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Abstract. In this paper a new five-parameter lifetime and reliability distribution named “the 
exponentiated Uniform-Pareto distribution (EU-PD),” has been suggested that it has a bathtub-
shaped and inverse bathtub-shape for modeling lifetime data. This distribution has applications in 
economics, actuarial modelling, reliability modeling, lifetime and biological sciences. Firstly, the 
mathematical and statistical characteristics of the proposed distribution are presented, then the 
applications of the new distribution are studied using the real data set. Its first moment about origin 
and moments about mean have been obtained and expressions for skewness, kurtosis have been 
given. Various mathematical and statistical properties of the proposed distribution have been 
discussed. Estimation of its parameter has been discussed using the method of maximum 
likelihood. A simulation study is given. Finally, two applications of the new distribution have been 
discussed with two real income and lifetime data setsThe results also confirmed the suitability of 
the presented models for real data collection. 
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1. Introduction  

Since that statistics is one of the most important applied sciences related to other fields of 
science, including economics, in recent years, there has been a great interest in research on 
parametric models of income distribution (see [3-6]). Proportional models for income 
distribution are presented to assess the living standards of the entire population of a country 
and also to compare the standard of living standards of the social classes or different 
regions of a country. Therefore, in order to create a probability model, a theoretical 
distribution function with an empirical frequency distribution characteristic is necessary to 
select the appropriate method for estimating the model parameters. Therefore, statistical 
analysis of the distribution of population income reflects the context for decision making 
about budget and social policies. In this paper, a new distribution is presented which is 
highly flexible and is a suitable distribution for modeling income data. 

Identifying an appropriate distribution for data modeling is very important in statistical 
analysis. Presentation of a proper distribution for a set of specific data will help us to 
arguing about the data. For this reason, the use of methods to modify the available statistical 
distribution has been used to create more flexibility in the data set in various fields. 

Index to information contained in this paper 
1. Introduction 
2. The new model 
3. The statistical properties of (U-PD) and (EU-PD) 
4. Mean deviations and Bonferroni and Lorenz curves and Maximum Likelihood Estimation  
5. A simulation study and applications and conclusion 
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Recently, uniform Pareto distribution (U-PD) (see [1,2,12]), similar to the other 
statistical distributions, has attracted so attention because of its application in modeling the 
distribution of personal income and reliability, and other areas. 

To check the details see resources in (see [7,8,11]). With the aim of increasing the 
flexibility of Pareto distribution in modeling income data, there are various data 
distribution (see [14-16]). In this paper, a new extension of the Pareto distribution, called 
the exponentiated Pareto Uniform Distribution, is presented with the main motive for 
modeling income data with both uniform and non-uniform risk rates. The article is 
organized as follows:   

This study is organized in eight sections starting with this introduction. In sections 2 
and 3, we present the new model and derive some of its properties. Mean deviations and 
Bonferroni and Lorenz curves and Maximum Likelihood Estimation is given in Section 4. 
In Section 5, a simulation study is given and we provide two real data applications and the 
paper ends with some concluding remarks. 

2. The new model 

A random variable X  has the Uniform-Pareto distribution (U-PD) with three 
parameters if its cumulative distribution function (cdf) is given by: 

( )
1

( ) 1 , ,
m xb b aG x m x
b a b

θ
θ
−

− = − < < ∞ −  
  (1) 

with shape parameter 0θ >  and scale parameter .a b−∞ < ≤ < ∞  The corresponding 
probability density function (pdf) of the Uniform-Pareto distribution (U-PD) is as follows:  
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Now suppose that the random variable X  has the cdf (1), then its exponentiated 
distribution function, which is the cdf of (EU-PD) distribution, is: 
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(3) 

The pdf of (EU-PD) distribution is obtained by differentiating (3) and therefore we have:   
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The hrf of the new distribution is given by 
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The pdfs of the new distribution are plotted in Figure 1 for some selected values of 
parameters. It can be seen that the pdf of this distribution is inverse bathtub and increasing 
depending on the parameter values. Figure 2 contains the plots of the hrfs of the EU-PD 

distribution for different values of parameters. From Figure 2, we can observe that the hrf 
is bathtub-shaped and inverse bathtub-shape, depending on the parameter values. 

https://www.mathalino.com/reviewer/derivation-of-formulas/derivation-of-quadratic-formula
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Figure 1: Pdfs of the EU-PD distribution for some selected values of α  and .β  

3. The statistical properties of (U-PD) and (EU-PD) 

In this section, we present some of the statistical properties of (U-PD) and (EU-PD). 
Moments are necessary and important in any statistical analysis, especially in applications. 
It can be used to study the most important features and characteristics of a distribution. In 
this section, we present complete and incomplete moments of the EU-PD. But first, we 
present an expansion for ( )g x  in order to obtain expressions for the moments. Using the 
binomial expansion, we have: 
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Similarly, the expansion of its cumulative distribution function is as follows: 
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Therefore, the rth moment of EU-PD distribution is given by: 
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therefore: ( ) 1/( ) ,m aW b b θ−= −  where 
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Figure 2: hrfs of the EU-PD distribution for some selected values of α  and .β  
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Therefore, the first moment or average of EU-PD distribution is as follows: 
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In the same way, other moments can be obtained by giving values to r in equation (8). 
Based on the first four moments, the Skewness and Kurtosis of this distribution are 
calculated from the following equations, respectively: 

3 2 (3/2) 3 2 (3/2)
3 1 2 1 2 1( ) ( ( ( )) ) / (( ( ( )) ) ) ( 3 2 ) / [ ] ,S x E X E X E X E X µ µ µ µ µ µ= − − = − + −  

4 2 2 2 4 2 2
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where rµ  for 1, ,4r = …  is the rth moment of NM distribution that can be obtained by 
giving values to r in equation (8). 

In the following, we find the terms for the incomplete moments of new model that are 
used to find expressions for the Lorenz curve, Bonferroni curve equations and also mean 
deviation from the mean and mean deviation from the middle. 
Suppose X has the probability density function given in relation (3). In this case, the rth 
incomplete moment is: 
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where ( ) 1/( ) .m aW b b θ−= −  So we have  
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4. Mean deviations and Bonferroni and Lorenz curves and Maximum Likelihood 
Estimation 

Suppose X  has the probability density function given in relation (4). In this case, the 
mean deviation from the mean is obtained from the following relation by using the relations 
(7) and (9):  
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where 
0

( ) ( ) .
b

I b x f x dx= ∫  Also, if M  represents the median of the new distribution, 

then, the mean deviation from the median is similarly as follows: 
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In the following, we will present the Bonferroni and Lorenzo curves that have many 
applications in economy to examine income and poverty, reliability, medicine and 
insurance.  

Suppose X  has the probability function in relation (4), in this case. According to (9), 
the Bonferroni curve equation is as follows: 
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The Lorenz curve equation will be as follows: 
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Now, let 1,..., nx x  be random samples of size n of the EU-PD distribution. In this case, 
the likelihood function is as follows: 
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As a result, the logarithm of the likelihood function is obtained as follows: 
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Maximum likelihood estimates parameters are obtained by maximizing the likelihood 
logarithm function over the parameters. To this end, we derive from the logarithm of the 
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likelihood function with respect to the parameters, then the resulting derivatives are equal 
to zero. As a result, maximum likelihood estimates of the parameters obtained by solving 
the following nonlinear equation simultaneously. 
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There is no closed-form expression for the maximum likelihood estimator and its 
computation has to be performed numerically using a nonlinear optimization algorithm 
that can be computed in some software such as R software. 

In order to present the interval estimation and a hypothesis test for the parameters, we 
obtain the observed Fisher information matrix. The information matrix is:  
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where ( , , , , )Ta b mθ γϑ =  is the vector of parameters and there are clear phrases for the 
observed information matrix elements. 
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    Under the regularity conditions (see for example Lehmann and Casella, 1998, pp. 461-
463) [9], the asymptotic inference for the vector of parameters, i.e. ( , , , , ) ,Ta b mθ γϑ =  
based on normal approximation can be used. When the sample size n  is large enough, 
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then ˆ( )n θ θ−  is asymptotically a five-variate normal random vector with mean  (0,0)T  
and the variance-covariance matrix that equates to the inverse of the expected Fisher 
information matrix, i.e., 1( ) .J θ −  This asymmetric behavior holds if we replace 1( )J θ −

with 
11 ( )nI

n
θ

−
 
  

. If unknown parameters appear in the variance-covariance matrix, then 

they can be replaced by their respective maximum likelihood estimates. Using the normal 
approximation, we can obtain approximate (asymptotic) confidence intervals for the 
parameters.   

5. A simulation study and applications and conclusion 

In this section, we evaluate the performance of the MLEs of the parameters of the          
EU-PD model by means of a simulation study. The inverse transform algorithm is used to 
generate random data from the EU-PD distribution. The precision of the MLEs is discussed 
by means of the bias, mean squared error (MSE) and mean relative error (MRE). We 
generated 30,000N =  samples of sizes 100,  150n =  from the EU-PD distribution with 
the parameter combinations ( )( , , , , ) 2,2,2,1,1a b mθ γ = and ( )( , , , , ) 2,3, .2,2,1a b mθ γ =  
We obtained the MLEs of the parameters for each generated sample and the standard errors 
of the MLEs were obtained by inverting the observed information matrix. Let θ̂  be the 
MLE of θ  and l̂θ  be the MLE of θ  that is obtained in the ith iteration, then the 

estimated bias, MSE, and MRE of θ̂  can be obtained using the following equations: 
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Table 1. Simulation results. 

n  
( )( , , , , ) 2,2,2,1,1a b mθ γ =  

n  
( )( , , , , ) 2,3,2,2,1a b mθ γ =  

Parameters Bias MSE MRE Parameters Bias MSE MRE 
 
 
100 

a   
b   
θ   
m   

0.18 
0.11 
0.09 
0.07 

0.95 
0.74 
0.63 
0.58 

1.09 
1.08 
1.05 
1.01 

 
 
100 

a   
b   
θ   
m   

0.40 
0.28 
0.10 
0.08 

0.96 
0.62 
0.39 
0.24 

1.09 
1.05 
1.04 
1.03 

 γ   0.05 0.52 1.03  γ   0.07 0.18 1.01 
 
 
150 

a   
b   
θ   
m   

0.07 
0.05 
0.04 
0.03 

0.61 
0.42 
0.22 
0.16 

1.06 
1.04 
1.03 

1.001 

 
 
150 

a   
b   
θ   
m   

0.08 
0.07 
0.06 
0.04 

0.09 
0.07 
0.05 
0.04 

1.05 
1.04 
1.02 
1.01 

 γ   0.02 0.09 1.005  γ   0.01 0.01 1.002 
  
We can obtain the estimated bias, MSE, and MRE of ˆ ˆˆ ˆ,  ,  ,  a b m γ  similarly. The numerical 
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results of the simulation are given in Table 1. It is clear from Table 1 that the estimated 
biases and MSEs decrease when the sample size n increases. The estimated MREs of all 
parameters are close to one and approach this nominal value when the sample size 
increases. Now, we present applications of EU-PD distribution using real data. These 
applications demonstrate the flexibility of this distribution compared to the other models 
for the real data set. We compare the fit of the EU-PD distribution with those of some other 
lifetime distributions which are Pareto, dagum and Beta exponentiated Pareto. The Pareto 
distribution is 

( )

( ) ( )
1

2 2

2 2( ) , ,
1

x xf X x
xx x

α α α

α α α

α β αβ β
ββ

−

= = ≥
  ++ 

 

and the Beta Exponentiated Pareto Distribution is 

( ) ( )
11

1
1( ) 1 1 1

( , )
,

bk ak k
k

kf X x x
B a b x

α αα β β β
−−

+
    = − − −     

 

and the dagum distribution is 

( ) -(1 )-(1 ) -1 .( )f X x x
αγ γαβγ β
++= +  

All the computations presented in this section were done using the MATLAB and R 
software.  

The first set of data, named dataset II in this article, is relates to the test of the deep 
groove strength of the ball bearing, which includes the number of turns (per hundred 
million) for each of the 23 ball bearings. These data are taken from [10].  

0.1788, 0.2892, 0.3300, 0.4152, 0.4212, 0.4560, 0.4848, 0.5184, 0.5196, 0.5412, 0.5556, 
0.6780, 0.6864, 0.6864, 0.6888, 0.8412, 0.9312, 0.9864, 1.0512, 1.0584, 1.2792, 1.2804, 
1.734.
 

The second data set (Set I) is related to the National income data (in Rls. Billion) of 
Iran in the years of 1959-2014 that is taken from Central Bank of Iran.  

111257.8,  124298.4,  136981.4,  153789.4,  166084.9,  167425.3,  188821.2,  202564.7,  
207174.4,  234197.3,  258982.0,  284830.5,  388985.7,  455285.8,  689874.2,  1077603.7,  
1069051.5,  1259465.5,  1195498.9,  977492.5,  998628.7,  674656.1,  623984.0,  759981.3,  
800077.5,  718224.0,  711357.3,  545700.5,  685626.3,  427235.8,  484050.3,  589257.6,  
638427.2,  651409.6,  886092.3,  878198.7,  855566.2,  900151.8,  863284.1,  779184.7,  
924250.1,  955521.6,  989637.3,  1163029.1,  1243801.0,  1334424.7,  1507359.8,  
1600344.8,  1789984.5,  1778177.4,  1704565.1,  1871637.6,  1990261.3,  1649248.1,  
1606316.0,  1580348.0. 

  

We use the Crame'r-VonMisses (CVM), Anderson-Darling (ADR) test statistics, 
Akaike Information Criterion (AIC) and the Bayesian criterion (BIC) in order to compare 
the fits. The computed MLEs and the values of AIC and BIC, (CVM) and (ADR) for both 
data sets are given in Table 2. These criteria are widely utilized to check how closely a 
specified cdf fits the empirical distribution of a given data set. It is well-known that the 
smaller values of AIC, BIC, (CVM) and (ADR), mean a better fit to the data. Here, it is 
observed from Table 2 that the EU-PD model outperforms all the other considered models 
in the sense of the considered criteria. 

Table 2. The maximum likelihood estimates of the parameters and the values of AIC and BIC 
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for real data. 
DIST. MLEs CVM ADR AIC BIC 

New Model 
= = =
= =
0.6520,  1.1298,  0.2524,
0.5392,  0.3034

θ
γ

a b
m

  0.0867 0.4631 889.7 895.1 

Pareto 2.7563,  0.7999α β= =   0.1428 0.7512 986.3 992.4 
Dagum 1.4399,  1375.63,  0.00237α β γ= = =  0.2531 0.9645 995.8 997.2 

Beta Exponentiated 
Pareto 

0.2775,  0.5229,  0.06234
1.3645,  0.1072

k
a b
α β= = =
= =

  0.3652 1.2365 1356.6 1415.1 

New Model 
= = =
= =
0.0474,  87168,  0.00470,
0.7683,  0.4887

θ
γ

a b
m

 0.0428 0.3452 157.31 167.37 

Pareto 18.79,  5943.59α β= =   0.0854 0.8627 173.25 174.12 
Dagum 5.5415,  2.6884,  34.0665α β γ= = =   0.3676 1.4012 183.42 181.31 

Beta Exponentiated 
Pareto 

0.74923,  0.0000001,  1.01337
0.2719,  0.715

k
a b
α β= = =
= =

  0.4756 2.8923 189.56 196.64 

It can be seen from the Table 2, the new distribution has the smallest values of the   
smallest AIC, BIC, CVM and ADR values. Therefore, it can be concluded that the best fits 
belong to the new introduced model, i.e. the EU-PD distribution among the other 
considered distribution in this section.  

For the sake of visual comparison, the estimated pdfs of the considered distributions as 
well as the empirical histograms of the data sets are given in Figure 3. Also, a normal Q-
Q plot and a boxplot charts for the data set I and II are plotted in Figures 4 and 5. It is 
obvious from the figures, that the proposed new distribution provides the best fit for real 
data set in comparison with the other considered distributions. 

  
Figure 3. The plot of the fitted probability density functions of considered distributions as 

well as the histogram for the data set I and the dataset II. 

We note that the figure plotting and computations of this paper have been performed 
using R [13]. Moreover, the package survival was used [15].  
In this paper, a new distribution was introduced and some of its math properties were 
discussed. The new distribution has five parameters and its cdf and hrf have simple forms. 
The hrf of the new model can be bathtub and inverse bathtub shaped depending on the 
values of the parameters. Generally, we can say that the proposed distribution provides a 
more flexible model for fitting a wide range of real data sets in comparison with some other 
distributions and thus it can be an appropriate alternative distribution for some other 
existing models, in modelling real data that may appear in many areas like engineering, 
survival analysis, hydrology, economics and so on. 
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Figure 4. A normal Q-Q plot and a boxplot charts for the data set I. 

 

 

 
  

Figure 5. A normal Q-Q plot and a boxplot charts for the data set II. 

Several properties of the new distribution, like sequential statistics, sequential statistical 
moments, the asymptotic distribution of extreme values, stochastic orderings and 
distribution of the ratio of two random variables have not been presented in this paper. In 
addition, there exist some inferential topics related to the new introduced distribution like 
Bayesian estimation of the parameters, estimation based on censored samples, estimation 
by means of other methods like the diagonally weighted least-squares method, prediction 
of the future observations from this distribution and so on. We hope to work on some of 
the mentioned topics and report our findings in future. 
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