivity to each of the parameters using the normalized forward sensitivity index as 

given by Chitnis [3]. 

 Υ𝛽ℎ

𝑅0 = [𝜕𝑅0 𝜕𝛽ℎ⁄ ] × [𝛽ℎ 𝑅0⁄ ]  

Υ𝜏
𝑅0 = [𝜕𝑅0 𝜕𝜏⁄ ] × [𝜏 𝑅0⁄ ] 

Υ𝛾
𝑅0 = [𝜕𝑅0 𝜕𝛾⁄ ] × [𝛾 𝑅0⁄ ] 

Υ𝜇
𝑅0 = [𝜕𝑅0 𝜕𝜇⁄ ] × [𝜇 𝑅0⁄ ] 

Table 1. Sensitivity of   𝑅0 evaluated for the parametric values. 

 

 

 

 

 

 

As it is described in Table 1, parameters 𝜏  and 𝛽ℎ have a positive sensitivity indices and 

other two parameters 𝛾 and  𝜇 have negative sensitivity indices. Hence, increasing a value 

of a parameter with positive sensitivity indices will cause an increasing 𝑅0 which implies 

that disease spread in population. Similarly, increasing a value of a parameter with 

negative sensitivity indices will cause an decrease 𝑅0 which implies that disease in 

population extinct or can be controlled using the the available controlling mechanism. 

8. Result and discussion 

In this study, a model of HIV and Cholera coinfection is formulated. We have observed 

that, the transmission and recruitment rates have a positive impact on co-dynamics of 

infections whereas natural death rate and recovery rate have negative impact on the 

transmisions of the infections. The result of stability analysis shows that if the 

reproduction number 𝑅0 < 1, the infection free equilibrium point is both locally and 

globally asymptotically stable, otherwise unstable. The numerical simulations shows that 

an effective usage of medical treatments and necessary measures, toward cholera, can 

siginificantly support to totally control the epidemic or reduce the number of infectious 

individuals. Figure 2 shows that in the presence of treatments Cholera infected 

individuals can be recovered and the infection can also be controlled. On the other hand, 

HIV/AIDS infections can be controlled using ART or HAART that siginificantly reduces 

the number of viral loads in the body and elongates life of patients. Figure 3 shows that 

the presence of toxic bacterium in the environment can be reduced at the beginning by 

using necessary measures such as sanitation and treatments. Further, taking cares for 

HIV/AIDS patients reduces the chance to be easily attacked from the environment that 

contaminated with toxic bacterium that causes cholera infections. 

9. Conclusion 

In this study, a new ten compartmental model of HIV-Cholera coinfection is developed 

and the stability of equilibrium points are analyzed. The formulated model is well-posed. 

It is also observed that, HIV has a positive impact on Cholera and Cholera has a positive 

impact on Cholera. Effective treatment helps in making population free of Cholera 

infection and controlling HIV infection. 

Parameter Sensitivity index 

𝛽ℎ +1 

𝜏 +1 

𝛾 - 

𝜇 - 
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