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Abstract. Traditional Data Envelopment Analysis (DEA) models evaluate the efficiency of 

decision making units (DMUs) with common crisp input and output data. However, the data in real 
applications are often imprecise or ambiguous. This paper transforms fuzzy fractional DEA model 

constructed using fuzzy arithmetic, into the conventional crisp model. This transformation is 

performed considering the goal programming that is one of the Multi Objective Programming 
(MOP) methods. Therefore, in this research the one linear programming model measures the fuzzy 

efficiencies of DMUs with fuzzy input and fuzzy output data. 
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1. Introduction 

Data envelopment analysis (DEA) is a methodology for evaluating the relative efficiency 

of decision making units (DMUs) where input and output data are precisely known. 

However, in real world, crisp input and output data may not always be available. Thus, 

fuzzy DEA models are much more realistic than the commonly used crisp models. Several 

ways have been recognized to investigate fuzzy data in connection with DEA.  

Hosseinzadeh et al. [10] by applying a fuzzy metric and a ranking function obtained 

from it convert the multiplier fuzzy CCR model to its crisp counterpart. Solving this model 

yields the optimal solution of fuzzy multiplier model. Hatami-Marbini et al. [8] have 

provided a taxonomy and review of the fuzzy DEA methods during the past twenty years. 

They have presented a classification scheme with four primary categories, namely the 

tolerance approach, the α-level based approach, the fuzzy ranking approach and the 

possibility approach. Some recent researches in this field are as follows: Chang and Lee [2] 

have integrated data envelopment analysis (DEA), knapsack formulation and fuzzy set 

theory to deal with a model for the project selection problem when each project possesses 

vague input and output data in the selection.  

Hsiao et al. [14] have proposed a fuzzy-based SBM model and fuzzy-based 

super-efficiency SBM model to demonstrate their characteristics theoretically and 

empirically using the case of 24 commercial banks in Taiwan. Wang and Chin [16] have 

discussed a “fuzzy expected value approach” for data envelopment analysis (DEA) in  
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which fuzzy inputs and fuzzy outputs are first weighted respectively; then their expected 

values are used to measure the optimistic and pessimistic efficiencies of decision making 

units (DMUs) in a fuzzy environment. The two efficiencies are finally geometrically 

averaged for the purposes of ranking and identifying the best performing DMU. Azadeh 

and Alem [1] have presented a decision making flowchart to choose among DEA, fuzzy 

DEA and Chance Constraint Data Envelopment Analysis (CCDEA) for the selection of the 

best DMU under certainty, uncertainty and probabilistic conditions. Hatami-Marbini et al. 

[9] have integrated the concept of the TOPSIS into a four-phase fuzzy DEA framework 

based on the theory of displaced ideal to measure the efficiencies of a set of DMUs and to 

rank them with fuzzy input–output levels. Guo, s [7] fuzzy DEA models evaluate the 

efficiencies of DMUs with symmetrical L–L fuzzy input and output data. Based on the 

fuzzy DEA model, an aggregation model for integrating fuzzy attribute values is presented 

in order to rank objects objectively. Hougaard [13] has provided a simple approximation of 

(crisp) productivity scores for fuzzy production data in which all calculations can be 

performed in a spreadsheet and, in any case, do not involve fuzzy programming. 

Moreover, the entire procedure (with its resulting crisp productivity scores) has an 

economic interpretation parallel to the original interpretation of the DEA scores. Sanei et 

al. [15] develops a procedure to measure the efficiencies of DMUs with fuzzy 

observations. The basic idea is to transform a fuzzy DEA model to the family of 

conventional crisp DEA models by applying optimistic, intermediate and pessimistic 

concepts.  

Wang et al. [17] have tackled fuzziness in input and output data in DEA with two fuzzy 

DEA models that are formulated as linear programming (LP) models from the fuzzy 

arithmetic perspective and can be solved to determine fuzzy efficiencies of a group of 

DMUs. In their approach, three LP models must be solved for determining the fuzzy 

efficiency score of each DMU. Therefore, three separate sets of weight corresponding to 

inputs and outputs are provided for computing the fuzzy efficiency of each DMU.  To 

reduce the computational effort and provide one weight set corresponding to inputs and 

outputs for measuring the fuzzy efficiency score, in this paper, multiobjective 

programming (MOP) is used to deal with fuzziness in input and output data in DEA. This 

new method can evaluate fuzzy efficiencies of DMUs with one linear crisp model. 

Accordingly, the obtained fuzzy efficiency score from one weight vector is more 

acceptable and has a better interpretation.  

This paper is organized in the following form: In section 2, the fuzzy fractional DEA 

model for evaluating the efficiency of each DMU is introduced, and some present 

deficiencies in Wang et al.'s method [17] are discussed. In Section 3, a new method based 

upon MOP is provided for transforming the fuzzy fractional DEA model into the linear 

crisp one. Finally, a numerical example and concluding remarks are illustrated in sections 

4 and 5 respectively. 

2. The fractional DEA model for measuring the efficiencies of DMUs with fuzzy 

numbers 

Consider 𝑛 DMUs to be evaluated, each with m inputs and s outputs. Suppose 𝑥̃𝑖𝑗 (𝑖 =

1, . . . , 𝑚) and 𝑦̃𝑟𝑗  (𝑟 = 1, . . . , 𝑠) are the input and output data of DMUj (𝑗 = 1, . . . , 𝑛), 

where 𝑥̃𝑖𝑗 = (𝑥𝑖𝑗
𝐿 , 𝑥𝑖𝑗

𝑀 , 𝑥𝑖𝑗
𝑈)  and 𝑦̃𝑟𝑗 = (𝑦𝑟𝑗

𝐿 , 𝑦𝑟𝑗
𝑀 , 𝑦𝑟𝑗

𝑈 )  are positive triangular fuzzy 

numbers. Therefore, 𝑥𝑖𝑗
𝐿 > 0 and 𝑦𝑟𝑗

𝐿 > 0 for 𝑖 = 1, . . . , 𝑚 , 𝑟 = 1, . . . , 𝑠 and 𝑗 = 1, . . . , 𝑛 

and the membership functions of 𝑥̃𝑖𝑗 and 𝑦̃𝑟𝑗 are respectively defined as: 
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𝜇𝑥̃𝑖𝑗(𝑥) =

{
 
 
 

 
 
 
𝑥 − 𝑥𝑖𝑗

𝐿

𝑥𝑖𝑗
𝑀 − 𝑥𝑖𝑗

𝐿 , 𝑥𝑖𝑗
𝐿 ≤ 𝑥 ≤ 𝑥𝑖𝑗

𝑀 ,

𝑥𝑖𝑗
𝑈 − 𝑥

𝑥𝑖𝑗
𝑈 − 𝑥𝑖𝑗

𝑀 , 𝑥𝑖𝑗
𝑀 ≤ 𝑥 ≤ 𝑥𝑖𝑗

𝑈 ,

0, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 𝜇𝑦̃𝑟𝑗(𝑦) =

{
 
 
 

 
 
 
𝑦 − 𝑦𝑟𝑗

𝐿

𝑦𝑟𝑗
𝑀 − 𝑦𝑟𝑗

𝐿 , 𝑦𝑟𝑗
𝐿 ≤ 𝑦 ≤ 𝑦𝑟𝑗

𝑀 ,

𝑦𝑟𝑗
𝑈 − 𝑦

𝑦𝑟𝑗
𝑈 − 𝑦𝑟𝑗

𝑀 , 𝑦𝑟𝑗
𝑀 ≤ 𝑦 ≤ 𝑦𝑟𝑗

𝑈 ,

0, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

Assume that 𝑥̃𝑖𝑗 = (𝑥𝑖𝑗
𝐿 , 𝑥𝑖𝑗

𝑀 , 𝑥𝑖𝑗
𝑈)  and 𝑥̃𝑘𝑗 = (𝑥𝑘𝑗

𝐿 , 𝑥𝑘𝑗
𝑀 , 𝑥𝑘𝑗

𝑈 ) , the fuzzy arithmetic 

operations on 𝑥̃𝑖𝑗 and 𝑥̃𝑘𝑗 are defined as follows: 

𝑥̃𝑖𝑗 + 𝑥̃𝑘𝑗 = (𝑥𝑖𝑗
𝐿 + 𝑥𝑘𝑗

𝐿 , 𝑥𝑖𝑗
𝑀 + 𝑥𝑘𝑗

𝑀 , 𝑥𝑖𝑗
𝑈 + 𝑥𝑘𝑗

𝑈 ), 

𝑥̃𝑖𝑗 − 𝑥̃𝑘𝑗 = (𝑥𝑖𝑗
𝐿 − 𝑥𝑘𝑗

𝑈 , 𝑥𝑖𝑗
𝑀 − 𝑥𝑘𝑗

𝑀 , 𝑥𝑖𝑗
𝑈 − 𝑥𝑘𝑗

𝐿 ), 

𝑥̃𝑖𝑗 × 𝑥̃𝑘𝑗 = (𝑥𝑖𝑗
𝐿 𝑥𝑘𝑗

𝐿 , 𝑥𝑖𝑗
𝑀𝑥𝑘𝑗

𝑀 , 𝑥𝑖𝑗
𝑈𝑥𝑘𝑗

𝑈 ), 

𝑥̃𝑖𝑗
𝑥̃𝑘𝑗

= (
𝑥𝑖𝑗
𝐿

𝑥𝑘𝑗
𝑈 ,
𝑥𝑖𝑗
𝑀

𝑥𝑘𝑗
𝑀 ,

𝑥𝑖𝑗
𝑈

𝑥𝑘𝑗
𝐿 ) 

Considering the above relations, the following fuzzy DEA model that has been 

proposed by Wang et al. [17], measures the fuzzy efficiency of a DMU (denoted by 

DMUo): 

Max   𝜃̃𝑜 ≈ [𝜃𝑜
𝐿, 𝜃𝑜

𝑀, 𝜃𝑜
𝑈] = [

∑ 𝑢𝑟𝑦𝑟𝑜
𝐿𝑠

𝑟=1

∑ 𝑣𝑖𝑥𝑖𝑜
𝑈𝑚

𝑖=1

,
∑ 𝑢𝑟𝑦𝑟𝑜

𝑀𝑠
𝑟=1

∑ 𝑣𝑖
𝑚
𝑖=1 𝑥𝑖𝑜

𝑀 ,
∑ 𝑢𝑟𝑦𝑟𝑜

𝑈𝑠
𝑟=1

∑ 𝑣𝑖𝑥𝑖𝑜
𝐿𝑚

𝑖=1

] 

s.t.     𝜃̃𝑗 ≈ [𝜃𝑗
𝐿 , 𝜃𝑗

𝑀, 𝜃𝑗
𝑈] = [

∑ 𝑢𝑟𝑦𝑟𝑗
𝐿𝑠

𝑟=1

∑ 𝑣𝑖𝑥𝑖𝑗
𝑈𝑚

𝑖=1

,
∑ 𝑢𝑟𝑦𝑟𝑗

𝑀𝑠
𝑟=1

∑ 𝑣𝑖
𝑚
𝑖=1 𝑥𝑖𝑗

𝑀 ,
∑ 𝑢𝑟𝑦𝑟𝑗

𝑈𝑠
𝑟=1

∑ 𝑣𝑖𝑥𝑖𝑗
𝐿𝑚

𝑖=1

] ≤ 1, 𝑗 = 1, . . . , 𝑛,   

        𝑢𝑟 , 𝑣𝑖 ≥ 0, 𝑟 = 1, . . . , 𝑠,  𝑖 = 1, . . . , 𝑚. 

(1) 

They simplify the former model as: 

 
Max   𝜃̃𝑜 ≈ [𝜃𝑜

𝐿, 𝜃𝑜
𝑀, 𝜃𝑜

𝑈] = [
∑ 𝑢𝑟𝑦𝑟𝑜

𝐿𝑠
𝑟=1

∑ 𝑣𝑖𝑥𝑖𝑜
𝑈𝑚

𝑖=1

,
∑ 𝑢𝑟𝑦𝑟𝑜

𝑀𝑠
𝑟=1

∑ 𝑣𝑖
𝑚
𝑖=1 𝑥𝑖𝑜

𝑀 ,
∑ 𝑢𝑟𝑦𝑟𝑜

𝑈𝑠
𝑟=1

∑ 𝑣𝑖𝑥𝑖𝑜
𝐿𝑚

𝑖=1

]     

s.t.    𝜃𝑗
𝑈 =

∑ 𝑢𝑟𝑦𝑟𝑗
𝑈𝑠

𝑟=1

∑ 𝑣𝑖𝑥𝑖𝑗
𝐿𝑚

𝑖=1

≤ 1, 𝑗 = 1, . . . , 𝑛, 

       𝑢𝑟 , 𝑣𝑖 ≥ 0, 𝑟 = 1, . . . , 𝑠,  𝑖 = 1, . . . , 𝑚. 

(2) 

Wang et al. [17] have calculated the best possible values of 𝜃𝑜
𝐿 , 𝜃𝑜

𝑀and 𝜃𝑜
𝑈  by the 

following three fractional programming models: 

 

Max   𝜃𝑜
𝐿 =

∑ 𝑢𝑟𝑦𝑟𝑜
𝐿𝑠

𝑟=1

∑ 𝑣𝑖𝑥𝑖𝑜
𝑈𝑚

𝑖=1

                                           

s.t.    𝜃𝑗
𝑈 =

∑ 𝑢𝑟𝑦𝑟𝑗
𝑈𝑠

𝑟=1

∑ 𝑣𝑖𝑥𝑖𝑗
𝐿𝑚

𝑖=1

≤ 1, 𝑗 = 1, . . . , 𝑛,    

        𝑢𝑟 , 𝑣𝑖 ≥ 0,  𝑟 = 1, . . . , 𝑠,  𝑖 = 1, . . . , 𝑚. 

(3) 

 

 

Max   𝜃𝑜
𝑀 =

∑ 𝑢𝑟𝑦𝑟𝑜
𝑀𝑠

𝑟=1

∑ 𝑣𝑖
𝑚
𝑖=1 𝑥𝑖𝑜

𝑀  

s.t.     𝜃𝑗
𝑈 =

∑ 𝑢𝑟𝑦𝑟𝑗
𝑈𝑠

𝑟=1

∑ 𝑣𝑖𝑥𝑖𝑗
𝐿𝑚

𝑖=1

≤ 1, 𝑗 = 1,… , 𝑛, 

(4) 
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        𝑢𝑟 , 𝑣𝑖 ≥ 0,  𝑟 = 1, . . . , 𝑠 ,   𝑖 = 1, . . . , 𝑚. 

 

 

Max   𝜃𝑜
𝑈 =

∑ 𝑢𝑟𝑦𝑟𝑜
𝑈𝑠

𝑟=1

∑ 𝑣𝑖
𝑚
𝑖=1 𝑥𝑖𝑜

𝐿  

s.t.     𝜃𝑗
𝑈 =

∑ 𝑢𝑟𝑦𝑟𝑗
𝑈𝑠

𝑟=1

∑ 𝑣𝑖𝑥𝑖𝑗
𝐿𝑚

𝑖=1

≤ 1, 𝑗 = 1, . . . , 𝑛,                         

        𝑢𝑟 , 𝑣𝑖 ≥ 0,  𝑟 = 1, . . . , 𝑠,  𝑖 = 1, . . . , 𝑚. 

(5) 

By transforming the above models into three linear programming (LP) models, they have 

obtained the best fuzzy efficiency of DMUo. 

To describe the problem in their approach, one more time, we consider Wang, Luo and 

Liang's simple numerical illustration where eight manufacturing enterprises (DMUs) with 

two inputs and two outputs are assumed. The Corresponding data set is given in Table 1. 

Note that model (2) is a multiobjective problem, but by converting it to separate 

fractional problems and solving linear models for DMUA, the fuzzy efficiency is obtained 

as (𝜃𝐴
𝐿, 𝜃𝐴

𝑀, 𝜃𝐴
𝑈) = (0.8124, 0.9033, 1.0000) with three weight sets as listed in Table 2. 

Table 1. DMUs' data (extracted from [17]). 

Table 2. Fuzzy efficiency and optimal weights 

 

 

 

 

 
 

In multiobjective programming, the optimal solution of each model is called the ideal 

solution for its corresponding objective function. Therefore, the ideal points for models 

(3), (4) and (5) define the maximum feasible value of 𝜃𝐴
𝐿, 𝜃𝐴

𝑀 and𝜃𝐴
𝑈 , respectively. 

However, each ideal point does not optimize all objective functions simultaneously.  

In the next section, for removing this ambiguity, a new method for measuring the fuzzy 

efficiency of each DMU, considering Goal Programming (GP), is proposed.  

  

3. Application of interactive goal programming (IGP) for investigating the fuzzy 

DEA 

Since formulation (1) is equivalent to a multiobjective problem, an interactive method can 

be used to solve it. Interactive multiobjective programming methods constitute techniques 

that allow the Decision Maker (DM) to search for different efficient solutions, so that the 

DM can reach the most preferred solution or at least to a good solution, in the sense that it 

DMUs Input1 Input2 Output1   Output2 
A (2120,2170,2210) 1870   (14500, 14790, 14860)                 (3.1, 4.1, 4.9) 
B (1420,1460,1500) 1340 (12470,12720,12790)                  (1.2, 2.1, 3.0) 
C (2510,2570,2610) 2360 (17900,18260,18400)                  (3.3, 4.3, 5.0) 
D (2300,2350,2400) 2020 (14970,15270,15400)                  (2.7, 3.7, 4.6) 
E (1480,1520,1560) 1550 (13980,14260,14330)                  (1.0,1.8,2.7) 
F (1990,2030,2100) 1760 (14030,14310,14400)                  (1.6,2.6,3.6) 
G (2200,2260,2300) 1980 (16540,16870,17000)    (2.4,3.4,4.4) 
H (2400,2460,2520) 2250 (17600,17960,18100)                   (2.6,3.6,4.6) 

𝜃̃ (𝑢1
∗ , 𝑢2

∗ , 𝑣1
∗, 𝑣2

∗) 

𝜃𝐴
𝐿=0.812383 (0.000056,0,0,0.000535) 

𝜃𝐴
𝑀=0.903316 (0.000028,0.118382,0,0.000535) 

𝜃𝐴
𝑈=1.000000 (0,0.204082,0.000472,0) 
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is acceptable by the DM. Therefore, interactive methods are powerful tools for solving 

multiobjective programming problems (see [5,6,11,12,18,19]). There are several various 

interactive methods. It is evident that the selection of the interactive method would indeed 

influence the final solution. 

For determining the efficient solutions in model (1), a new method is proposed. This 

method is based upon the goal programming (GP). By means of minimizing deviations 

from the set goals provided by the DM, a preferred solution is obtained. GP method has 

been widely used in many multiobjective programming problems (see [3]).  

First, by using the Charnes-Cooper transformation for the third objective function (see 

Charnes and Cooper [4]), the model (2) can be transformed to the following program: 

 Max   [
∑ uryro

Ls
r=1

∑ vi
m
i=1 xio

U ,
∑ uryro

Ms
r=1

∑ vi
m
i=1 xio

M , ∑ uryro
Us

r=1 ]  

       

s.t.     ∑ 𝑢𝑟𝑦𝑟𝑗
𝑈𝑠

𝑟=1 −∑ 𝑣𝑖𝑥𝑖𝑗
𝐿 ≤ 0𝑚

𝑖=1 ,  𝑗 = 1, . . . , 𝑛,  

 

        ∑ 𝑣𝑖𝑥𝑖𝑜
𝐿 = 1𝑚

𝑖=1  

                

        𝑢𝑟 , 𝑣𝑖 ≥ 0,  𝑟 = 1, . . . , 𝑠, 𝑖 = 1, . . . , 𝑚. 
 

(6) 

Then a simple GP formation for the three objective functions is applied. Therefore, 

there are: 

 Min  𝛥1 + 𝛥2 + 𝛥3                          

s.t.   ∑ 𝑢𝑟𝑦𝑟𝑜
𝐿𝑠

𝑟=1 − ∑ 𝑣𝑖𝑥𝑖𝑜
𝑈 + 𝛥1 = 0

𝑚
𝑖=1                      

   ∑ 𝑢𝑟𝑦𝑟𝑜
𝑀𝑠

𝑟=1 − ∑ 𝑣𝑖𝑥𝑖𝑜
𝑀 + 𝛥2 = 0

𝑚
𝑖=1  

   ∑ 𝑢𝑟
𝑠
𝑟=1 𝑦𝑟𝑜

𝑈 + 𝛥3 = 1 

   ∑ 𝑢𝑟𝑦𝑟𝑗
𝑈𝑠

𝑟=1 −∑ 𝑣𝑖𝑥𝑖𝑗
𝐿 ≤ 0𝑚

𝑖=1 , 𝑗 = 1, . . . , 𝑛,                                                        

   ∑ 𝑣𝑖𝑥𝑖𝑜
𝐿 = 1𝑚

𝑖=1 , 

   𝛥1 − 𝛥2 ≥ 0, 

   𝛥2 − 𝛥3 ≥ 0,  

   𝑢𝑟 , 𝑣𝑖 ≥ 0,  𝑟 = 1, . . . , 𝑠, 𝑖 = 1, . . . , 𝑚, 

   𝛥1, 𝛥2, 𝛥3 ≥ 0. 

(7) 

 

Where the goal of each objective that the DM wishes to attain is one, and 𝛥𝑗, j=1,2,3 

are under-achievement of the jth goal. The last two constraints reflect this fact: 𝜃𝑜
𝐿 ≤

𝜃𝑜
𝑀 ≤ 𝜃𝑜

𝑈. 

To sum up, a new method in fuzzy efficiency evaluation from the perspective of MOLP 

is employed. For each DMUo, a linear model is solved to obtain weights that optimize all 

objective functions simultaneously; therefore, the fuzzy efficiency of DMUo is achieved. 

 

4. Numerical example 

Model (7) is applied to the data set used in Wang et al. [17]. Table 1 presents the input and 

output data for the eight manufacturing enterprises. Table 3 reports the results from model 

(7), i.e., the fuzzy efficiency and optimal weights of each DMU.  

As it can be seen, the efficiency of each DMU is positive triangular fuzzy number. 
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Furthermore, this fuzzy efficiency has been obtained from one optimal set of weight. 

Table 3. The obtained results from solving model (7). 

DMUs (𝜃𝐿 , 𝜃𝑀, 𝜃𝑈) (𝑢1
∗ , 𝑢2

∗ , 𝑣1
∗, 𝑣2

∗) 
A (0.772637,0.899082,0.995704) (0.000028,0.118382,0,0.000535) 

B (0.973010,0.992517,0.997979) (0.000078,0,0,0.000746) 

C (0.787096,0.802926,0.809082) (0.000044,0,0,0.000424) 

D (0.685187,0.802591,0.904614) (0.000026,0.109592,0,0.000495) 

E (0.960202,0.987183,0.999941) (0.000070,0,0.000199,0.000455) 

F (0.842070,0.858875,0.864277) (0.000060,0,0,0.000568) 

G (0.876708,0.894199,0.901090) (0.000053,0,0,0.000505) 

H (0.828028,0.844965,0.851552) (0.000047,0,0,0.000444) 

5. Conclusion       

The main purpose of this paper is investigating the DEA models in fuzzy environment to 

provide their extended applications. To deal with this problem, the goal programming 

method which is the method in multiobjective linear programming (MOLP) has been 

applied. Accordingly, the fuzzy efficiency assessment can be performed by a linear model. 

The new method is illustrated with a numerical example which has been used in Wang, 

Luo and Liang's article. Wang et al. [17] have made a significant contribution by using a 

fuzzy ranking approach to compare and rank the fuzzy efficiencies of DMUs. But their 

approach has some deficiencies such as solving three LP models and providing three sets 

of weights corresponding inputs and outputs for evaluating DMUs. Therefore, the 

proposed approach in this study which is based on GP method eliminates these 

deficiencies. 

Investigating the other fuzzy DEA models from the view point of MOLP can be the 

base for the future research issues. It is possible that other researches to be found 

comparing the different fuzzy DEA models for evaluating DMUs. Finally, it is hoped that 

this study makes a small contribution to fuzzy DEA.                                                                                                                                     
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