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1. Introduction

The probability density function (PDF) and the cumulative distribution function
(CDF) of the Lindley (Li) distribution are given by

gξ1(x)|(x>0 and ξ1>0) =
ξ21

1 + ξ1
(1 + x)exp (−ξ1x) , (1)

and

Gξ1(x) = 1− 1 + ξ1 + ξ1x

1 + ξ1
exp (−ξ1x) , (2)

respectively (see [28]). The shape parameter ξ1 can result in either a unimodal
or monotone decreasing (i.e., consistently decreasing) model. Because it decreases
exponentially for large values of x, the corresponding Li model has a thin right
tail. Hence, it is one way to describe the lifetime of a process or device. It can also
be used in a wide variety of fields such as engineering, reliability, physics, biology
and medicine. Among the most famous references, [10] discussed various properties
of the Li model, [12] obtained size-biased and zero-truncated version of Poisson-
Lindley distribution with various properties and applications and [11] has shown
that the Li model is especially useful for modeling in mortality studies.

The goal of this article is to study the Lindley-Lindley (LiLi) distribution, with
a focus on its applicability in a statistical scenario. First, the new distribution is
derived from the odd Lindley-G (OLi-G) family of distributions introduced in [39].
Specifically, the PDF of the OL-G family of distributions is given by

fξ2,V(x)|(x∈R and ξ2>0) =
ξ22

(1 + ξ2)

gV(x) exp
[
−ξ2OV(x)

]
GV(x)3

, (3)

where

OV(x) =
GV(x)

GV (x)
,

the function GV(x) refers to the CDF of the baseline model, GV(x) = 1−GV(x)
is the corresponding survival function (SF), gV(x) = dGV(x)/dx is the PDF of the
baseline distribution and V refers to the parameter vector of the baseline model.
Also, the CDF of the OL-G family is

Fξ2,V(x)|(x∈R and ξ2>0) = 1−
ξ2 +GV(x)

(1 + ξ2)GV(x)
exp

[
−ξ2OV(x)

]
. (4)

To this end, we use (1), (2), (3) and (4) to obtain the LiLi CDF and PDF as

Fξ1,ξ2(x)|(x>0) = 1−
ξ2 + exp (−ξ1x)

∆ξ1
(x)

1+ξ1

(1 + ξ2) exp (−ξ1x)
∆ξ1

(x)
1+ξ1

ϱξ1,ξ2(x), (5)
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where ϱξ1,ξ2(x) = exp
{
−ξ2

[
(1+ξ1)exp(ξ1x)

∆ξ1 (x)
− 1
]}

, ∆ξ1(x) = 1 + ξ1 + ξ1x and

fξ1,ξ2(x)|(x>0) =
ξ21ξ

2
2(1 + x) (1 + ξ1)

2

(1 + ξ2)∆3
ξ1
(x)exp (−2ξ1x)

ϱξ1,ξ2 (x) , (6)

respectively. The discrete analogue of (5) could be derived, studied and used
for modeling the real count data sets in a separate article. For ξ2 = 1, the
LiLi distribution is reduced to the one parameter double Li distribution pro-
posed in [21]. The hazard rate functions (HRF) can be derived from hξ1,ξ2(x) =
fξ1,ξ2(x)/ [1− Fξ1,ξ2(x)]. The PDF in (6) can be easily expressed as

fξ1,ξ2(x) =

∞∑
ℏ,κ=0

cℏ,κhκ·,ξ1 (x) |(κ·=(1+ℏ+κ)), (7)

where

cℏ,κ =
(−1)κ ξ2+κ

2 Γ (κ· + 2)

κ·}!κ!Γ (κ+ 3) (1 + ξ2)
,

hκ·,ξ1(x) is the PDF of exponentiated Li (Exp-Li) model with positive parameters
κ· and ξ1, and Γ(x)denotes the standard gamma function (see [39]). We can use
Equation (7) to derive some properties of the LiLi distribution such as ordinary
moments, incomplete moments, means residual life and moments of residual life.
The corresponding CDF can be given by integrating (7) as

Fξ1,ξ2(x) =

∞∑
ℏ,κ=0

cℏ,κHκ·,ξ1 (x) , (8)

where Hκ·,ξ1(x) is the CDF of Exp-Li model with positive parameters κ· and ξ1.
Figure 1 gives some plots of the LiLi PDF for different values of ξ1 and ξ2. These
plots show that the new PDF can be ”unimodal with left skewness” and ”symmet-
ric” shapes. Figure 2 gives some plots of the LiLi HRF for different values of ξ1
and ξ2. These plots show that the HRF of the LiLi distribution can be ”increasing”
and ”J-HRF”.
In the literature, certain generalizations of the Li distribution are proposed and

studied, see [10], [7], [33], [11], [5], [31], [38], [3], [34], [30], [35], [6], [4], [1], [41], [22],
[2], [24], [25] and [26], among others. The main motivation of the paper is to show
how the different frequentist estimators of the LiLi distribution perform for different
sample sizes and different parameter values and to provide a guideline in choosing
the best estimation method for the LiLi model. The unknown parameters of the LiLi
distribution are estimated using the maximum likelihood (ML) method, ordinary
least squares (OLS) method, weighted least squares (WLS) method, Cramer-Von-
Mises (CVM) method and Bayesian method. The obtained estimators are compared
using Markov Chain Monte Carlo (MCMC) simulations and we will observe that
the Bayesian estimators are more efficient compared to other estimators.

2. Characterizations of the LiLi distribution

To understand the behavior of certain data obtained through a given process, we
need to be able to describe this behavior via its approximate distribution. This,
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Figure 1. Plots of the PDF of the the LiLi model.
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Figure 2. Plots of the HRF of the the LiLi model.

however, requires establishing conditions which govern the required distribution.
In other words, we need to have certain conditions under which we may be able
to recover the distribution of the data. So, characterization of a probability distri-
bution is important in applied sciences, where an investigator is vitally interested
in finding out if their model follows the selected model. Therefore, the investigator
relies on conditions under which their model would follow a specified distribution.
A probability model can be characterized in many directions, one of which is based
on the truncated moments (see [9], [27], [15], [13], [16] and [23]). For example, [23]
proposed a credibility theory based on the truncation of the loss data to estimate
conditional mean loss for a given risk function. It should also be mentioned that
characterization results are mathematically challenging and elegant. In this section,
we present three characterizations of the LiLi distribution based on: (i) truncated
moments of certain functions of the random variable; (ii) the HRF and (iii) in
terms of the conditional expectation of a function of the random variable.
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2.1 Characterizations based on two truncated moments

This subsection is devoted to the characterizations of the LiLi distribution in
terms of a simple relationship between two truncated moments. We will employ
Theorem 1 of [13] given in the Appendix A. As shown in [14], this characterization
is stable in the sense of weak convergence.

Proposition 2.1 Let X is be a continuous random variable and let

q1(x) |(x>0)=
e−2ξ1x

1 + x
exp

[
ξ2 (1 + ξ1) e

ξ1x

∆ξ1(x)

]
and q2(x) |(x>0)= q1(x)∆

−1
ξ1

(x). Then X has the PDF specified by (6) if and only

if the function η(x) defined in [13, Theorem 1] is of the following form:

η(x) =
2

3
∆−1

ξ1
(x) |(x>0).

Proof If X has the PDF given as (6), then

[1− Fξ1,ξ2(x)]E [q1(x)|X ⩾ x] =
ξ1ξ

2
2 (1 + ξ1)

2 exp (ξ2)

2 (1 + ξ2)
∆−2

ξ1
(x)|(x>0),

and

[1− Fξ1,ξ2(x)]E [q2(x)|X ⩾ x] =
ξ1ξ

2
2 (1 + ξ1)

2 exp (ξ2)

3 (1 + ξ2)
∆−3

ξ1
(x)|(x>0),

and hence

η(x) =
2

3
∆−1

ξ1
(x) |(x>0).

We also have

η(x)q1(x)− q2(x) = −1

3
q1(x)∆

−1
ξ1

(x) < 0|(x>0).

Conversely, if η(x) is of the above form, then

s′(x) =
η′(x)q1 (x)

η(x)q1(x)− q2(x)
=

2ξ1
∆ξ1(x)

|(x>0),

and s(x) = log
[
∆2

ξ1
(x)
]
. Now, according to [13, Theorem 1] (see Appendix), X

has the PDF defined in (6). ■

Corollary 2.1 Suppose that X is a continuous random variable. Let q1(x) be as
in Proposition 2.1. Then X has the PDF given as (6) if and only if there exist
functions q2(x) and η(x) defined in Theorem 1 for which the following first order
differential equation holds:

ξ′(x)q1(x)

ξ (x) q1(x)− q2(x)
=

2ξ1
∆ξ1(x)

|(x>0).
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Corollary 2.2 The differential equation in Corollary 2.1 has the following general
solution:

η(x) = ∆2
ξ1(x)

[
−2ξ1

∫ ∞

0
∆−1

ξ1
(x) (q1(x))

−1 q2(x)dx+D

]
,

where D is a constant. A set of functions satisfying the above differential equa-
tion is given in Proposition 2.1.1 with D = 0. Clearly, there are other triplets
(q1(x), q2(x), η(x)) satisfying the conditions of [13, Theorem 1].

2.2 Characterization based on HRF

The HRF hF (x) associated to a twice differentiable CDF F (x) with PDF denoted
by f(x) satisfies the following trivial differential equation:

f ′(x)

f(x)
=
h′F (x)

hF (x)
− hF (x).

The following proposition establishes a non-trivial characterization of the LiLi
distribution based on the HRF.

Proposition 2.2 Suppose that X is a continuous random variable. Then, X has
the PDF in (6) if and only if its HRF hF (x) satisfies the following first order
differential equation:

h′F (x)− ξ1hF (x) = ξ21ξ
2
2 (1 + ξ1)

2 eξ1x
d

dx

{
(1 + x)∆−2

ξ1
(x)

ξ2 (1 + ξ1)∆ξ1(x) exp (−ξ1x)

}
|(x>0) .

The proof is omitted.

2.3 Characterizations based on the conditional expectation of a function of
the random variable

Reference [19] established the following proposition which can be used to charac-
terize the LiLi distribution.

Proposition 2.3 Suppose that X : Ω → (a, b) is a continuous random vari-
able with CDF given as F (x). If ψ(x) is a differentiable function on (a, b) with
limx→a+ ψ(x) = 1. Then, for δ ̸= 1, we have

E [ψ(x)|X ⩾ x] = δψ(x)|(x∈(a,b)),

if and only if

ψ(x) = [1− F (x)]1/δ−1 |(x∈(a,b)).

Remark 2.1 Now, let (a, b) = (0,∞),

ψ(x) =

[
ξ2 (1 + ξ1)∆ξ1(x) exp (−ξ1x)
(1 + ξ2)∆ξ1(x) exp (−ξ1x)

]1/ξ2
exp

{
−
[
(1 + ξ1) e

ξ1x

∆ξ1(x)
− 1

]}
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and δ = ξ2/(ξ2 + 1) , then Proposition 2.3 presents a characterization of the LiLi
distribution. Clearly, there are other suitable functions than the one we employed
for simplicity.

3. Copulas

In this section, we derive some new bivariate type LiLi (Biv-LiLi) distributions
using Farlie Gumbel Morgenstern (FGM) copula (see [32], [8], [18] and [17]), mod-
ified FGM copula (see [37]) and Clayton copula. The multivariate LiLi (MvLiLi)
type distribution is also presented. However, future work may be allocated to the
study of these new distributions.

3.1 Biv-LiLi type via FGM copula

First, the FGM copula is defined by

H∆(u,v) = uv (1 +∆ūv̄) |ū=1−u,

with the marginal functions u = Fξ1,ξ2(x1), v = Fξ3,ξ4(x2), and ∆ ∈ (−1, 1) is a
dependence parameter. For every u,v ∈ (0, 1), note that H∆(u, 0) = H∆(0,v) = 0
which is ”grounded minimum” and H∆(u, 1) = u and H∆(1,v) = v which is
”grounded maximum”, H∆ (u1,v1)+H∆ (u2,v2)−H∆ (u1,v2)−H∆ (u2,v1) ⩾ 0.

3.2 Biv-LiLi type via modified FGM copula

The modified FGM copula is defined as

H∆(u,v) = uv [1 +∆Υ (u)Θ (v)] |∆∈(−1,1)

or equivalently: H∆(u,v) = uv + ∆Υ̃uΘ̃v|∆∈(−1,1), where Υ̃u = uΥ (u), and

Θ̃v = vΘ (v) and Υ (u) and Θ (v) are two continuous functions on (0, 1) with
Υ (0) = Υ (1) = Θ (0) = Θ (1) = 0. Let

a1 = inf

{
Υ̃u :

∂

∂u
Υ̃u|σ1

}
< 0, a2 = sup

{
Υ̃u :

∂

∂u
Υ̃u|σ1

}
< 0,

b1 = inf

{
Θ̃v :

∂

∂v
Θ̃v|σ2

}
> 0, b2 = sup

{
Θ̃v :

∂

∂v
Θ̃v|σ2

}
> 0,

where u[∂Υ (u) /∂u] = ∂Υ̃u/∂u−Υ (u) , σ1 =
{
u : u ∈ (0, 1) | ∂Υ̃u/∂u exists

}
and σ2 =

{
v : v ∈ (0, 1) | ∂

∂vΘ̃v exists
}
. Then, we have 1 ⩽ min (a1a2, b1b2) <∞.

Based on this scheme, several types of Biv-LiLi distributions are listed below.

Biv-LiLi (Type-I): Let Υ̃u = u(1−u) and Θ̃v = v(1− v). Then, the Biv-LiLi-
FGM (Type-I) can be derived from

H∆(u,v) = uv +∆Υ̃uΘ̃v|∆∈(−1,1).
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Biv-LiLi (Type-II): Let Υ (u)· |(∆1∈(0,1)) = u∆1 (1− u)1−∆1 and

Θ (v)· |(∆2∈(0,1)) = v∆2 (1− v)1−∆2 . Then, the corresponding Biv-
LiLi-FGM (Type-II) can be derived from

H∆,∆1,∆2
(u,v) = uv [1 +∆Υ (u)·Θ (v)·] .

Biv-LiLi (Type-III): Let Υ̃· (u) = u log (1 + ū) |ū=1−u and Θ̃· (v) =
v log (1 + v̄) |v̄=1−v. In this case, one can also derive a closed form expres-
sion for the associated CDF of the Biv-LiLi-FGM (Type-III) from

H∆(u,v) = uv
(
1 +∆Υ̃· (u)Θ̃· (v)

)
.

Biv-LiLi (Type-IV): The CDF of the Biv-LiLi-FGM (Type-IV) distribution can
be derived from

H(u,v) = uF−1
ξ3,ξ4

(v) + vF−1
ξ1,ξ2

(u)− F−1
ξ1,ξ2

(u)F−1
ξ3,ξ4

(v),

where F−1
ξ1,ξ2

(u) and F−1
ξ3,ξ4

(v) denotes the quantile function of the LiLi dis-
tribution with parameters ξ1 and ξ2, and ξ3 and ξ4, respectively. We can
cite [36] for more information on this type.

3.3 Biv-LiLi and Mv-LiLi type via Clayton copula

The Clayton copula can be considered as

H(v1,v2) =
[
v−∆
1 + v−∆

2 − 1
]−∆−1

|∆∈(0,∞).

Setting v1 = Fξ1,ξ2(x1) and v2 = Fξ3,ξ4(x2), the Biv-LiLi type can be derived
from H(v1,v2) = H(Fξ1,ξ2(x1), Fξ3,ξ4(x2)). Similarly, the Mv-LiLi (m -dimensional
extension) from the above can be derived from

H(v1,v2, . . . ,vm) =

(
m∑

ℏ=1

v−∆
ℏ + 1−m

)−∆−1

.

4. Mathematical properties

Let X be a random variable with the LiLi distribution. The rth ordinary moment
of X is given by µ′r = E(Xr) =

∫∞
0 xrfξ1,ξ2(x)dx. Using (7), we obtain

µ′r =
∞∑

ℏ,κ=0

cℏ,κ
κ·ξ21
1 + ξ1

K (κ·, ξ1, r, ξ1)

where

K (a, b, r, δ) =

∫ ∞

0
xr (1 + x)

[
1− ∆b(x)

1 + b
exp (−bx)

]a−1

exp (−δx) dx,
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which can be expressed as

K (a, b, r, δ) =

∞∑
w=0

w∑
j=0

j+1∑
m=0

ς
(r,a,b,δ)
w,j,m Γ (1 + r +m) ,

where

ς
(r,a,b,δ)
w,j,m = (−1)w bj (1 + b)−w (bw + δ)−(1+r+m)

(
a− 1

w

)(
w

j

)(
j + 1

m

)
.

The sth incomplete moment of X, say φs,X(t), is given by φs,X(t) =∫ t
0 x

sfξ1,ξ2(x)dx. Using Equation (7), we obtain

φs,X(t) =

∞∑
ℏ,κ=0

cℏ,κ
κ·ξ21
1 + ξ1

[K (κ·, ξ1, s, ξ1)− L (κ·, ξ1, s, ξ1, t)] ,

where

L (a, b, s, δ, t) =

∫ ∞

t
xs (1 + x)

[
1− ∆b(x)

1 + b
exp (−bx)

]a−1

exp (−δx) dx,

then

L (a, b, s, δ, t) =
∞∑

w=0

w∑
j=0

j+1∑
m=0

ς
(r,a,b,δ)
w,j,m Γ (1 + s+m, (bw + δ) t)

and Γ (∆, z) |(∆>0 and z>0) =
∫∞
z t∆−1exp (−t) dt denotes the complementary in-

complete gamma function. The nth moment of the residual life is given by zn,X(t) =

E
[
(X − t)n|(X>t)

]
, that is zn,X(t) = [1− Fξ1,ξ2(t)]

−1 ∫∞
t (x−t)nfξ1,ξ2(x)dx. We can

write

zn,X(t) = [1− Fξ1,ξ2(t)]
−1

∞∑
ℏ,κ=0

n∑
r=0

cℏ,κ (−t)n−r

(
n

r

)∫ ∞

t
xrhκ·,ξ1(x)dx.

Then

zn,X(t) = [1− Fξ1,ξ2(t)]
−1

∞∑
ℏ,κ=0

n∑
r=0

cℏ,κ (−t)n−r

(
n

r

)
κ·ξ21
1 + ξ1

L (κ·, ξ1, r, ξ1, t) .

The mean residual life (MRL), or the life expectation at age t, of X can be obtained
by setting n = 1 in the last equation and it represents the expected additional life
length for a unit which is alive at age t. The nth moment of the reversed residual
life is defined by Zn,X(t) = E

[
(t−X)n|(X⩽t)

]
, that is Zn,X(t) = F−1

ξ1,ξ2
(t)
∫ t
0 (t −

x)nfξ1,ξ2(x)dx. So

Zn,X(t) = F−1
ξ1,ξ2

(t)
∞∑

ℏ,κ=0

n∑
r=0

cℏ,κ (−1)r
(
n

r

)
tn−r

∫ t

0
xrhκ·,ξ1(x)dx.
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Then,

Zn,X(t) = F−1
ξ1,ξ2

(t)

∞∑
ℏ,κ=0

n∑
r=0

cℏ,κ (−1)r
(
n

r

)
tn−r κ·ξ21

1 + ξ1

[
K (κ·, ξ1, r, ξ1)

−L (κ·, ξ1, r, ξ1, t)

]
.

The mean inactivity time (MIT) also called the mean reversed residual life function
represents the waiting time elapsed since the failure of an item on condition that
this failure had occurred in (0, t) and it is defined by Z∗(t) = E

[
(t−X)|(X⩽t)

]
.

Hence, it can be obtained easily by setting n = 1 in Zn,X(t).

5. Classical estimation

The estimation of the parameters of the LiLi model is the subject of this section.

5.1 Maximum likelihood method

Let x1, x2, · · · , xn be an observed sample from the LiLi distribution with parame-
ters ξ1 and ξ2 Then, the log-likelihood function, say ℓ = ℓ (ξ1, ξ1), is given by

ℓ = n log

[
ξ21ξ

2
2 (1 + ξ1)

2

(1 + ξ2)

]
+

n∑
ℏ=1

log (1 + xℏ)

− 3
n∑

ℏ=1

log [∆ξ1 (xℏ)] + 2ξ1

n∑
ℏ=1

xℏ +
n∑

ℏ=1

log [ϱξ1,ξ2 (xℏ)] . (9)

Equation (9) can be maximized either directly by using the R (optim function), SAS
(PROC NLMIXED) or Ox program (sub-routine MaxBFGS) or by solving the nonlinear
likelihood equations obtained by differentiating ℓ with respect to the parameters.

5.2 Method of ordinary least square and weighted least square estimation

The theory of OLS and WLS is based on the minimization of the sum of the square
of differences of theoretical cumulative distribution function and empirical distri-
bution function. Let x1:n, x2:n, . . . , xn:n be the n ordered values of x1, x2, . . . , xn.
Then, the OLS estimates (OLSEs) are obtained upon minimizing

OLS(ξ1, ξ2) =
n∑

ℏ=1

[
Fξ1,ξ2(xℏ:n)−

}
1 + n

]2
.

Using (5), we have

OLS(ξ1, ξ2) =
n∑

ℏ=1

1−
ξ2 + exp (−ξ1xℏ:n)

∆ξ1 (xℏ:n)
1+ξ1

(1 + ξ2) exp (−ξ1xℏ:n)
∆ξ1 (xℏ:n)

1+ξ1

ϱξ1,ξ2(xℏ:n)−
}

1 + n

2

.

The OLSEs are obtained via solving the following non linear equations:

n∑
ℏ=1

1−
ξ2 + exp (−ξ1xℏ:n)

∆ξ1 (xℏ:n)
1+ξ1

(1 + ξ2) exp (−ξ1xℏ:n)
∆ξ1 (xℏ:n)

1+ξ1

ϱξ1,ξ2(xℏ:n)−
}

1 + n

 dξ1(xℏ:n) = 0
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and

n∑
ℏ=1

1−
ξ2 + exp (−ξ1xℏ:n)

∆ξ1 (xℏ:n)
1+ξ1

(1 + ξ2) exp (−ξ1xℏ:n)
∆ξ1 (xℏ:n)

1+ξ1

ϱξ1,ξ2(xℏ:n)−
}

1 + n

 dξ2(xℏ:n) = 0,

where dξ1(x) and dξ2(x) the values of first derivatives of the CDF of the LiLi
distribution with respect to the parameters ξ1 and ξ2, respectively. The OLSEs of
the parameters ξ1 and ξ2 are obtained by solving the above simultanenous equations
by using any numerical approximation technique. The WLSEs are obtained by
minimizing the given form of equation with respect to the parameters.

WLS (ξ1, ξ2) =
n∑

ℏ=1

wℏ

[
Fξ1,ξ2(xℏ:n)−

}
1 + n

]2
.

So, the WLSEs of the parameters are obtained by solving the following non-linear
equations:

n∑
ℏ=1

wℏ

1−
ξ2 + exp (−ξ1xℏ:n)

∆ξ1 (xℏ:n)
1+ξ1

(1 + ξ2) exp (−ξ1xℏ:n)
∆ξ1 (xℏ:n)

1+ξ1

ϱξ1,ξ2(xℏ:n)−
}

1 + n

 dξ1(xℏ:n) = 0

and

n∑
ℏ=1

wℏ

1−
ξ2 + exp (−ξ1xℏ:n)

∆ξ1 (xℏ:n)
1+ξ1

(1 + ξ2) exp (−ξ1xℏ:n)
∆ξ1 (xℏ:n)

1+ξ1

ϱξ1,ξ2(xℏ:n)−
}

1 + n

 dξ2(xℏ:n) = 0,

where wℏ = (n+ 1)2(n+ 2)/ [}(n− }+ 1)] .

5.3 Method of Cramer-Von-Mises estimation

The Cramer-Von-Mises estimates (CVMEs) of the parameters are based on the
theory of minimum distance estimation. It was first proposed by [29] and justified
that the bias of the corresponding estimators is smaller than the one of other
minimum distance estimators. So, the CVMEs of the parameters ξ1 and ξ2 are
obtained by minimizing the following expression with respect to the parameters ξ1
and ξ2:

CVM(ξ1, ξ2) =
1

12n
+

n∑
ℏ=1

[
Fξ1,ξ2(xℏ:n)−

2}− 1

2n

]2
.

From (5), we obtain

CVM(ξ1, ξ2) =
n∑

ℏ=1

1−
ξ2 + exp (−ξ1xℏ:n)

∆ξ1 (xℏ:n)
1+ξ1

(1 + ξ2) exp (−ξ1xℏ:n)
∆ξ1 (xℏ:n)

1+ξ1

ϱξ1,ξ2(xℏ:n)−
2}− 1

2n

2

.
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The CVMEs of the parameters are obtained by solving the following non-linear
equations:

n∑
ℏ=1

1−
ξ2 + exp (−ξ1xℏ:n)

∆ξ1 (xℏ:n)
1+ξ1

(1 + ξ2) exp (−ξ1xℏ:n)
∆ξ1 (xℏ:n)

1+ξ1

ϱξ1,ξ2(xℏ:n)−
2}− 1

2n

 dξ1(xℏ:n) = 0

and

n∑
ℏ=1

1−
ξ2 + exp (−ξ1xℏ:n)

∆ξ1
(xℏ:n)

1+ξ1

(1 + ξ2) exp (−ξ1xℏ:n)
∆ξ1 (xℏ:n)

1+ξ1

ϱξ1,ξ2(xℏ:n)−
2}− 1

2n

 dξ2(xℏ:n) = 0.

6. Bayesian estimation

In this section, we use Bayesian procedures to construct the estimators of the
unknown parameters of the LiLi model. There are many situations where maximum
likelihood estimator does not converge, especially with higher dimension models. In
such cases, the use of Bayesian methods is sought. At first sight, Bayesian methods
seem to be very complex as the estimators involve intractable integrals. However,
the advanced MCMC techniques make it possible to apply Bayesian methods even
in higher dimension models. Under Bayesian estimation, we update the likelihoods
with prior knowledge to explore the posterior probabilities of the parameters. Here
we assume that the gamma priors (Gam-Ps) for the parameters ξ1 and ξ2 are of
the following forms:

π1 (ξ1) ∼ Gam(ς1, ς2) and π2 (ξ2) ∼ Gam(ς3, ς4),

where Gam(ς1, ς2) stands for gamma distribution with shape parameter ς1 and
scale parameter ς2. It is further assumed that the parameters are independently
distributed. The joint prior distribution is given by

π(ξ1, ξ2) =
ςς12 ς

ς3
4

Γ(ς1)Γ(ς3)
ξς1−1
1 ξς3−1

2 exp [− (ξ1ς2 + ξ2ς4)] .

Also, the posterior distribution of the parameters is defined by

π (ξ1, ξ2|x) ∝ likelihood(ξ1, ξ2|x)× π(ξ1, ξ2).

Under squared error loss, Bayesian estimators of parameters ξ1 and ξ2 are the
means of their marginal posteriors and defined by

ξ̂iBayesian =

∫
ξi

ξiπ (ξ1, ξ2|x) dξi (10)

It is not easy to calculate Bayesian estimates through equation (10) so the numerical
approximation techniques are needed. Therefore, we propose the use of MCMC
techniques namely Gibbs sampler and Metropolis Hastings (MH) algorithm (see
[20]). Since the conditional posteriors of the parameters can not be obtained in any
standard forms, we therefore used a hybrid MCMC strategy for drawing samples
from the joint posterior of the parameters. To implement the Gibbs algorithm, the
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full conditional posteriors of ξ1 and ξ2 are given by

π1(ξ1, ξ2|x) ∝ ξn+ς1−1
1 exp [− (ξ1ς2 + ξ2ς4)]

n∏
ℏ=1

Υℏ,

and

π2(ξ1, ξ2|x) ∝ ξn+ς3−1
2 exp [− (ξ1ς2 + ξ2ς4)]

n∏
ℏ=1

Υℏ,

where

Υℏ =

ξ21(1+xℏ)
1+ξ1

exp (−ξ1xℏ)

2
[
∆ξ1

(xℏ)
1+ξ1

exp (−ξ1xℏ)
]3 ϱξ1,ξ2(xℏ)

The simulation algorithm is as follows:

(1) Provide initial values, say ξ1(0) and ξ2(0) then at the }th stage,

(2) Using MH algorithm, generate ξ1(ℏ) ∼ π1
(
ξ1(ℏ−1)|, x

)
and ξ2(ℏ) ∼

π3
(
ξ2(ℏ−1)|, x

)
,

(3) Repeat steps 2, M(= 10000) times to get the samples of size M from the
corresponding posteriors of interest.

(4) Obtain the Bayesian estimates of ξ1 using the following formula:

ξ̂1Bayesian =
1

M −M0

M∑
j=M0+1

ξ1(j)

and

ξ̂2Bayesian =
1

M −M0

M∑
j=M0+1

ξ2(j),

(5) where M0 ≈ 2000 is the burn-in period of the generated Markov Chains.

7. Simulation study for comparing methods

AMCMC simulation study is conducted in this section to compare the performance
of different classical estimators of the unknown parameters of the LiLi model with
the Bayesian estimators. The performance of all estimation methods is evaluated
based on their mean squared errors (MSEs). All the computations in this section
are done by Mathcad program Version 15.0.
The following algorithm is used for all classical methods in this paper:

(1) We generate N = 1000 samples of sizes n =50, 100, 200, 300, 500 from the
LiLi distribution using the initials I : ξ10 = 0.6, ξ20 = 5.

(2) Compute the MLEs for the 1000 samples, say

[ξ̂1i , ξ̂2i ] |(i=1,2,...,1000),
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(3) Compute the average values (AVs) of the 1000 estimations for ξ̂1i and ξ̂2i

for each sizes n = 50, 100, 200, 300, 500.
(4) Compute the MSEs by the following equations:

MSEε (n) =
1

1000

1000∑
i=1

(ε̂i − ε)2 |ε=ξ1,ξ2 ,

(5) Repeat 1-4 for the initials II : ξ10 = 1.5, ξ20 = 0.8.
(6) Repeat 1-4 for the initials III : ξ10 = 1.5, ξ20 = 1.5.

Whereas the algorithm related to the Bayesian method is mentioned at the end
of Section 6. The AVS of the estimates and the MSEs of MLEs, LSEs, WLSEs,
CVMEs and Bayesian estimators are obtained and reported in Tables 1, 2, 3 and
4. The Bayesian estimators of the parameters are evaluated with flexible Gam-Ps
under the SELF by using the MCMC technique. The values of the hyperparameter
are assumed to be known and chosen in such a way that the prior mean is equal
to the true value, and prior variance is unity.

Table 1. AVs and the corresponding MSEs (in parentheses) for n = 50.

Parameters MLE Bayesian LS WLS CVM

ξ1 = 0.6 0.60419 0.59531 0.60212 0.59938 0.60158
(0.00270) (0.00190) (0.00352) (0.00281) (0.00363)

ξ2 = 5 5.05688 5.07663 5.04743 5.01224 5.03813
(0.45377) (0.18495) (0.54350) (0.45995) (0.56242)

ξ1 = 1.5 1.50618 1.44863 1.50215 1.49900 1.50398
(0.00773) (0.00801) (0.01184) (0.00880) (0.013386)

ξ2 = 0.8 0.80585 0.77175 0.80532 0.80201 0.80522
(0.00786) (0.00748) (0.00998) (0.00869) (0.00993)

ξ1 = 1.5 1.50959 1.55207 1.50343 1.50353 1.50776
(0.01154) (0.01081) (0.01625) (0.01407) (0.01884)

ξ2 = 1.5 1.51383 1.61419 1.50955 1.51084 1.51321
(0.03152) (0.04832) (0.03561) (0.03718) (0.04151)

From Tables 1, 2, 3 and 4, we observe that all the estimates show the property
of consistency, i.e., the MSEs decrease and approach 0 as sample size (n) increases.
Also, the MSEs of the Bayesian estimators are generally smaller as compared to
the rest of the estimators for all n = 50, 100, 200, 300 and 500.

8. Conclusions

A new continuous distribution called Lindley-Lindley distribution is defined and
studied. The new model is derived based on the odd Lindley family of distributions
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Table 2. AVs and the corresponding MSEs (in parentheses) for n = 100.

Parameters MLE Bayesian LS WLS CVM

ξ1 = 0.6 0.60206 0.58010 0.59955 0.60151 0.60124
(0.00143) (0.00135) (0.00186) (0.00161) (0.00195)

ξ2 = 5 5.03003 4.72237 5.00561 5.03035 5.02526
(0.22097) (0.15857) (0.27048) (0.24763) (0.28280)

ξ1 = 1.5 1.50390 1.44435 1.50099 1.50193 1.50374
(0.00487) (0.00579) (0.00678) (0.00523) (0.00690)

ξ2 = 0.8 0.80472 0.75979 0.80263 0.80327 0.80458
(0.00422) (0.00452) (0.00500) (0.00447) (0.00515)

ξ1 = 1.5 1.50294 1.44264 1.50347 1.50258 1.50229
(0.00659) (0.00705) (0.00961) (0.00757) (0.00950)

ξ2 = 1.5 1.50479 1.38945 1.50758 1.50626 1.50459
(0.01651) (0.02277) (0.01987) (0.01887) (0.01958)

Table 3. AVs and the corresponding MSEs (in parentheses) for n = 200.

Parameters MLE Bayesian LS WLS CVM

ξ1 = 0.6 0.60121 0.60819 0.59857 0.60119 0.60138
(0.00088) (0.00059) (0.00113) (0.00094) (0.00114)

ξ2 = 5 5.02020 5.16237 4.98970 5.02299 5.02373
(0.12106) (0.13384) (0.144851) (0.13078) (0.15160)

ξ1 = 1.5 1.50023 1.49215 1.49702 1.50024 1.49970
(0.00370) (0.00140) (0.00446) (0.00385) (0.00475)

ξ2 = 0.8 0.80031 0.79210 0.79847 0.80065 0.80024
(0.00255) (0.00183) (0.00278) (0.00272) (0.00305)

ξ1 = 1.5 1.50161 1.51006 1.50015 1.49876 1.50066
(0.00451) (0.00218) (0.00598) (0.00454) (0.00570)

ξ2 = 1.5 1.50339 1.52161 1.50177 1.49916 1.50193
(0.00957) (0.00814) (0.01118) (0.00958) (0.01052)

first introduced in [39]. Relevant mathematical properties are derived and analyzed.
We present three characterizations of the new distribution based on: (i) truncated
moments of certain functions of the random variable; (ii) the hazard function and
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Table 4. AVs and the corresponding MSEs (in parentheses) for n = 300.

Parameters MLE Bayesian LS WLS CVM

ξ1 = 0.6 0.59952 0.59341 0.59998 0.59964 0.59944
(0.00068) (0.00039) (0.00087) (0.00071) (0.00087)

ξ2 = 5 4.99710 4.88079 5.00512 4.99974 4.99799
(0.08492) (0.09592) (0.10694) (0.08989) (0.10815)

ξ1 = 1.5 1.50029 1.51469 1.50013 1.50085 1.50035
(0.00311) (0.00108) (0.00369) (0.00322) (0.00377)

ξ2 = 0.8 0.80095 0.81472 0.80152 0.80167 0.80108
(0.00181) (0.00139) (0.00205) (0.00192) (0.00212)

ξ1 = 1.5 1.50223 1.51121 1.49887 1.50133 1.49873
(0.00371) (0.00145) (0.00467) (0.00376) (0.00464)

ξ2 = 1.5 1.50369 1.52968 1.49978 1.50354 1.49910
(0.00698) (0.00566) (0.00805) (0.00711) (0.00798)

Table 5. AVs and the corresponding MSEs (in parentheses) for n = 500.

Parameters MLE Bayesian LS WLS CVM

ξ1 = 0.6 0.60001 0.58772 0.59965 0.60022 0.59932
(0.00057) (0.00035) (0.00066) (0.00058) (0.00066)

ξ2 = 5 5.00208 4.81844 4.99991 5.00563 4.99506
(0.06285) (0.06092) (0.07414) (0.06534) (0.07337)

ξ1 = 1.5 1.498203 1.50713 1.49854 1.49905 1.49890
(0.00275) (0.00058) (0.00309) (0.00279) (0.00308)

ξ2 = 0.8 0.79910 0.80397 0.79953 0.79989 0.79991
(0.00130) (0.00078) (0.00146) (0.00136) (0.00145)

ξ1 = 1.5 1.49945 1.48623 1.49875 1.50045 1.4982
(0.00308) (0.00101) (30.0073) (0.00316) (0.00372)

ξ2 = 1.5 1.49979 1.48023 1.49918 1.50138 1.49777
(0.00493) (0.00293) (0.00578) (0.00523) (0.00577)

(iii) in terms of the conditional expectation of a function of the random variable.
Some new bivariate type distributions obtained using Farlie Gumbel Morgenstern
copula, modified Farlie Gumbel Morgenstern copula and Clayton copula. The main
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justification of this paper is to show how different frequentist estimators of the
new model perform for different sample sizes and different parameter values and to
provide a guideline for choosing the best estimation method for the proposed model.
The unknown parameters of the new distribution are estimated using the maximum
likelihood, ordinary least squares, Cramer-Von-Mises, weighted least squares and
Bayesian methods. The obtained estimators are compared using Markov Chain
Monte Carlo simulations and observed that Bayesian estimators are generally more
efficient compared to the other estimators.
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Appendix

The following result was established by [14].
Theorem 1. Let (Ω,F ,P) be a given probability space and let H = [a, b] be an
interval for some a < b, the infinite bounds being allowed. Let X : Ω → H be a
continuous random variable with the CDF F (x) and let q1(x) and q2(x) be two
real functions defined on H such that

E [q2(x)|X ⩾ x] = E [q1(x)|X ⩾ x] η(x), x ∈ H,

is defined with some real function η(x). Assume that q1(x), q2(x) ∈ C1 (H), η(x) ∈
C2 (H) and F (x) is twice continuously differentiable and strictly monotone function
on the set H. Finally, assume that the equation η(x)q1(x) = q2(x) has no real
solution in the interior of H. Then F (x) is uniquely determined by the functions
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q1(x), q2(x) and η(x), particularly

F (x) =

∫ x

a
C

∣∣∣∣ η′(u)

η(u)q1(u)− q2(u)

∣∣∣∣ exp (−s(u)) du,
where the function s(u) is a solution of the differential equation s′(u) =
[η′(u)q1(u)]/[η(u)q1(u)− q2(u)] and C is the distributional normalization constant.
Note: The goal is to have the function η(x) as simple as possible.
We like to mention that this kind of characterization based on the ratio of trun-

cated moments is stable in the sense of weak convergence (see [14]), in particular,
let us assume that there is a sequence {Xn} of random variables with CDF F (x)
such that the functions q1n(x), q2n(x) and ηn(x) (n ∈ N) satisfy the conditions of
Theorem 1 and let q1n(x) → q1(x), q2n(x) → q2(x) for some continuously differ-
entiable real functions q1(x) and q2(x). Let, finally, X be a random variable with
CDF F (x). Under the condition that q1n(x) and q2n(x) are uniformly integrable
and the family F (x) is relatively compact, the sequence Xn converges to X in
distribution if and only if ηn(x) converges to η(x), where

η(x) =
E [q2(x)|X ⩾ x]

E [q1(x)|X ⩾ x]
.

This stability theorem makes sure that the convergence of distribution functions
is reflected by corresponding convergence of the functions q1(x), q2(x) and η(x)
, respectively. It guarantees, for instance, the ’convergence’ of characterization of
the Wald distribution to that of the Lvy-Smirnov distribution if α→ ∞.


