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Abstract. In this paper, a meta-heuristic method, the Bat Algorithm, based on the echolo-
cation behavior of bats is used to determine the optimum service rate of a queue problem. A
finite buffer M/M/1 queue with N policy, multiple working vacations and Bernoulli schedule
vacation interruption is considered. Under the two customers’ impatient situations, balking
and reneging, the queue is studied using the matrix geometric method. Simulations show that
the proposed algorithm seems much superior to other algorithms.
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1. Introduction

Many queueing situations arise in real life wherein the customers are discouraged
by a long queue. due to which, they either decide not to join the queue (known
as balking) or depart after joining the queue without receiving service (reneging).
These impatient acts lead to potential losses in revenue to service providers. For
literatures related to impatience queue, see Haight [3], Ancker and Gafarian [2],
Abou-El-Ata and Shawky [1], etc.
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In working vacation model, the server after serving the queue exhaustively, goes
for a vacation, and serves during the vacation period generally with a slower rate,
see Servi and Finn [5], Wu and Takagi [9], Yue et al. [11]. Under the Bernoulli
schedule vacation interruption (BS VI), the server is allowed to interrupt the vaca-
tion with probability q, if there are customers in the queue at a service completion
epoch during WV, or continues the vacation with probability 1− q. Zhang and Shi
[12] first studied anM/M/1 queue with BS VI. Li et al. [6] studied a GI/M/1 queue
with start-up period, SWV and BS VI using embedded Markov chain technique.
Queueing models with N -policy consider the most common issue of controlling

services and to reduce the switching and set-up costs, Zhang and Xu [13]. Recently,
Vijaya Laxmi and Jyothsna [7, 8] have analyzed an impatient customer M/M/1
queue with BS VI and VI queue with N policy, respectively.
Motivated by such situations, we study an N policy BS VI queue with balking

and reneging that find practical applications in real life situations like hospitals,
manufacturing processes, data transmission protocols, etc. We intend to propose a
meta-heuristic method, namely, the Bat Algorithm (BA), based on the echolocation
behavior of bats. The capability of echolocation of microbats is fascinating as these
bats can find their prey and discriminate different types of insects even in complete
darkness. Such echolocation behavior of microbats can be formulated in such a
way that it can be associated with the objective function to be optimized, and
this make it possible to formulate new optimization algorithms. In the rest of this
paper, we will first outline the basic formulation of queue model and then discuss
the implementation of BA through a cost function.

2. Model description

Let us consider an M/M/1/K queue with balking, reneging and working vacations.
The capacity of the system is finiteK. The customers arrive one at a time according
to a Poisson process with rate λ. Let bn be the joining probability of an arriving
customer and 1−bn is the probability of balking, when there are n customers ahead
of him. Furthermore, we assume that

0 ⩽ bn+1 ⩽ bn < 1, 1 ⩽ n ⩽ K − 1, b0 = 1, bK = 0.
The server commences MWV of random length when the system empties. The

vacation times are exponentially distributed with rate ϕ. The service times during
regular busy period as well as during working vacation period are independent and
follow exponential distribution with parameters µ and η, respectively. At a service
completion epoch during WV, if there are N or more customers in the queue, the
server switches to regular busy period with probability q; otherwise, he remains in
WV with probability 1 − q, i.e, a BS VI occurs depending on the number in the
queue at a service completion instant during WV. The customers are served with
FCFS service rule.
During vacation, each customer in the queue waits a certain length of time for

service to begin before they leave the queue. This time T is assumed to follow
exponential distribution with mean 1/α. The average reneging rate is given by
r(n) = (n − 1)α, 1 ⩽ n ⩽ K, and r(n) = 0, n > K. A brief diagrammatic
representation of the model is shown in Figure 1.

3. Matrix-geometric solution

At steady-state, let P0,n, 0 ≤ n ≤ K, (P1,n, 1 ≤ n ≤ K) be the probability
that there are n customers in the system when the server is in working vacation
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Figure 1. Block diagram of the queue model.

(regular busy period). We use the matrix-geometric method to obtain the steady-
state probabilities. The transition rate matrix Q of the Markov chain has the
block-trigonal form:

Q =
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.

The rate matrix Q of this state process is similar to the quasi birth and death type
and its elements are given below:

B0 = −λb0, C0 = λb0, A1 = (η + α, µ)T

Bi =

[
−(λbi + η + iα) 0

0 −(λbi + µ)

]
, i = 1, 2, . . . N − 1,

=

[
−(λbi + ϕ+ η + iα) ϕ

0 −(λbi + µ)

]
, i = N,N + 1, . . .K,

Ci =

[
λbi 0
0 λbi

]
, i = 1, 2, . . .K − 1,

Ai =

[
iα+ η 0
0 µ

]
, i = 2, 3, . . . N,

=

[
iα+ q̄η qη
0 µ

]
, i = N + 1, N + 2, . . . ,K,

Let P denote the steady-state probability vector of Q. By partitioning the vector
P as P = {P0,P1, . . . ,PN,PN+1, . . . ,PK} where P0 = P0,0, Pi = (P0,i, P1,i) for
1 ⩽ i ⩽ K. The steady-state equations PQ = 0 are given by

P0B0 +P1A1 = 0, (1)

Pi−1Ci−1 +PiBi +Pi+1Ai+1 = 0, 1 ⩽ i ⩽ K − 1, (2)

PK−1CK−1 +PKBK = 0, (3)
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From equations (1), (2) and (3), we get the recursive relation

Pi = −Pi+1θi, i = 0,1, . . . ,K− 1, (4)

PK(BK − θK−1CK−1) = 0, (5)

with

θi = Ai+1(Bi − θi−1Ci−1)
−1,1 ⩽ i ⩽ K− 1, θ0 = A1B0

−1. (6)

Equation (5) determines PK up to a multiplicative constant. The other equation
(4) determines P0, P1, . . . ,PK−1, up to the same constant, which is uniquely

determined by the normalizing constant
∑K

i=0Pi e = 1, where e is a column vector
with each component equal to one. We develop a computer program to evaluate
Pi and thereby we get P0,i, 0 ⩽ i ⩽ K and P1,i, 1 ⩽ i ⩽ K.

4. Performance measures

Once the steady-state probabilities are known, one can obtain the various perfor-
mance measures like expected queue length (Lq), expected number of customers
in the system (Ls), probability that the server is busy with regular service (Pb),
probability that the server is in working vacation (Pwv), probability that the server
is idle (Pid), etc. They are given as

Lq =

N∑
n=1

(n− 1)(P0,n + P1,n); Ls =

N∑
n=1

n(P0,n + P1,n),

Pb =
N∑

n=1

P1,n ; Pwv =
N∑

n=0

P0,n ; Pid = P1,0 .

We can obtain the average balking rate (BR), the average reneging rate (RR) and
the average rate of loosing a customer (LR) because of impatience. They are given
by

BR =
1∑

i=0

N∑
n=1

[λ(1− bn)]Pi,n; RR =
1∑

i=0

N∑
n=1

(n− 1)αPi,n; LR = BR+RR.

5. Cost model

In practice, queueing managers are interested in minimizing operating cost or max-
imizing business profits. Under a given cost/revenue structure, we use the perfor-
mance measures to search for the cost minimization with respect to the service rate
µ by establishing an appropriate cost function. Following cost elements associated
with various activities are considered:

• Cµ and Cη are the service costs every unit time during the normal working level
and vacation period, respectively,

• Clq represent the unit time cost of every waiting customer,

• Clr be the cost per unit time when a customer balks or reneges.
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Using these cost elements, we can establish the expected net cost function F (µ)
as:

F (µ) = Cµ µ/N + Cηη + ClqLq + Clr LR.

The first two costs are incurred by the server, the third one by the customer’s
waiting and the fourth one by the customer loss. The cost minimization problem
can be mathematically describes as an unconstrained problem as follows:

F (µ∗) = min
µ

F (µ).

Bat algorithm

Modern optimization techniques are intuitively nature-inspired based on swarm in-
telligence and biological behavior of animals like ants, cuckoos, etc. Meta-heuristics
such as genetic algorithm, particle swarm optimization, ant colony optimization
are convenient algorithms. However, they have the drawback in dealing with the
complex multi-modal optimization problems. The bat algorithm is an intelligence
optimization algorithm inspired by the echolocation behavior of bats [10]. The
following three idealized rules are assumed:

• All bats use echolocation to sense distance, and they also know the difference
between food/prey and background barriers in some magical way.

• Bats fly randomly with velocity vi at position xi with a frequency fmin, varying
wavelength Λ and loudness A0 in search for prey. They can automatically adjust
the wavelength (or frequency) of their emitted pulses and adjust the rate of pulse
emission r ∈ [0, 1], depending on the proximity of their target.

• Although the loudness can vary in many ways, we assume that the loudness
varies from a large (positive) A0 to a minimum constant value Amin.

Each bat is associated with a velocity vti and a location xti at iteration t, in a d
dimensional search for solution space. Among all the bats, there exists a current
best solution x∗. Therefore, the above three rules can be translated into updating
equations for xti and velocities vti as

fi = fmin + (fmax − fmin)β, (7)

vti = vt−1
i + (xt−1

i − x∗)fi, (8)

xti = xt−1
i + vti , (9)

where β ∈ [0, 1] is a random vector drawn from a uniform distribution. We can
either use wavelengths or frequencies for implementation, we will use fmin = 0
and fmax depending on the domain size of the problem of interest. Initially, each
bat is randomly assigned a frequency which is drawn uniformly from [fmin, fmax].
For this reason, bat algorithm can be considered as a frequency-tuning algorithm
to provide a balanced combination of exploration and exploitation. The loudness
and pulse emission rates essentially provide a mechanism for automatic control and
auto zooming into the region with promising solutions.

Variations of loudness and pulse rates

In order to provide an effective mechanism to control the exploration and ex-
ploitation and switch to exploitation stage when necessary, we have to vary the
loudness Ai and the pulse emission rate ri during each iteration. Since the loud-
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ness usually decreases once a bat has found its prey, while the rate of pulse emission
increases, the loudness can be chosen as any value of convenience, between Amin

and Amax. The assumption Amin = 0 means that a bat has just found the prey
and temporarily stop emitting any sound. With these assumptions, we have

At+1
i = αAt

i, rt+1
i = r0i (1− e−γt), (10)

where α and γ are constants. For any 0 < α < 1 and γ > 0, we have

At
i → 0, rti → r0i , as t → ∞.

In the simplest case, we can use α = γ, and we have used α = γ = 0.5 to 0.9 in
our computations. Note that if we replace the variations of the frequency fi by a

Pseudo Code of the Bat Algorithm (BA)

Set-up the Objective function f(x)
Initialize the bat population xi, i = 1, 2, · · · , n and vi
Define pulse frequency fi at xi
Initialize pulse rates ri and the loudness Ai

while (t < Max number of iterations)
Generate new solutions by adjusting frequency, and
update velocities and locations/solutions [equations (7) to (9)]
if (rand > ri)

Select a solution among the best solutions
Generate a local solution around the selected best solution

end if
Generate a new solution by flying randomly
if (rand < Ai and f(xi) < f(x∗))

Accept the new solutions
Increase ri and reduce Ai

end if
Rank the bats and find the current best x∗

end while

random parameter and setting Ai = 0 and ri = 1, the bat algorithm becomes the
standard Particle Swarm Optimization (PSO).

6. Numerical results

Numerous computations have been performed to study the parameter effect on the
queueing model. However, a few results have been presented here in the form of
tables and graphs. The parameter are taken as K = 20, N = 3, λ = 2.2, µ =
2.75, η = 0.5, q = 0.5, unless otherwise specified. The balking function is taken as
bn = 1− (n/K2), 1 ≤ n ≤ K − 1, b0 = 1, bK = 0. For the cost analysis, we have
taken Clq = 25;Cµ = 18;Cη = 15;Clr = 10.
Figure 2 shows the graph of N versus average rate of loosing customers (LR)

which indicated that the lower α has no effect whereas as α increases there is a
definite increase in LR as is expected in practice. Figures 3, 4 and 5 depict variation
of Lq with regard to η for different α and q values. From Figures 2 and 3, we observe
that as for all values of ϕ and q, Lq decreases as η increases and becomes equal at
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Table 1. Optimum cost for different N and λ for α = 0.3, η = 0.4, ϕ = 1.2, K = 10.

(N,λ) (µ∗, F ∗(µ)) Ls BR RR LR
q = 1.0 (Complete priority for VI)

(3, 1.2) (2.33546, 36.4286) 1.23123 0.0147993 0.174298 0.189098
(3, 1.5) (2.78657, 43.6183) 1.43417 0.0216211 0.2216 0.243221
(3, 2.5) (4.12742, 66.8982) 2.06384 0.0541857 0.381341 0.435527

(5, 1.2) (2.83802, 30.2882) 1.1119 0.0133588 0.149333 0.162692
(5, 1.5) (3.36545, 36.3141) 1.3048 0.0196506 0.192878 0.212529
(5, 2.5) (4.90805, 56.1606) 1.90825 0.0499259 0.342775 0.392701

q = 0.5 (Partial priority for VI)

(3, 1.2) (2.32211, 36.8516) 1.25606 0.0150998 0.179656 0.194756
(3, 1.5) (2.76658, 44.2714) 1.46968 0.0221686 0.229824 0.251992

(5, 1.2) (2.82225, 30.7459) 1.13801 0.0136743 0.154811 0.168485
(5, 1.5) (3.34148, 37.0193) 1.34201 0.0202218 0.201298 0.22152
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Figure 2. N versus LR for different α.

η = µ = 2.75. Upon increasing η further a marginal reverse nature in the graph is
observed. In Figure 4, the lower the reneging rate, the larger is the queue length.
Thus a balancing factor of reneging is to maintained to keep the queue length at
an optimum level as shown in Figure 5.
Table 1 shows the optimum µ∗, F (µ∗) for different values of arrival rate λ, N

and vacation interruption parameter q. There is an obvious increase in µ∗ and
F (µ∗) with the increase of λ and N . However, the system incurs lesser cost and
services whenever there is a complete tendency to switch over to regular service
(q = 1). This is intuitively true, as services are rendered faster during regular
service periods.

Figure 7 shows the generations of BA versus cost and its faster convergence.
Figure 8 compares the number of iterations versus the µ value for different buffer
content K and the comparison is done with the standard optimization algorithm
quadratic fit search method (QFSM), see Rardin [4].
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Figure 3. η versus Lq for various ϕ.
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Figure 4. η versus Lq for different q.
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Figure 5. η versus Lq for various α.
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Figure 6. Impact of α on LR and Lq.
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Figure 7. Generations versus cost.

Figure 8. Number of iterations versus service rate µ.

7. Conclusions

In this paper, we have carried out an analysis of a finite buffer M/M/1 queue with
balking, reneging and multiple working vacations with Bernoulli-schedule vacation
interruptions. Some numerical results are presented in the form of tables and graphs
and cost minimization problem has been discussed using bat algorithm which is
a meta-heuristic optimization technique of nature-inspired swarm intelligence and
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biological behavior of animals like ants, cuckoos, etc. The bat algorithm is found to
be much efficient and has more faster convergence compared to other optimization
techniques.

References

[1] M. O. Abou-El-Ata and A. I. Shawky, The single-server Markovian overflow queue with balking,
reneging and an additional server for longer queues, Microelectronics Reliability, 32 (10) (1992)
1389-1394.

[2] C. J. Ancker and A. V. Gafarian, Some queueing problems with balking and reneging. I., Operations
Research, 11 (1) (1963) 88-100.

[3] F. A. Haight, Queueing with reneging, Metrika, 2 (1959) 186-197.
[4] R. L. Rardin, Optimization in Operations Research, Prentice Hall, New Jersy, (2008).
[5] L. D. Servi and S. G. Finn, M/M/1 queues with working vacations (M/M/1/WV), Performance

Evaluation, 50 (1) (2002) 41-52.
[6] L. Tao, Z. Liu and Z. Wang, The GI/M/1 queue with start-up period and single working vacation and

Bernoulli vacation interruption, Applied Mathematics and Computation, 218 (8) (2011) 4401–4413.
[7] P. Vijaya Laxmi, V. Goswami and K. Jyothsna, Optimization of balking and reneging queue with

vacation interruption under N -policy, Journal of Optimization, 2013 (2013), Article ID 683708, doi:
10.1155/2013/683708.

[8] P. Vijaya Laxmi and K. Jyothsna, Impatient customer queue with Bernoulli schedule vacation in-
terruption, Computers & Operations Research, 56 (2015) 1-7.

[9] D. Wu and H. Takagi, M/G/1 queue with multiple working vacations, Performance Evaluation,
63 (7) (2006) 654-681.

[10] X. S. Yang A new metaheuristic bat-inspired algorithm, in Nature Inspired Cooperative Strategies
for Optimization (NICSO 2010) (Eds. J. R. Gonzalez et al.), SCI 284 (2010) 65-74.

[11] D. Yue, Y. Zhang and W. Yue, Optimal performance analysis of an M/M/1/N queue system with
balking, reneging and server vacation, International Journal of Pure and Applied Mathematics,
28 (1) (2006) 101-115.

[12] H. Zhang and D. Shi, The M/M/1 queue with Bernoulli-schedule-controlled vacation and vacation
interruption, International Journal of Information and Management Sciences, 20 (4) (2008) 579-587.

[13] Z. Zhang and X. Xu, Analysis for the M/M/1 queue with multiple working vacation and N -policy,
International Journal of Information and Management Sciences, 19 (3) (2008) 495-506.


