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Abstract. This study is carried out to describe the behaviour of vehicles flow on the road, in the 

presence of blocking effects. A non-linear three dimensional system of ordinary differential 

equations is used to describe vehicles flow on the road. The study classify total vehicles population 
on the road into three compartments as Free-Slow-Released vehicles. The formulated model is 

well-posed. The blocking free equilibrium point is globally asymptotically stable. Further, effects 

of blocking are described using concept of retardation number. That is, blocking effect decrease 
whenever retardation number is less than one and the blocking effects increase if retardation 

number is greater than one. 
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1. Introduction 

Traffic flow is one of the critical issues for both developing and developed countries. It is 

well known that, if the disease in the population is not managed properly, then it can 

invade the whole population. Likewise, poor management of blocking effects on the road 

can bring both economical and human life destruction [6,7]. In in all over the world, we 

hear accident’s news that caused by blocking effects on the road. Thus, this paper is done 

to mathematically describe how the flow of vehicles carried out on the road, so that this 

study creates some understanding for those involved in the traffic flows. The deterministic 

approach was applied to human population in order to study the persistence and extinction 

of a disease entered the population [4,5,8,9,11]. This study describes a mathematical 

model of three compartments that describe the flow of vehicles flow on the road in terms of 

blocking effects similar to the works done in [6,7]. Blocking is the act of preventing the 

vehicles to flow freely on the road. This is the strongest controller of vehicles flow on the 

road and needs great transportation management. Most of the time people with epidemics 

disease are treated and cured with proper medication and assistance given by doctors. But, 

most of the time the accident caused by this blocking does not give time to anyone to be 

treated. Thus, it requires high cares from the beginning to the end of the driving 

[1,2,3,10,12]. 

Motivation of the study: 

Comparison of model of epidemiology with model of traffic flow 

Commonly, in epidemiology the dynamics of diseases can be described using deterministic 

model of ODE [6]. Now this study extended the deterministic model approach or compartmental 
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or compartmental approach to the vehicles population. This study is the modification of 

works done in [7]. The previous study is focused on four compartments of vehicles 

population whereas the current work concentrated on three compartmental model of 

vehicles. 

Now, let us describe characteristics of variables in epidemiology and traffic flow which 

is new approach to describe dynamics of vehicles on the road. In epidemiology, 

deterministic models can be formulated by dividing total human population into three 

compartments i.e., Susceptible-Infected-Recovered (SIR).  

(i) The Susceptible compartment encloses disease free people but can get disease if 

exposed to it.  

(ii) The Infectious compartment encloses people who infected by the disease and can 

propagate disease to others in allowable contact.  

(iii) The Recovered compartment encloses people got affected by the disease recovered 

from the diseseaset by some means like natural cure, treatment etc. 

In analogous methodology used to construct epidemiological deterministic models in 

this study the vehicles flow on a road (or drivers driving vehicles) are categorized to three 

compartments i.e., Free-Slow-Released (FSR).  

(i) The Free compartment contains unblocked vehicles bot can be blocked if they face 

blocking vehicles. 

(ii) The Slow compartment contains vehicles with low blocking. These vehicles can block 

others in allowable distance of blocking if they meet vehicles on the road. 

(iii) The Released compartment contains blocking free vehicles after blockage.  

Thus, observing that the blocking effects in traffic flow is continuously persisting with 

human life this study is aimed to put platform for further study of traffic flows on the road 

so that the advanced concepts of ODE can describe better understanding than that of PDE 

description of traffic flow models. In this study, in addition to what described above about 

vehicles flow related to blocking, different terms are used in the following sections. 

2. Model formulation 

The deterministic model formulated in this study divides total vehicles population 

available on the road into three compartments. These are described as: Free vehicles 

 𝐹(𝑡), Slow vehicles  𝑆(𝑡), and Released vehicles 𝑅(𝑡). So that, 

𝑁(𝑡) = 𝐹(𝑡) + 𝑆(𝑡) + 𝑅(𝑡) (1) 

Here in (1), (i) 𝑁(𝑡)  denotes total population size of vehicles (ii)  𝐹(𝑡) denotes 

population size of Free Vehicles. These are vehicles that move without the influence of 

blocking on the road but have a chance or possibility to be blocked in the future. (ii) 

𝑆(𝑡) denotes the population size of slow vehicles which are partially blocked and are 

moving under the influence of blockings and can block others in possible allowable 

distance between vehicles. (iii) 𝑅 (𝑡) denotes the population size of Released vehicles 

which are just released from blockings and have a chance of experiencing blockings 

again. 

Table 1. Description of Model Variables. 

Variable 
Description pertaining to traffic 

flow 

Description pertaining to 

epidemiology 

𝐹(𝑡) Population size of Free vehicles Size of Susceptible population 

𝑆(𝑡) Population size of Slow vehicles Size of Infectious population 

𝑅(𝑡) Population size of Released vehicles Size of Recovered population 
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Table 2. Description of Model Parameters. 

Parameter 
Description pertaining to traffic flow 

(FSBD) 

Description pertaining 

to epidemiology (SEIR) 

𝜏 Recruitment rate is the rate at which new 

vehicles joining the road (OR) growth rate 

of free vehicles 

Constant birth rate of 

susceptible population 

𝛽 Rate of free vehicles becoming Slow 

vehicles. That is, with this rate the free 

vehicles are experiencing blockings and are 

running reduced speed. 

Transmission rate of 

infection to Susceptible 

population 

𝛾 Transferring rate of Slow vehicles to 

Released vehicles.  

Recovery rate 

𝜔 Transferring rate of Released vehicles to 

Susceptible vehicles. 

Transferring rate of 

recovered population to 

susceptible compartment. 

𝜈 Natural outflow 

 

Natural death rate 

 

 

Figure 1. Schematic diagram of vehicles dynamics with blocking on the road. 

Based on the assumptions listed above and the diagram given in Figure 1, the 

mathematical model describing the dynamics of population sizes of various vehicles 

pertaining to a traffic flow on a road can be expressed as a system of nonlinear 

differential equations as 

 𝑑𝐹 𝑑𝑡⁄ = 𝜏 − 𝛽𝐹𝑆 − 𝜈𝐹 + 𝜔𝑅 

 𝑑𝑆 𝑑𝑡⁄ = 𝛽𝐹𝑆 − 𝛾𝑆 − 𝜈𝑆 

 𝑑𝑅 𝑑𝑡⁄ = 𝛾𝑆 − 𝜈𝑅 − 𝜔𝑅 

with initial conditions, 𝐹(0), 𝑆(0),  and 𝑅(0). 

3. Analysis of the Model 

In this section mathematical analysis of the model (2)-(4) is carried out. The analysis 

comprises of the following features: (i) Existence, positivity and boundedness of solutions 

(ii) Equilibrium points (iii) Blocking Free equilibrium points (iv) Endemic equilibrium 

points (v) Basic retardation number (vi) Stability analysis of the blocking free equilibrium 

points (vii) Local stability of blocking free equilibrium point (viii) Global stability of 



106                              K. R. Cheneke et al./𝐼𝐽𝑀2𝐶, 10 -02 (2020) 103-110. 

 

 

blocking free equilibrium point. These mathematical aspects are presented and explained 

in the following sub-sections respectively. 

3.1 Existence, positivity and boundedness of solution 

In order that the model equations (2)-(4) have physically valid meaning for the modeled 

problem of traffic flow and Mathematically well posed the following theorems are stated 

and proved. 

3.1.1 Positivity of the solutions 

Theorem 3.1 If the initial conditions 𝐹(0), 𝑆(0), and 𝑅(0) are non-negative then the 

solution region 𝑅 = {𝐹(𝑡), 𝑆(𝑡), 𝑅(𝑡)} of the system of equations (2)-(4) is non-negative. 

Proof  To show that the solution of (2)-(4) is non-negative here each model equation of 

the dynamical system is considered separately and shown that it has a non-negative 

solution as follows: 

Positivity of 𝐹(𝑡): Consider the model equation (2) given by 𝑑𝐹 𝑑𝑡⁄ = 𝜏 − 𝛽𝐹𝑆 − 𝜈𝐹 +
𝜔𝑅   which without loss of generality, after discarding the positive terms 𝜏 and 𝜔𝑅,  it 

can be expressed as an inequality as 𝑑𝐹 𝑑𝑡⁄ ≥ −(𝛽𝑆 + 𝜈)𝐹. This differential inequality, 

being first order and linear, can be solved easily to find its solution as 𝐹(𝑡) ≥

𝐹(0)  𝐸𝑥𝑝 {− ∫ [𝛽𝑆 + 𝜈]𝑑𝑡
𝑡

0
} . Here the integral constant 𝐹(0)  represents initial 

population size and by definition it is a positive quantity. Also, as per the definition of 

exponential functions, the exponential factor  𝐸𝑥𝑝 {− ∫ [𝛽𝑆 + 𝜈]𝑑𝑡
𝑡

0
}  is always 

non-negative for any value of the exponent. Hence, it can be concluded that 𝐹(𝑡) is a 

non-negative quantity i.e., 𝐹(𝑡) ≥ 0. 

Positivity of 𝑆(𝑡): Consider the model equation (3) given by 𝑑𝑆 𝑑𝑡⁄ = 𝛽𝐹𝑆 − 𝛾𝑆 − 𝜈𝑆 

which without loss of generality, after discarding the positive term  𝛽𝐹𝑆 , it can be 

expressed as an inequality as 𝑑𝑆 𝑑𝑡⁄ ≥ −(𝛾 + 𝜈)𝑆. This differential inequality, being first 

order and linear, can be solved easily to find its solution as 𝑆(𝑡) ≥ 𝑆(0)  𝐸𝑥𝑝 {−(𝛾 +
𝜈)𝑡}. Here, the integral constant 𝑆(0) represents initial population size and by definition it 

is a positive quantity. Also, as per the definition of exponential functions, the exponential 

factor  𝐸𝑥𝑝 {−(𝛾 + 𝜈)𝑡} is always non-negative for any value of the exponent. Hence, it 

can be concluded that  𝑆(𝑡) is a non-negative quantity i.e., 𝑆(𝑡) ≥ 0 for all 𝑡 ∈ [0, ∞). 

Positivity of 𝑅(𝑡): Consider the model equation (4) given by 𝑑𝑅 𝑑𝑡⁄ = 𝛾𝑆 − 𝜈𝑅 − 𝜔𝑅  
which without loss of generality, after discarding the positive term 𝛾𝑆 can be expressed as 

an inequality as 𝑑𝑅 𝑑𝑡⁄ ≥ −(𝜈 + 𝜔)𝑅. This differential inequality, being first order and 

linear, can be solved easily to find its solution as 𝑅(𝑡) ≥ 𝑅(0) 𝐸𝑥𝑝 {−(𝜈 + 𝜔)𝑡}. Here the 

integral constant 𝑅(0) represents initial population size and by definition it is a positive 

quantity. Also, as per the definition of exponential functions, the exponential factor 

𝐸𝑥𝑝 {−(𝜈 + 𝜔)𝑡} is always non-negative for any value of the exponent. Hence, it can be 

concluded that 𝑅(𝑡) is a non-negative quantity i.e., 𝑅(𝑡) ≥ 0 for all 𝑡 ∈ [0, ∞). 

Since, obviously exponential expressions are positive and initial conditions are 

non-negative it can be concluded that the solutions region 𝐷  is a set containing 

non-negative quantities. Thus, solution region can be written as, 

       𝐷 = {(𝐹(𝑡), 𝑆(𝑡), 𝑅(𝑡))  ∃  𝐹(𝑡) ≥ 0,   𝑆(𝑡) ≥ 0, 𝑅(𝑡) ≥ 0, ∀t ϵ[0, ∞)}.       ◼  

3.1.2 Boundedness of the solutions region 

In order to make the formulated model is valid and well posed it is also necessary to show 



K. R. Cheneke et al./𝐼𝐽𝑀2𝐶, 10 -02 (2020) 103-110.                         107 
 

that the solutions region is bounded. This fact has been stated as Theorem 3.2 and verified 

in its proof following [7]. 

Theorem 3.2 The non-negative solutions region 𝐷 = {𝐹(𝑡), 𝑆(𝑡), 𝑅(𝑡)} of the system of 

equations (2)-(4) is bounded i.e.,  𝑁(𝑡) ≤ 𝜏 𝜈⁄ . 

Proof  To show that the solutions region of the system of equations (2)-(4) is bounded, it 

is sufficient if it is shown that the total population is bounded. Now adding all terms on the 

right and left sides of equations in dynamical system (2)-(4) gives the resultant equation as 

(𝑑𝐹 𝑑𝑡⁄ ) + (𝑑𝑆 𝑑𝑡⁄ ) + (𝑑𝑅 𝑑𝑡⁄ ) 

=  𝜏 − 𝛽𝐹𝑆 − 𝜈𝐹 + 𝜔𝑅 + 𝛽𝐹𝑆 − 𝛾𝑆 − 𝜈𝑆 + 𝛾𝑆 − 𝜈𝑅 − 𝜔𝑅 

After discarding the zero-valued-pairs and using the fact 𝑁(𝑡) = 𝐹(𝑡) + 𝑆(𝑡) + 𝑃(𝑡) +
𝑅(𝑡) as given in (1), the foregoing equation reduces to a simplified form as follows: 

𝑑𝑁 𝑑𝑡⁄ = 𝜏 − 𝜈𝑁 

Now, for the first order linear equation with constant coefficients 𝑑𝑁 𝑑𝑡⁄ = 𝜏 − 𝜈𝑁. It is 

straight forward to find the complete solution as 𝑁(𝑡) = (𝜏 ν⁄ ) − [(𝜏 ν⁄ ) − 𝑁(0)]𝑒− 𝜈𝑡 . 

Here  𝑁(0) is the initial size of all categories of vehicles on the road. It follows that 𝑁(𝑡) 

is bounded as 𝑡 → ∞ i.e.,  𝑁(𝑡) ≤ (𝜏 ν⁄ ) provided that the condition 𝑁(0) ≤ (𝜏 ν⁄ )is 

satisfied. Thus, it can be concluded that the solutions region 𝐷 = {𝐹(𝑡), 𝑆(𝑡), 𝑅(𝑡)} is 

bounded i.e.,  𝑁(𝑡) ≤ 𝜏 ν⁄ .                                                             ◼ 

3.1.3 Existence and uniqueness of the solutions 

Here it is to show that a solution for the system (2)-(4) exists and is unique following the 

procedure given in Derric and Grossman (1976). The existence and uniqueness of the 

solution can be stated as shown in Theorem 3.3. 

Theorem 3.3 Consider a system of  𝑛  first order differential equations of the type 𝑥𝑖
′ =

𝑓𝑖(𝑥1,  𝑥2, 𝑥3 … , 𝑥𝑛, 𝑡)  together with the initial conditions 𝑥𝑖(𝑡0) = 𝑥𝑖0 where 𝑖 =
1, … , 𝑛 . Let D denotes a region in (𝑛 + 1) -dimensional space among which one 

dimension is for 𝑡 and 𝑛 dimensions are for the vector 𝑥. If all the partial derivatives 

𝜕𝑓𝑖 𝜕𝑥𝑗⁄  for all 𝑖, 𝑗 = 1,2, … 𝑛 are continuous in 𝐷 = {(𝑥, 𝑡), |𝑡 − 𝑡0| ≤ 𝑎, |𝑥 − 𝑥0| ≤ 𝑏} 

then there is exists a constant  𝛿 > 0  such that there a unique continuous vector 

solution 𝑥∗ = [𝑥1(𝑡), 𝑥2(𝑡), . . . , 𝑥𝑛(𝑡)]  in the interval |𝑡 − 𝑡0| ≤ 𝛿  for the system 

of 𝑛 equations.  

Now accordingly let state the theorem and prove 

 𝑑𝐹 𝑑𝑡⁄ = 𝜏 − 𝛽𝐹𝑆 − 𝜈𝐹 + 𝜔𝑅 (2) 

 𝑑𝑆 𝑑𝑡⁄ = 𝛽𝐹𝑆 − 𝛾𝑆 − 𝜈𝑆 (3) 

 𝑑𝑅 𝑑𝑡⁄ = 𝛾𝑆 − 𝜈𝑅 − 𝜔𝑅 (4) 

Theorem 3.4 There exists a unique solution to the system of equations (2)-(4). 

Proof  The statement here is proved following the procedure given in Theorem 3. Now, 

the system of equations (2)-(4) together with the initial conditions can be expressed as 

 𝑑𝐹 𝑑𝑡⁄ = 𝜏 − 𝛽𝐹𝑆 − 𝜈𝐹 + 𝜔𝑅 ≡ 𝑓1, 𝐹(𝑡0) = 𝐹0 

 𝑑𝑆 𝑑𝑡⁄ = 𝛽𝐹𝑆 − 𝛾𝑆 − 𝜈𝑆 ≡ 𝑓2, 𝑆(𝑡0) = 𝑆0 

 𝑑𝑅 𝑑𝑡⁄ = 𝛾𝑆 − 𝜈𝑅 − 𝜔𝑅 ≡ 𝑓3, 𝑅(𝑡0) = 𝑅0 
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To show existence and boundedness let us show that partial derivatives of functions 𝑓𝑖 

with respect to variables be continuous and bounded, where 𝑖 = 1,2,3. 

Table 3. Verification of continuity and boundedness of the partial derivatives. 

Function Continuity Boundedness 

 

𝑓1 

𝜕𝑓1 𝜕𝐹⁄ = −𝛽𝑆 − 𝜈 

𝜕𝑓1 𝜕𝑆⁄ = −𝛽𝐹 

𝜕𝑓1 𝜕𝑅⁄ = 𝜔 

|𝜕𝑓1 𝜕𝐹⁄ | = |−𝛽𝑆 − 𝜈| < ∞ 

|𝜕𝑓1 𝜕𝑆⁄ | = 𝛽𝐹 < ∞ 

|𝜕𝑓1 𝜕𝑅⁄ | = 𝜔 < ∞ 

 

𝑓2 

𝜕𝑓2 𝜕𝐹⁄ = 𝛽𝑆 

𝜕𝑓2 𝜕𝑆⁄ = 𝛽𝐹 − 𝛾 − 𝜈 

𝜕𝑓2 𝜕𝑅⁄ = 0 

|𝜕𝑓2 𝜕𝐹⁄ | = |𝛽𝑆| < ∞ 

|𝜕𝑓2 𝜕𝑆⁄ | = |𝛽𝐹 − 𝛾 − 𝜈| < ∞ 

|𝜕𝑓2 𝜕𝑅⁄ | = 0 < ∞ 

 

𝑓3 

 

𝜕𝑓3 𝜕𝐹⁄ = 0 

𝜕𝑓3 𝜕𝑆⁄ = 𝛾 

𝜕𝑓3 𝜕𝑅⁄ = −(𝜈 + 𝜔) 

|𝜕𝑓3 𝜕𝐹⁄ | = 0 < ∞ 

|𝜕𝑓3 𝜕𝑆⁄ | = 𝛾 < ∞ 

|𝜕𝑓3 𝜕𝑅⁄ | = 𝜈 + 𝜔 < ∞ 

Hence, by Derric and Grossman 1976 the solution exists and is unique.                 ◼ 

3.2 Equilibrium points 

In order to have a better understanding about the dynamics of a model, the equilibrium 

points of the solution region are to be identified and their stability analysis is to be 

conducted. In this section such identification and analysis are conducted. 

An equilibrium solution is a steady state solution of the model equations (2)-(4). That 

is, if the system begins at such a state, it will remain there all the times for any disturbance 

occurs. In other words, the population sizes remain unchanged and thus the rate of change 

for each population vanishes. Equilibrium points of the model are found, categorized, 

stability analysis is conducted and the results have been presented in the following: 

3.2.1 Blocking free equilibrium BFE 

At blocking free equilibrium vehicles flow freely without any interference of any kind of 

blockings. That is, at this equilibrium point vehicles will run freely with speeds as per the 

wish of their drivers. Furthermore, at this equilibrium no vehicle is forced either to run 

with slower speeds or to stop completely. That is,  𝑆 = 0. Thus, under this assumption the 

solutions of system of equations (2)-(4) is given by: 

    𝐹 = 𝜏 𝜈⁄ ,   𝑆 = 0,    𝑅 = 0      

Thus, blocking free equilibrium BFE of the model is obtained as 

    𝐸0 = (𝜏 ν⁄ , 0,0) 

3.3 Derivation of basic retardation number (𝑹𝟎) 

Basic retardation number has similar meaning to that of basic reproduction number in 

Epidemiology. It is described as the average number of secondary blocked vehicles 

generated by one blocked vehicle in fully freely flowing vehicles. Calculating retardation 
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number is important to analyze the local stability of nonlinear system of equations (2)-(4). 

The retardation number is the largest eigenvalue of the matrix 𝐾 = ℱ𝑉−1, where, 

ℱ = (𝜕𝑓 𝜕𝑥𝑗⁄ )|𝐸0
, 𝑉 = (𝜕𝑣 𝜕𝑥𝑗⁄ )|𝐸0

 (5) 

Here, 𝑓 is the newly blocking terms and 𝑣 is non-singular matrix of the remaining 

transfer terms. Now, the basic retardation number 𝑅0 of the model (2)-(4) is computed 

using the next generation matrix in similar procedure as reproduction number in 

epidemiological concept used to be computed. Thus, the next generation matrices 

ℱ 𝑉−1can straightforwardly constructed and obtained follows: 

𝐾 = ℱ 𝑉−1 =
βτ

ν(γ +  ν)
 

Hence, the Retardation number of the model is given by 

𝑅0 = 𝜌(ℱ𝑉−1) =
βτ

ν(γ +  ν)
 

3.4 Stability analysis of equilibrium 

In the absence of blockings, the traffic flow model will have a unique blocking free steady 

state 𝐸0. To find the local stability of 𝐸0 , the Jacobian matrix of the model equations 

valued at blocking free equilibrium point𝐸0is used. It is already shown that the BFE of 

model (2)-(4) is given by 𝐸0 = (𝜏 𝜈⁄ , 0,0). Now, the stability analysis of BFE is conducted 

and the results are presented in the form of theorems. 

Theorem 3.5 Let 𝐸0 is a BFE of the system of equations and all eigenvalues of Jacobian 

matrix at  𝐸0 are negative, then 𝐸0 is locally asymptotically stable if 𝑅0 = 𝜌(𝐹𝑉−1) < 1, 

but unstable if 𝑅0 > 1.  

Theorem 3.6 If (𝑉 − ℱ)  is non-singular M-matrix and (𝐹0 − 𝐹)𝐵 ≥ 0,  then the 

blocking free equilibrium is globally asymptotically stable for 𝜌(ℱ𝑉−1) < 1. 

Proof Following procedures done in [7,9] and the computations done above, it is 

observable that ℱ is non-negative and 𝑉 is non-singular M-matrix. Further, it is clear that 

(𝑉 − ℱ) is non-singular M-matrix for 𝜌(ℱ𝑉−1) < 1. Now, to show that the blocking-free 

equilibrium is globally asymptotically stable for 𝑅0 <  1, it is sufficient to show that F ≤ 

𝐹0 . From the total population  𝑁(𝑡) we have, 𝑁(𝑡) =  𝐹(𝑡) +  𝐸(𝑡) +  𝑆(𝑡) +  𝐴(𝑡) +
𝑅(𝑡) which satisfies 𝑁′(𝑡) =  𝜏 −  𝜈𝑁(𝑡), so that  𝑁(𝑡) =  𝐹0 − (𝐹0  − 𝑁(0))𝑒−𝜈𝑡, with 

𝐹0  = 𝜏 𝜈⁄ . If 𝑁(0)  ≤  𝐹0, then 𝐹(𝑡)  ≤  𝑁(𝑡)  ≤  𝐹0 for all time. If, on the other hand, 

𝑁(0)  > 𝐹0, then N(t) decays exponentially to 𝐹0, and either 𝐹(𝑡) →  𝐹0, or there is some 

time T after which 𝐹(𝑡) < 𝐹0 . Thus, the blocking free equilibrium is globally 

asymptotically stable for 𝜌(ℱ𝑉−1) < 1.                                                ◼ 

4. Results and discussion 

The blocking has high effect on the flow of the vehicles. The more blocked vehicles 

available on the road the more time usage it takes for the passengers and drivers on the 

road. Less blocked vehicles the more free flowing vehicles on the road. 

5. Conclusions       

In this study, modeling vehicles flow on the road is described with non-linear three 

dimensional system of differential equations. Moreover, existence, positivity and 

boundedness of the formulated model is verified to illustrate that the model is physically 
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meaningful and mathematically well posed. In particular, the stability analyses of the 

model were investigated using the basic reproduction number and Routh Hurwitz criterion. 

Blocking reduces number of freely flowing vehicles.  
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