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1. Introduction

A function f: I — R is said to be convex if the inequality

flr+ 1=ty <tf(x)+(1—1)f(y)

is valid for all z,y € I and ¢ € [0, 1]. If this inequality reverses, then f is said to
be concave on interval I # (). Convexity theory provides powerful principles and
techniques to study a wide class of problems in both pure and applied mathematics.
One of the most important inequalities in convex theory is the Hermite-Hadamard
integral inequality. This inequality is given below.
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Let f : I — R be a convex function. Then the following inequalities hold

f<a+b) /f );f()

for all a,b € I with a < b. Both inequalities hold in the reversed direction if the
function f is concave. The above inequalities was firstly discovered by the famous
scientist Charles Hermite. In recent years, readers can find more information in
[3, 512, 14-16] for different convex classes and related Hermite-Hadamard integral
inequalities.

Definition 1.1 [13]A function f : [0,b] — R is said to be m-convex for m € (0, 1]
if the inequality

flaz+m(l—a)y) < af(z) +m(l—a)f(y)

holds for all z,y € [0,b] and « € [0, 1].
Definition 1.2 [9]The function f : [0,b] — R, b > 0, is said to be (m1, mg)-convex,
if

f(matz +ma(1 = t)y) < matf(z) +ma(l —1t)f(y)

for all z,y € I, t € [0,1] and (m1,ms) € (0, 1]2.
Definition 1.3 [10]f : [0,b] — R, b > 0, is said to be («, m1, m2)-convex function,
if

f(mate +ma(1 = t)y) < mat®f(z) + ma(l — %) f(y)

for all z,y € I, t € [0,1] and (o, m1,m2) € (0, 1]3.
Definition 1.4 [1, 17]If a function f: I C R — (0, 00) satisfies

f O+ m(1 = A)y) < [f@)] [fy)]
for all z,y € I, A € [0,1], the function f is called logarithmically convex on I. If
this inequality reverses, the function f is called logarithmically concave on I.

Definition 1.5 [2]A function f : [0,b] — (0,00) is said to be m-logarithmically
convex if the inequality

f (b +m(1 = Hy) < [F@) [F)"0

holds for all z,y € [0,b], m € (0,1], and ¢ € [0,1].

The main purpose of this paper is to introduce the concept of (m1, mg)-arithmetic
geometrically (AG) or (my, ma)-logarithmically convex functions and then establish
some results connected with new inequalities similar to the Hermite-hadamard
integral inequality for these classes of functions.

2. Main results

In this section, we introduce a new concept, which is called (mq, m2)-AG convex
(logarithmicaly convex) functions and we give by setting some algebraic properties
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for the (m1, m2)-AG convex functions, as follows:

Definition 2.1 A function f : [0,b] — (0,00) is said to be (mj,mg)-arithmetic
geometrically convex (or logarithmically convex) if the inequality

f(myte +ma(1 —t)y) < [f(z)]™! [f(y)]ma(lft)

holds for all z,y € [0,b], (my1,m2) € (0,1]%, and ¢ € [0,1].

We discuss some connections between the class of the (m;j, msg)-arithmetic geo-
metrically convex functions and other classes of generalized convex functions.

Remark 2.2 When m; = mgy = 1, the (mj, mg)-arithmetic geometrically convex
(concave) function becomes a arithmetic geometrically convex (concave) function

in defined [1, 17].

Remark 2.3 When m; = 1, mg = m, the (mi, mg)-arithmetic geometrically con-
vex (concave) function becomes the m-arithmetic geometrically convex (concave)
function defined in [2].

Proposition 2.4 The function f : I C (0,00) = R is (m1,m2)-AG convez func-
tion on I if and only if Inof : (0,00) — R is (m1, mg)-conver function on the
interval (0, 00) .

Proof (=) Let f: 1 C (0,00) = R (my,m2)-AG convex function. Then, we have

(ln Of) (mlta + m2(1 — t)b) <ln ([f(a)]’ﬂht [f(b)]mz(l—t))
=mytf (Ina) +ma(l —t)f (Inb).
Therefore, the function Inof is (mq,ms)-convex function on the interval (0, c0) .

(<) Let Inof : (0,00) — R, (m1, ma)-convex function on the interval (0, 0c0).
Then, we get

(Inof) (mita +ma(l —t)b) < mitf (Ina) + mo(1 —t)f (Inbd)
e(lnof)(mlta—i—’rng(l—t)b) < emltf(lna)—l—mg(l—t)f(lnb)

which means that the function f(z) (mq,m2)-AG convex function on 1. [ |

Theorem 2.5 If f : [ — J is a (m1, mg)-conver and g : J — R is a (m1,m2)-
arithmetic geometrically convex function and nondecreasing, then go f : I — R is
a (m1,m2)-AG convex function.

Proof For a,be I and t € [0,1], we get

(9o f) (mita+ma(1 — 1)) = g (f (mita +ma(1 — t)b))
< g (maitf(a) +mo(l —1t)f(b))
< g (F(@)]™" g (f(a)))™0"

N

(g0 ) (@)™ [(go f) )]0

This completes the proof of theorem.

Theorem 2.6 Let b > 0 and f, : [a,b] — R be an arbitrary family of (m1, ma
arithmetic geometrically convexr functions and let f(x) = sup, fo(z). If J

~—
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{u € [a,b] : f(u) < oo} is nonempty, then J is an interval and f is an (my,ma)-
arithmetic geometrically convex function on J.

Proof Let t € [0,1] and a,b € J be arbitrary. Then

f(ta+ (1 —1t)b) =sup fu <m1t+m2 (1-1) >
@ mi ma
mat mao(1—t)
con( () )
a my mo
a mat b mo(1—t)
<[ )] [es G)
«a my «a meo
mit mo(1—t)
GG e
m mo

So, this shows simultaneously that J is an interval, since it contains every point
between any two of its points, and that f is an (mj, mg)-arithmetic geometrically
convex function on J. This completes the proof of theorem. |

Theorem 2.7 Let f:[0,0"] = R a finite function on -, n’% [0,0%], (m1,ma)-
arithmetic geometrically convex function with mi, mo € (0,1]. Then the function f

is bounded on any closed interval [a,b].

e {r(2)(2)

and x € [a,b] is an arbitrary point. Then there exist a ¢ € [0, 1] such that x =
ta + (1 — ¢)b. Thus, since mit + ma(l —t) < 1 we have

Proof Let

flz) = f(ta+ (1 —-1)b)
=f (mlt +m2(1 —t),ni)2>

MACINGC

<M.

Thus, the function f is upper bounded in interval [a,b]. Now we notice that any
z € [a,b] can be written as %2 + ¢ for [t| < 52, hence

()G )
(222 (1)
(%)

N

e
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In other word, we get

and similarly

hence, we get

mq =

N

; (%bw) G2 I A C D)
’

and since “TH’

This completes the proof of theorem.

3. Hermite-Hadamard inequality for (mi,m2)-AG convex function

17

+t is arbitrary in [a, b], the function f is also bounded below in [a, ] .

The goal of this section is to establish some inequalities of Hermite-Hadamard type
integral inequalities for (my, mo)-arithmetic geometrically convex functions. In this
section, we will denote by L [a, b] the space of (Lebesgue) integrable functions on

the interval [a, b] .

Theorem 3.1 Let f : [a,b] — R be an (my, mz)-arithmetic geometrically convex

function. If a < b and f € Lla,b], then the following Hermite-Hadamard type

integral inequalities hold:

a+b m? b m3 b
f< ;_ ><eXp{2(b—1a)/a lnf(mla;)dx—i-ﬂb_?a)/a lnf(mzy)dy}

1 mzb m m m m
/ f(@)de = L([f(@)]™, [fO)]™) < A(f(@)]™, [F(0)]™).

mab —mia Jp,,4

Proof Firstly, from the property of the (mq,mz)-arithmetic geometrically convex
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function of f, we write

f (a+ b) _ [t ma(L = )58+ (1= 1)+ matl
2 2

= (n;jl [ta + 2 —t)b} + % [tb + M —t)aD

myp M ma2

< [f (ta+m2(1—t)b>r [f <tb+ml(1—t)“>r.
mq mi mo mo mo mi

By taking the logarithm on the both sides of the above inequality we get

In f<a+b> gln{[f(t“ L )} ’ {f (tb + Moy >] ) }
mi mi mo mo mo mq
b b
—W;llnf<t—|—ml(1—t)m2)—|—ﬂ;2lnf(t—|—m2(1—t)m1)

Now, if we take integral in the last inequality with respect to ¢t € [0, 1] and choose
mix = ta + (1 —t)b and may = tb+ (1 — t)a, we deduce that

a+b mi a ma b
1f< >\ . / In f(thrml(l—t)m)dt
+/ 1nf<t+(1—t)ml)dt

2
my

m3 b
— 2(b—a)/ lnf(m1x)da:+(b_)/a In f(may)dy

2 b 2 b
f<a—2i-b> gexp{Q(;n_la)/a 1nf(m1x)d$+2(l;rn—2@/a lnf(mzy)dy}.

Secondly, by using the property of the (mq, mg)-arithmetic geometrically convex
function of f, if the variable is changed as u = [f(a)]™* [f(8)]™*~Y | then

1 m2b m m m m
/ f(@)de = L([f(a)]™, [f(O)]™) < A(f(@)]™, [F(O)]™).

mab —mia Jp, 4

This completes the proof of theorem. [ |
Corollary 3.2 If we take mi = mo =1 in Theorem 3.1, we get

a b
£ (950) < 2y [ s < LAL)€ A0S @O,

2 —aJ,

This inequality coincides with the inequality in [4].

4. Some new inequalities for (mi, m2)-AG convex functions

The main purpose of this section is to establish new estimates that refine Hermite-
Hadamard integral inequality for functions whose first derivative in absolute value,
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raised to a certain power which is greater than one, respectively at least one, is
(m1,m2)-AG convex function. Will use the following lemma to obtain our main
results.

Lemma 4.1 [10]Let f : I° C R — R be a differentiable mapping on I°, mia, mab €
I° with mya < mab. If f' € L[mya, mab|, then the following equality

1 mab mia + mob
mab — mia / flz)dz — f < 2

mia

1

— (mab — mra) VO LF' (mata + ma(1 — £)b) dt + /1@ S (mata 4+ ma(1— £)b) dt

2

holds for t € [0,1] and m1, ms € (0,1]%.

Theorem 4.2 Let f:I° CR — R be a differentiable mapping on I°, mia, mob €
I° with mia < mab and f' € L[mya,mab]. If |f'| is (m1,m2)-AG convex on the
interval [mya, mab], then the following equality

1 mab mia + mab
mgb—mla/ f(x)dx—f( 2 )'

mia

2 (mob — mya)

m iz A (S @™ 7O =& (@™ [F o))
(lnlf’(b)l *—In|f'(a)™) | |

holds for t € [0,1] and my,ms € (0, 1]2.

Proof Using Lemma 4.1 and the following inequality

| (mata +mo(1 —t)b)] < ’f’(a)‘mlt‘ ”mz (1-t)

I

we get

1 mab mia + mab
mob — mia / fle)de = f ( 2

mia

<

(mab — mia) VO LF (mata + ma(1 — t)b) dt + /11(16 —1)F (mata+ ma(1— 1)) dt]

1 1
< (m2b — mia) /0 t ’f’ (mita + ma(1 — t)b)‘ dt + / [t — 1] }f’ (mita 4+ ma(1 — t)b)’ dt]

< (mgb — mya) /0E t ’f’(a)’mlt |f’(b)’m2(1 = g +/ t—1/|f(a }mlt ’f/(b)}mz(l—t) dt]

= (mab — mya)

P @™ + 17 O™ =2/ [F @™ O™ ]
(In] f/(b)[™ — | f'(a)|™)?

= e A @ O - 6 (@™ o))

This completes the proof of theorem. [ |
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Corollary 4.3 Under the conditions of Theorem 4.2, If we take m; = mo = 1,
then we get the following inequality:

oo (520

b—a . ,
: (ln!f’(b2)|(—1n !)f’(a)\)2 [A(f @] [F®)) -G (| f(a

‘O]

Theorem 4.4 Let f:I° CR — R be a differentiable mapping on 1°, mia, mob €
I° with mia < mab and " € L[mia, mab], and let ¢ > 1. If |f'] is (m1,m2)-AG
convex on the interval [mia, mab], then the following equality

1 mab mia + mob
mgb—mla/ f(z)dz — f ( 2 ))

mia

e (L N[ (Gus@m w1
g( 2b 1 )<(p+1)2p+1) {( (ln‘f’(b”qmz ln|f’( )|qm1) )

N (!f’(a)qml ~ G @™ 17 >|qm2>>;
(7)™ ~ ] /(a) ™)

holds for t € [0,1] and m1,mo € (0,1)2, where % + % =1

Proof Using Lemma 4.1, Holder’s integral inequality and the inequality

|/ (mita + ma(1 = t)b)|" < | f/( |‘1m1t} ‘qmz -9
we obtain
1 et mia + mob
o | e g ()

<

(mab — mia) [/0 LF (mata + ma(1 — t)b) dt + /1(15 —1)F (mata+ ma(1— 1)) dt]

1
2

% 1
< (m2b — mia) l/o t ’f’ (mita + ma(1 — t)b)| dt + /l [t — 1 }f’ (mita+ ma(1 —t)b)| dt]
< (mab — mia) {(/()%Pdt) (/0 | (mata + ma(1 —t)b)|th>
1 i 1 %
+ < = 1|pdt) (/ |f (mita + ma(1 —t)b)\%lt) ]
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OIS dt)

. 1
+</ t—updt) (/ /(@)™ | £ )] t)dt>

ey (L (Gur@ e - ey
= ons =) (1) ( (n O™ — In /(@)™ )

N (!f’(a)q”“ — G @™ 1)) )i
(0 PO~ @™ )

where

1 1

: 1

dt= [ [t—1Pdt=— .
/0 / t=1] (p+1)2v+t

This completes the proof of theorem. [ |

Remark 4.5 Under the conditions of Theorem 4.4, if we take m; = mo = 1, then
we get the following inequality:

10 a+b 1 ,
S e (52)] < 0= ()
y <G<|f'<a>|q,rf'<b>m—|f'<b>|‘f>3+(Lf’(a)\q—G<rf'<a>|q,|f'<b>|‘0> 5
(In| f/(B)]" ~In |f/(a)|")’ (I |f/(®)]* = f'(a)]")*

Theorem 4.6 Let f: I° CR — R be a differentiable mapping on I°, mia, mob €
I° with mia < mab and ' € Lmia, mab], and let ¢ > 1. If |f'] is (m1,ma)-AG
convezr on the interval [mya, mab], then the foUnder the conditions of Theoreml-
lowing equality

1 mab mia + mab
mgb—mla/ f(x)dac—f( 1 2 2)'

mia
(mob — mia)
9=

X

B (0b.0.)+ B (0.

holds for t € [0,1] and m1, mo € (0,1]%, where % + % =1

Proof Using Lemma 4.1, well-known power mean inequality and the inequality

|f (mata +ma(1 — 0B)|7 < | £/(a)| ™" | /(b)Y
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we get

1 /mzb Fo)da — (mla;—mgb> ‘

mab —mia S,
< (t — 1) f (mata + ma(1 — t)b) dt]

(1)

m\»—‘\
2

(msb — mya) VO tf (mita + ma(1 — D)b) df +

% 1
< (mab — mya) /0 t’f’(mlta+m2(1—t)b)]dt+/l lt—1[|f (mlta+m2(1—t)b)ydt1

[ 1 1-2 1 p
< (mab — mya) </0 tdt) (/O t4]f' (mata + ma(1 — t)b)|? dt)
1 1-3 1 .
+ ( = 1|dt> (/ [t = 1|7 |f" (mata + ma(1 t)b)|th> ]
1 -4 1

< (mab — m1a) [(/O tdt) (/0 9] £ (@)™ |/ (B0 dt)
1 -7 1 . - i
+ (/ |t1|dt> (/ =17 | £ (a)| 7™ | £ ()] )dt>

A N 2
B @ h)+ (5) B (a,b,q,f)]

B (a,b.0.f) + By (a,b,q, f)]

gl
where
2 1 1
/ tdt:/ [t —1]dt = =
0 1 8
Bl (CL, b, q, f) L = /2 tq ‘f/(a)}qmnf f/(b)‘qm2(1_t) dt
0
1 t 1-t
By (a,b,q, f) : =ﬁ =107 f"(@)| "™ | £ ()]
where integrals can be calculated as above. -

Corollary 4.7 Under the conditions of Theorem 4.6, if we take m; = mg =1 |
then we get the following inequality:

b B \ .
) @ (agb)' <L=9 [Bf (a.b,q. f) + By (... /)
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Corollary 4.8 Under the conditions of Theorem 4.6, if we take ¢ = 1 , then we
get the following inequality:

i [ (45)

< (mgb —mya) [By (a,b,1, f) + B (a,b, 1, f)]

mob — mia ’ my NN , m T
B (ln’f’(b)(|m22_1n|j1f/()a)’m1)2 [A (|f (a)‘ "f (b)‘ )—G(‘f (a){ "f (b)‘ )}

This inequality coincides with the inequality in Theorem 4.2.

Corollary 4.9 Under the conditions of Theorem 4.6, if we take m; = mo =1 and
q =1, then we get the following inequality:

/f <“b>\

—(I)
<mu«n—mu«> 2 [4(1f(a

(ODIE

F'®1) =G (|f(a)

Corollary 4.10 Under the conditions of Theorem 4.6, we can also write the fol-
lowing inequality:

L [ eyt - g (M) )

mab —mia Jp .

<mw—mmPﬂwm“%NWWVmﬁﬂ®WWr
ST e [/ — In | f/(a) ™™

+mw—nmﬂGﬂfMWWJﬂ®Wm)\f(Wm}q
s I O ~W[P@™ ]

where G is the geometric mean.

Proof If we use the inequalities t < 1, [t — 1| < 1, [t — 1|7 < 1 and Y < 1 in the
the inequality (1), we obtain the des1red result. [ |

Corollary 4.11 If we take m; = mgy = 1 in the inequality (2), we obtain the
following inequality:

o)

cboa {lf’(b)lq — G ()], If’(b)Iq)]‘l’ Lo [G(f’(a)lq 1O = 1 (@) :
Csle In | f/(b)* = In[f"(a)[® gl In | f'(b)|* = In[f"(a)[*

Corollary 4.12 If we take m1 = mg = 1 and q = 1 in the inequality (2), we
obtain the following inequality:

[ i1 (50| <t

Fo)).

)
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Conclusions

In this article, the inequalities obtained with Holder and power-mean integral
inequalities are obtained (mj, ma)-logarithmically convex (AG-convex) functions.
This method can be applied to different classes of convexity.
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