

(m_1, m_2) -AG-Convex Functions and Some New Inequalities

M. Kadakal*

Department of Mathematics, Faculty of Arts and Sciences, Giresun University, 28200, Giresun, Turkey.

Abstract. In this manuscript, we introduce concepts of (m_1, m_2) -logarithmically convex (AGconvex) functions and establish some Hermite-Hadamard type inequalities of these classes of functions.

Received: 21 December 2019, Revised: 10 February 2020, Accepted: 01 March 2020.

Keywords: Convex function; (α, m) -Convex function; (m_1, m_2) -AG (logarithmically) convex function; Hermite-Hadamard integral inequality.

AMS Subject Classification: 26A51, 26D10, 26D15.

Index to information contained in this paper

- 1 Introduction
- 2 Main results
- 3 Hermite-Hadamard inequality for (m_1, m_2) -AG convex function
- 4 Some new inequalities for (m_1, m_2) -AG convex functions
- 5 Conclusions

1. Introduction

A function $f: I \to \mathbb{R}$ is said to be convex if the inequality

$$f\left(tx + (1-t)y\right) \leqslant tf\left(x\right) + (1-t)f\left(y\right)$$

is valid for all $x, y \in I$ and $t \in [0, 1]$. If this inequality reverses, then f is said to be concave on interval $I \neq \emptyset$. Convexity theory provides powerful principles and techniques to study a wide class of problems in both pure and applied mathematics. One of the most important inequalities in convex theory is the Hermite-Hadamard integral inequality. This inequality is given below.

 $^{{\}rm *Corresponding\ author.\ Email:\ mahirkadakal@gmail.com}$

Let $f: I \to \mathbb{R}$ be a convex function. Then the following inequalities hold

$$f\left(\frac{a+b}{2}\right) \leqslant \frac{1}{b-a} \int_{a}^{b} f(x)dx \leqslant \frac{f(a)+f(b)}{2}$$

for all $a, b \in I$ with a < b. Both inequalities hold in the reversed direction if the function f is concave. The above inequalities was firstly discovered by the famous scientist Charles Hermite. In recent years, readers can find more information in [3, 5-12, 14-16] for different convex classes and related Hermite-Hadamard integral inequalities.

Definition 1.1 [13]A function $f:[0,b]\to\mathbb{R}$ is said to be m-convex for $m\in(0,1]$ if the inequality

$$f(\alpha x + m(1 - \alpha)y) \le \alpha f(x) + m(1 - \alpha)f(y)$$

holds for all $x, y \in [0, b]$ and $\alpha \in [0, 1]$.

Definition 1.2 [9] The function $f:[0,b] \to \mathbb{R}$, b > 0, is said to be (m_1, m_2) -convex, if

$$f(m_1tx + m_2(1-t)y) \leqslant m_1tf(x) + m_2(1-t)f(y)$$

for all $x, y \in I$, $t \in [0, 1]$ and $(m_1, m_2) \in (0, 1]^2$.

Definition 1.3 $[10]f:[0,b]\to\mathbb{R}, b>0$, is said to be (α, m_1, m_2) -convex function, if

$$f(m_1tx + m_2(1-t)y) \le m_1t^{\alpha}f(x) + m_2(1-t^{\alpha})f(y)$$

for all $x, y \in I$, $t \in [0, 1]$ and $(\alpha, m_1, m_2) \in (0, 1]^3$.

Definition 1.4 [1, 17] If a function $f: I \subseteq \mathbb{R} \to (0, \infty)$ satisfies

$$f(\lambda x + m(1 - \lambda)y) \leq [f(x)]^{\lambda} [f(y)]^{1-\lambda}$$

for all $x, y \in I$, $\lambda \in [0, 1]$, the function f is called logarithmically convex on I. If this inequality reverses, the function f is called logarithmically concave on I.

Definition 1.5 [2]A function $f:[0,b]\to(0,\infty)$ is said to be *m*-logarithmically convex if the inequality

$$f(tx + m(1 - t)y) \le [f(x)]^t [f(y)]^{m(1-t)}$$

holds for all $x, y \in [0, b], m \in (0, 1], \text{ and } t \in [0, 1].$

The main purpose of this paper is to introduce the concept of (m_1, m_2) -arithmetic geometrically (AG) or (m_1, m_2) -logarithmically convex functions and then establish some results connected with new inequalities similar to the Hermite-hadamard integral inequality for these classes of functions.

2. Main results

In this section, we introduce a new concept, which is called (m_1, m_2) -AG convex (logarithmically convex) functions and we give by setting some algebraic properties

for the (m_1, m_2) -AG convex functions, as follows:

Definition 2.1 A function $f:[0,b] \to (0,\infty)$ is said to be (m_1,m_2) -arithmetic geometrically convex (or logarithmically convex) if the inequality

$$f(m_1tx + m_2(1-t)y) \leq [f(x)]^{m_1t} [f(y)]^{m_2(1-t)}$$

holds for all $x, y \in [0, b], (m_1, m_2) \in (0, 1]^2$, and $t \in [0, 1]$.

We discuss some connections between the class of the (m_1, m_2) -arithmetic geometrically convex functions and other classes of generalized convex functions.

Remark 2.2 When $m_1 = m_2 = 1$, the (m_1, m_2) -arithmetic geometrically convex (concave) function becomes a arithmetic geometrically convex (concave) function in defined [1, 17].

Remark 2.3 When $m_1 = 1$, $m_2 = m$, the (m_1, m_2) -arithmetic geometrically convex (concave) function becomes the m-arithmetic geometrically convex (concave) function defined in [2].

Proposition 2.4 The function $f: I \subset (0, \infty) \to \mathbb{R}$ is (m_1, m_2) -AG convex function on I if and only if $\ln \circ f: (0, \infty) \to \mathbb{R}$ is (m_1, m_2) -convex function on the interval $(0, \infty)$.

Proof (\Rightarrow) Let $f: I \subset (0, \infty) \to \mathbb{R}$ (m_1, m_2) -AG convex function. Then, we have

$$(\ln \circ f) (m_1 t a + m_2 (1 - t) b) \leq \ln \left([f(a)]^{m_1 t} [f(b)]^{m_2 (1 - t)} \right)$$
$$= m_1 t f (\ln a) + m_2 (1 - t) f (\ln b).$$

Therefore, the function $\ln \circ f$ is (m_1, m_2) -convex function on the interval $(0, \infty)$. (\Leftarrow) Let $\ln \circ f: (0, \infty) \to \mathbb{R}$, (m_1, m_2) -convex function on the interval $(0, \infty)$. Then, we get

$$(\ln \circ f) (m_1 t a + m_2 (1 - t) b) \leq m_1 t f (\ln a) + m_2 (1 - t) f (\ln b)$$
$$e^{(\ln \circ f)(m_1 t a + m_2 (1 - t) b)} \leq e^{m_1 t f (\ln a) + m_2 (1 - t) f (\ln b)}$$

which means that the function f(x) (m_1, m_2) -AG convex function on I.

Theorem 2.5 If $f: I \to J$ is a (m_1, m_2) -convex and $g: J \to \mathbb{R}$ is a (m_1, m_2) -arithmetic geometrically convex function and nondecreasing, then $g \circ f: I \to \mathbb{R}$ is a (m_1, m_2) -AG convex function.

Proof For $a, b \in I$ and $t \in [0, 1]$, we get

$$(g \circ f) (m_1 t a + m_2 (1 - t)b) = g (f (m_1 t a + m_2 (1 - t)b))$$

$$\leqslant g (m_1 t f (a) + m_2 (1 - t) f (b))$$

$$\leqslant [g (f (a))]^{m_1 t} [g (f (a))]^{m_2 (1 - t)}$$

$$\leqslant [(g \circ f) (a)]^{m_1 t} [(g \circ f) (b)]^{m_2 (1 - t)}.$$

This completes the proof of theorem.

Theorem 2.6 Let b > 0 and $f_{\alpha} : [a,b] \to \mathbb{R}$ be an arbitrary family of (m_1, m_2) -arithmetic geometrically convex functions and let $f(x) = \sup_{\alpha} f_{\alpha}(x)$. If $J = \sup_{\alpha} f_{\alpha}(x)$

 $\{u \in [a,b]: f(u) < \infty\}$ is nonempty, then J is an interval and f is an (m_1,m_2) -arithmetic geometrically convex function on J.

Proof Let $t \in [0,1]$ and $a,b \in J$ be arbitrary. Then

$$f(ta + (1 - t)b) = \sup_{\alpha} f_{\alpha} \left(m_{1}t \frac{a}{m_{1}} + m_{2}(1 - t) \frac{b}{m_{2}} \right)$$

$$\leq \sup_{\alpha} \left(\left[f_{\alpha} \left(\frac{a}{m_{1}} \right) \right]^{m_{1}t} \left[f_{\alpha} \left(\frac{b}{m_{2}} \right) \right]^{m_{2}(1 - t)} \right)$$

$$\leq \left[\sup_{\alpha} f_{\alpha} \left(\frac{a}{m_{1}} \right) \right]^{m_{1}t} \left[\sup_{\alpha} f_{\alpha} \left(\frac{b}{m_{2}} \right) \right]^{m_{2}(1 - t)}$$

$$= \left[f \left(\frac{a}{m_{1}} \right) \right]^{m_{1}t} \left[f \left(\frac{b}{m_{2}} \right) \right]^{m_{2}(1 - t)} < \infty.$$

So, this shows simultaneously that J is an interval, since it contains every point between any two of its points, and that f is an (m_1, m_2) -arithmetic geometrically convex function on J. This completes the proof of theorem.

Theorem 2.7 Let $f:[0,b^*] \to \mathbb{R}$ a finite function on $\frac{a}{m_1}, \frac{b}{m_2} \in [0,b^*]$, (m_1,m_2) -arithmetic geometrically convex function with $m_1, m_2 \in (0,1]$. Then the function f is bounded on any closed interval [a,b].

Proof Let

$$M = \max\left\{f\left(\frac{a}{m_1}\right), f\left(\frac{b}{m_2}\right)\right\},\,$$

and $x \in [a, b]$ is an arbitrary point. Then there exist a $t \in [0, 1]$ such that x = ta + (1 - t)b. Thus, since $m_1t + m_2(1 - t) \le 1$ we have

$$f(x) = f(ta + (1 - t)b)$$

$$= f\left(m_1 t \frac{a}{m_1} + m_2 (1 - t) \frac{b}{m_2}\right)$$

$$\leq \left[f\left(\frac{a}{m_1}\right)\right]^{m_1 t} \left[f\left(\frac{b}{m_2}\right)\right]^{m_2 (1 - t)}$$

$$\leq M.$$

Thus, the function f is upper bounded in interval [a, b]. Now we notice that any $z \in [a, b]$ can be written as $\frac{a+b}{2} + t$ for $|t| \leq \frac{b-a}{2}$, hence

$$f\left(\frac{a+b}{2}\right) = f\left(\frac{1}{2}\left(\frac{a+b}{2}+t\right) + \frac{1}{2}\left(\frac{a+b}{2}-t\right)\right)$$

$$= f\left(\frac{m_1}{2}\left(\frac{\frac{a+b}{2}+t}{m_1}\right) + \frac{m_2}{2}\left(\frac{\frac{a+b}{2}-t}{m_2}\right)\right)$$

$$\leqslant \left[f\left(\frac{\frac{a+b}{2}+t}{m_1}\right)\right]^{\frac{m_1}{2}} \left[f\left(\frac{\frac{a+b}{2}-t}{m_2}\right)\right]^{\frac{m_2}{2}}.$$

In other word, we get

$$f\left(\frac{\frac{a+b}{2}+t}{m_1}\right) \geqslant \left\{\frac{f\left(\frac{a+b}{2}\right)}{\left[f\left(\frac{\frac{a+b}{2}-t}{m_2}\right)\right]^{\frac{m_2}{2}}}\right\}^{\frac{2}{m_1}} \geqslant \frac{\left[f\left(\frac{a+b}{2}\right)\right]^{\frac{2}{m_1}}}{M^{\frac{m_2}{m_1}}}$$

and similarly

$$\begin{split} f\left(\frac{a+b}{2}\right) &= f\left(\frac{1}{2}\left(\frac{a+b}{2}+t\right) + \frac{1}{2}\left(\frac{a+b}{2}-t\right)\right) \\ &= f\left(\frac{m_2}{2}\left(\frac{\frac{a+b}{2}+t}{m_2}\right) + \frac{m_1}{2}\left(\frac{\frac{a+b}{2}-t}{m_1}\right)\right) \\ &\leqslant \left[f\left(\frac{\frac{a+b}{2}+t}{m_2}\right)\right]^{\frac{m_2}{2}}\left[f\left(\frac{\frac{a+b}{2}-t}{m_1}\right)\right]^{\frac{m_1}{2}}, \end{split}$$

hence, we get

$$f\left(\frac{\frac{a+b}{2}+t}{m_2}\right) \geqslant \left\{\frac{f\left(\frac{a+b}{2}\right)}{\left[f\left(\frac{\frac{a+b}{2}-t}{m_1}\right)\right]^{\frac{m_1}{2}}}\right\}^{\frac{2}{m_2}} \geqslant \frac{\left[f\left(\frac{a+b}{2}\right)\right]^{\frac{2}{m_2}}}{M^{\frac{m_1}{m_2}}}$$

and since $\frac{a+b}{2}+t$ is arbitrary in [a,b], the function f is also bounded below in [a,b]. This completes the proof of theorem.

3. Hermite-Hadamard inequality for (m_1, m_2) -AG convex function

The goal of this section is to establish some inequalities of Hermite-Hadamard type integral inequalities for (m_1, m_2) -arithmetic geometrically convex functions. In this section, we will denote by L[a, b] the space of (Lebesgue) integrable functions on the interval [a, b].

Theorem 3.1 Let $f:[a,b] \to \mathbb{R}$ be an (m_1,m_2) -arithmetic geometrically convex function. If a < b and $f \in L[a,b]$, then the following Hermite-Hadamard type integral inequalities hold:

$$f\left(\frac{a+b}{2}\right) \leqslant \exp\left\{\frac{m_1^2}{2(b-a)}\int_a^b \ln f(m_1 x) dx + \frac{m_2^2}{2(b-a)}\int_a^b \ln f(m_2 y) dy\right\}$$

and

$$\frac{1}{m_2b-m_1a}\int_{m_1a}^{m_2b}f(x)dx = L\left([f(a)]^{m_1}\,,[f(b)]^{m_2}\right) \leqslant A\left([f(a)]^{m_1}\,,[f(b)]^{m_2}\right).$$

Proof Firstly, from the property of the (m_1, m_2) -arithmetic geometrically convex

function of f, we write

$$f\left(\frac{a+b}{2}\right) = f\left(\frac{\left[m_1t\frac{a}{m_1} + m_2(1-t)\frac{b}{m_2}\right] + \left[m_1(1-t)\frac{a}{m_1} + m_2t\frac{b}{m_2}\right]}{2}\right)$$

$$= f\left(\frac{m_1}{2}\left[t\frac{a}{m_1} + \frac{m_2}{m_1}(1-t)\frac{b}{m_2}\right] + \frac{m_2}{2}\left[t\frac{b}{m_2} + \frac{m_1}{m_2}(1-t)\frac{a}{m_1}\right]\right)$$

$$\leqslant \left[f\left(t\frac{a}{m_1} + \frac{m_2}{m_1}(1-t)\frac{b}{m_2}\right)\right]^{\frac{m_1}{2}}\left[f\left(t\frac{b}{m_2} + \frac{m_1}{m_2}(1-t)\frac{a}{m_1}\right)\right]^{\frac{m_2}{2}}.$$

By taking the logarithm on the both sides of the above inequality we get

$$\ln f\left(\frac{a+b}{2}\right) \leqslant \ln \left\{ \left[f\left(t\frac{a}{m_1} + \frac{m_2}{m_1}(1-t)\frac{b}{m_2}\right) \right]^{\frac{m_1}{2}} \left[f\left(t\frac{b}{m_2} + \frac{m_1}{m_2}(1-t)\frac{a}{m_1}\right) \right]^{\frac{m_2}{2}} \right\}$$

$$= \frac{m_1}{2} \ln f\left(t\frac{a}{m_1} + \frac{m_2}{m_1}(1-t)\frac{b}{m_2}\right) + \frac{m_2}{2} \ln f\left(t\frac{b}{m_2} + \frac{m_1}{m_2}(1-t)\frac{a}{m_1}\right).$$

Now, if we take integral in the last inequality with respect to $t \in [0, 1]$ and choose $m_1x = ta + (1-t)b$ and $m_2y = tb + (1-t)a$, we deduce that

$$\ln f\left(\frac{a+b}{2}\right) \leqslant \frac{m_1}{2} \int_0^1 \ln f\left(t\frac{a}{m_1} + \frac{m_2}{m_1}(1-t)\frac{b}{m_2}\right) dt$$

$$+ \frac{m_2}{2} \int_0^1 \ln f\left(t\frac{b}{m_2} + \frac{m_1}{m_2}(1-t)\frac{a}{m_1}\right) dt$$

$$= \frac{m_1^2}{2(b-a)} \int_a^b \ln f(m_1x) dx + \frac{m_2^2}{2(b-a)} \int_a^b \ln f(m_2y) dy$$

$$f\left(\frac{a+b}{2}\right) \leqslant \exp\left\{\frac{m_1^2}{2(b-a)} \int_a^b \ln f(m_1x) dx + \frac{m_2^2}{2(b-a)} \int_a^b \ln f(m_2y) dy\right\}.$$

Secondly, by using the property of the (m_1, m_2) -arithmetic geometrically convex function of f, if the variable is changed as $u = [f(a)]^{m_1 t} [f(b)]^{m_2(1-t)}$, then

$$\frac{1}{m_2 b - m_1 a} \int_{m_1 a}^{m_2 b} f(x) dx = L\left([f(a)]^{m_1}, [f(b)]^{m_2} \right) \leqslant A\left([f(a)]^{m_1}, [f(b)]^{m_2} \right).$$

This completes the proof of theorem.

Corollary 3.2 If we take $m_1 = m_2 = 1$ in Theorem 3.1, we get

$$\ln f\left(\frac{a+b}{2}\right) \leqslant \frac{1}{b-a} \int_a^b \ln f(x) dx \leqslant L\left(\left[f(a)\right], \left[f(b)\right]\right) \leqslant A\left(\left[f(a)\right], \left[f(b)\right]\right).$$

This inequality coincides with the inequality in [4].

4. Some new inequalities for (m_1, m_2) -AG convex functions

The main purpose of this section is to establish new estimates that refine Hermite-Hadamard integral inequality for functions whose first derivative in absolute value, raised to a certain power which is greater than one, respectively at least one, is (m_1, m_2) -AG convex function. Will use the following lemma to obtain our main results.

Lemma 4.1 [10] Let $f: I^{\circ} \subseteq \mathbb{R} \to \mathbb{R}$ be a differentiable mapping on I° , $m_1 a, m_2 b \in I^{\circ}$ with $m_1 a < m_2 b$. If $f' \in L[m_1 a, m_2 b]$, then the following equality

$$\frac{1}{m_2b - m_1a} \int_{m_1a}^{m_2b} f(x)dx - f\left(\frac{m_1a + m_2b}{2}\right)
= (m_2b - m_1a) \left[\int_0^{\frac{1}{2}} tf'(m_1ta + m_2(1-t)b) dt + \int_{\frac{1}{2}}^1 (t-1)f'(m_1ta + m_2(1-t)b) dt \right]$$

holds for $t \in [0,1]$ and $m_1, m_2 \in (0,1]^2$.

Theorem 4.2 Let $f: I^{\circ} \subseteq \mathbb{R} \to \mathbb{R}$ be a differentiable mapping on I° , $m_1 a, m_2 b \in I^{\circ}$ with $m_1 a < m_2 b$ and $f' \in L[m_1 a, m_2 b]$. If |f'| is (m_1, m_2) -AG convex on the interval $[m_1 a, m_2 b]$, then the following equality

$$\left| \frac{1}{m_{2}b - m_{1}a} \int_{m_{1}a}^{m_{2}b} f(x)dx - f\left(\frac{m_{1}a + m_{2}b}{2}\right) \right|$$

$$\leq \frac{2(m_{2}b - m_{1}a)}{\left(\ln|f'(b)|^{m_{2}} - \ln|f'(a)|^{m_{1}}\right)^{2}} \left[A\left(|f'(a)|^{m_{1}}, |f'(b)|^{m_{2}}\right) - G\left(|f'(a)|^{m_{1}}, |f'(b)|^{m_{2}}\right) \right]$$

holds for $t \in [0,1]$ and $m_1, m_2 \in (0,1]^2$.

Proof Using Lemma 4.1 and the following inequality

$$|f'(m_1ta + m_2(1-t)b)| \le |f'(a)|^{m_1t} |f'(b)|^{m_2(1-t)}$$

we get

$$\left| \frac{1}{m_{2}b - m_{1}a} \int_{m_{1}a}^{m_{2}b} f(x)dx - f\left(\frac{m_{1}a + m_{2}b}{2}\right) \right|$$

$$\leq \left| (m_{2}b - m_{1}a) \left[\int_{0}^{\frac{1}{2}} tf'(m_{1}ta + m_{2}(1-t)b) dt + \int_{\frac{1}{2}}^{1} (t-1)f'(m_{1}ta + m_{2}(1-t)b) dt \right] \right|$$

$$\leq (m_{2}b - m_{1}a) \left[\int_{0}^{\frac{1}{2}} t \left| f'(m_{1}ta + m_{2}(1-t)b) \right| dt + \int_{\frac{1}{2}}^{1} |t-1| \left| f'(m_{1}ta + m_{2}(1-t)b) \right| dt \right]$$

$$\leq (m_{2}b - m_{1}a) \left[\int_{0}^{\frac{1}{2}} t \left| f'(a) \right|^{m_{1}t} \left| f'(b) \right|^{m_{2}(1-t)} dt + \int_{\frac{1}{2}}^{1} |t-1| \left| f'(a) \right|^{m_{1}t} \left| f'(b) \right|^{m_{2}(1-t)} dt \right]$$

$$= (m_{2}b - m_{1}a) \left[\frac{|f'(a)|^{m_{1}} + |f'(b)|^{m_{2}} - 2\sqrt{|f'(a)|^{m_{1}}|f'(b)|^{m_{2}}}}{(\ln|f'(b)|^{m_{2}} - \ln|f'(a)|^{m_{1}})^{2}} \right]$$

$$= \frac{2(m_{2}b - m_{1}a)}{(\ln|f'(b)|^{m_{2}} - \ln|f'(a)|^{m_{1}})^{2}} \left[A\left(\left| f'(a) \right|^{m_{1}}, \left| f'(b) \right|^{m_{2}} \right) - G\left(\left| f'(a) \right|^{m_{1}}, \left| f'(b) \right|^{m_{2}} \right) \right].$$

This completes the proof of theorem.

Corollary 4.3 Under the conditions of Theorem 4.2, If we take $m_1 = m_2 = 1$, then we get the following inequality:

$$\left| \frac{1}{b-a} \int_{a}^{b} f(x) dx - f\left(\frac{a+b}{2}\right) \right|$$

$$\leq \frac{2(b-a)}{\left(\ln|f'(b)| - \ln|f'(a)|\right)^{2}} \left[A\left(\left|f'(a)\right|, \left|f'(b)\right|\right) - G\left(\left|f'(a)\right|, \left|f'(b)\right|\right) \right].$$

Theorem 4.4 Let $f: I^{\circ} \subseteq \mathbb{R} \to \mathbb{R}$ be a differentiable mapping on I° , $m_1 a, m_2 b \in I^{\circ}$ with $m_1 a < m_2 b$ and $f' \in L[m_1 a, m_2 b]$, and let q > 1. If |f'| is (m_1, m_2) -AG convex on the interval $[m_1 a, m_2 b]$, then the following equality

$$\left| \frac{1}{m_{2}b - m_{1}a} \int_{m_{1}a}^{m_{2}b} f(x)dx - f\left(\frac{m_{1}a + m_{2}b}{2}\right) \right|$$

$$\leq (m_{2}b - m_{1}a) \left(\frac{1}{(p+1)2^{p+1}} \right)^{\frac{1}{p}} \left\{ \left(\frac{G(|f'(a)|^{qm_{1}}, |f'(b)|^{qm_{2}}) - |f'(b)|^{qm_{2}}}{(\ln|f'(b)|^{qm_{2}} - \ln|f'(a)|^{qm_{1}})^{2}} \right)^{\frac{1}{q}} \right\}$$

$$+ \left(\frac{|f'(a)|^{qm_{1}} - G(|f'(a)|^{qm_{1}}, |f'(b)|^{qm_{2}})}{(\ln|f'(b)|^{qm_{2}} - \ln|f'(a)|^{qm_{1}})^{2}} \right)^{\frac{1}{q}} \right\}$$

holds for $t \in [0,1]$ and $m_1, m_2 \in (0,1]^2$, where $\frac{1}{p} + \frac{1}{q} = 1$.

Proof Using Lemma 4.1, Hölder's integral inequality and the inequality

$$|f'(m_1ta + m_2(1-t)b)|^q \le |f'(a)|^{qm_1t} |f'(b)|^{qm_2(1-t)}$$

we obtain

$$\left| \frac{1}{m_{2}b - m_{1}a} \int_{m_{1}a}^{m_{2}b} f(x)dx - f\left(\frac{m_{1}a + m_{2}b}{2}\right) \right|$$

$$\leq \left| (m_{2}b - m_{1}a) \left[\int_{0}^{\frac{1}{2}} tf'\left(m_{1}ta + m_{2}(1 - t)b\right)dt + \int_{\frac{1}{2}}^{1} (t - 1)f'\left(m_{1}ta + m_{2}(1 - t)b\right)dt \right] \right|$$

$$\leq (m_{2}b - m_{1}a) \left[\int_{0}^{\frac{1}{2}} t\left| f'\left(m_{1}ta + m_{2}(1 - t)b\right)\right|dt + \int_{\frac{1}{2}}^{1} |t - 1|\left| f'\left(m_{1}ta + m_{2}(1 - t)b\right)\right|dt \right]$$

$$\leq (m_{2}b - m_{1}a) \left[\left(\int_{0}^{\frac{1}{2}} t^{p}dt \right)^{\frac{1}{p}} \left(\int_{0}^{\frac{1}{2}} \left| f'\left(m_{1}ta + m_{2}(1 - t)b\right)\right|^{q}dt \right)^{\frac{1}{q}}$$

$$+ \left(\int_{\frac{1}{2}}^{1} |t - 1|^{p}dt \right)^{\frac{1}{p}} \left(\int_{\frac{1}{2}}^{1} \left| f'\left(m_{1}ta + m_{2}(1 - t)b\right)\right|^{q}dt \right)^{\frac{1}{q}}$$

$$\leqslant (m_{2}b - m_{1}a) \left[\left(\int_{0}^{\frac{1}{2}} t^{p} dt \right)^{\frac{1}{p}} \left(\int_{0}^{\frac{1}{2}} |f'(a)|^{qm_{1}t} |f'(b)|^{qm_{2}(1-t)} dt \right)^{\frac{1}{q}} \right. \\
+ \left(\int_{\frac{1}{2}}^{1} |t-1|^{p} dt \right)^{\frac{1}{p}} \left(\int_{\frac{1}{2}}^{1} |f'(a)|^{qm_{1}t} |f'(b)|^{qm_{2}(1-t)} dt \right)^{\frac{1}{q}} \right] \\
= (m_{2}b - m_{1}a) \left(\frac{1}{(p+1)2^{p+1}} \right)^{\frac{1}{p}} \left\{ \left(\frac{G(|f'(a)|^{qm_{1}}, |f'(b)|^{qm_{2}}) - |f'(b)|^{qm_{2}}}{(\ln|f'(b)|^{qm_{2}} - \ln|f'(a)|^{qm_{1}})^{2}} \right)^{\frac{1}{q}} \right. \\
+ \left(\frac{|f'(a)|^{qm_{1}} - G(|f'(a)|^{qm_{1}}, |f'(b)|^{qm_{2}})}{(\ln|f'(b)|^{qm_{2}} - \ln|f'(a)|^{qm_{1}})^{2}} \right)^{\frac{1}{q}} \right\},$$

where

$$\int_0^{\frac{1}{2}} t^p dt = \int_{\frac{1}{2}}^1 |t - 1|^p dt = \frac{1}{(p+1)2^{p+1}}.$$

This completes the proof of theorem.

Remark 4.5 Under the conditions of Theorem 4.4, if we take $m_1 = m_2 = 1$, then we get the following inequality:

$$\left| \frac{1}{b-a} \int_{a}^{b} f(x) dx - f\left(\frac{a+b}{2}\right) \right| \leqslant (b-a) \left(\frac{1}{(p+1)2^{p+1}}\right)^{\frac{1}{p}}$$

$$\times \left\{ \left(\frac{G\left(|f'(a)|^{q}, |f'(b)|^{q}\right) - |f'(b)|^{q}}{(\ln|f'(b)|^{q} - \ln|f'(a)|^{q})^{2}}\right)^{\frac{1}{q}} + \left(\frac{|f'(a)|^{q} - G\left(|f'(a)|^{q}, |f'(b)|^{q}\right)}{(\ln|f'(b)|^{q} - \ln|f'(a)|^{q})^{2}}\right)^{\frac{1}{q}} \right\}$$

Theorem 4.6 Let $f: I^{\circ} \subseteq \mathbb{R} \to \mathbb{R}$ be a differentiable mapping on I° , $m_1a, m_2b \in I^{\circ}$ with $m_1a < m_2b$ and $f' \in L[m_1a, m_2b]$, and let $q \geqslant 1$. If |f'| is (m_1, m_2) -AG convex on the interval $[m_1a, m_2b]$, then the foUnder the conditions of Theoreml-lowing equality

$$\left| \frac{1}{m_2 b - m_1 a} \int_{m_1 a}^{m_2 b} f(x) dx - f\left(\frac{m_1 a + m_2 b}{2}\right) \right|$$

$$\leq \frac{(m_2 b - m_1 a)}{2^{1 - \frac{1}{q}}} \left[B_1^{\frac{1}{q}}(a, b, q, f) + B_2^{\frac{1}{q}}(a, b, q, f) \right]$$

holds for $t \in [0,1]$ and $m_1, m_2 \in (0,1]^2$, where $\frac{1}{p} + \frac{1}{q} = 1$.

Proof Using Lemma 4.1, well-known power mean inequality and the inequality

$$|f'(m_1ta + m_2(1-t)b)|^q \le |f'(a)|^{qm_1t} |f'(b)|^{qm_2(1-t)},$$

we get

$$\left| \frac{1}{m_{2}b - m_{1}a} \int_{m_{1}a}^{m_{2}b} f(x)dx - f\left(\frac{m_{1}a + m_{2}b}{2}\right) \right|$$

$$\leq \left| (m_{2}b - m_{1}a) \left[\int_{0}^{\frac{1}{2}} tf'\left(m_{1}ta + m_{2}(1-t)b\right)dt + \int_{\frac{1}{2}}^{1} (t-1)f'\left(m_{1}ta + m_{2}(1-t)b\right)dt \right] \right|$$
(1)

$$\leq (m_{2}b - m_{1}a) \left[\int_{0}^{\frac{1}{2}} t \left| f'(m_{1}ta + m_{2}(1 - t)b) \right| dt + \int_{\frac{1}{2}}^{1} \left| t - 1 \right| \left| f'(m_{1}ta + m_{2}(1 - t)b) \right| dt \right]$$

$$\leq (m_{2}b - m_{1}a) \left[\left(\int_{0}^{\frac{1}{2}} t dt \right)^{1 - \frac{1}{q}} \left(\int_{0}^{\frac{1}{2}} t^{q} \left| f'(m_{1}ta + m_{2}(1 - t)b) \right|^{q} dt \right)^{\frac{1}{q}} \right]$$

$$+ \left(\int_{\frac{1}{2}}^{1} \left| t - 1 \right| dt \right)^{1 - \frac{1}{q}} \left(\int_{\frac{1}{2}}^{1} \left| t - 1 \right|^{q} \left| f'(m_{1}ta + m_{2}(1 - t)b) \right|^{q} dt \right)^{\frac{1}{q}} \right]$$

$$\leq (m_{2}b - m_{1}a) \left[\left(\int_{0}^{\frac{1}{2}} t dt \right)^{1 - \frac{1}{q}} \left(\int_{0}^{\frac{1}{2}} t^{q} \left| f'(a) \right|^{qm_{1}t} \left| f'(b) \right|^{qm_{2}(1 - t)} dt \right)^{\frac{1}{q}}$$

$$+ \left(\int_{\frac{1}{2}}^{1} \left| t - 1 \right| dt \right)^{1 - \frac{1}{q}} \left(\int_{\frac{1}{2}}^{1} \left| t - 1 \right|^{q} \left| f'(a) \right|^{qm_{1}t} \left| f'(b) \right|^{qm_{2}(1 - t)} dt \right)^{\frac{1}{q}}$$

$$\leq (m_{2}b - m_{1}a) \left[\left(\frac{1}{8} \right)^{1 - \frac{1}{q}} B_{1}^{\frac{1}{q}} (a, b, q, f) + \left(\frac{1}{8} \right)^{1 - \frac{1}{q}} B_{2}^{\frac{1}{q}} (a, b, q, f) \right]$$

$$= \frac{(m_{2}b - m_{1}a)}{8^{1 - \frac{1}{q}}} \left[B_{1}^{\frac{1}{q}} (a, b, q, f) + B_{2}^{\frac{1}{q}} (a, b, q, f) \right]$$

where

$$\int_{0}^{\frac{1}{2}} t dt = \int_{\frac{1}{2}}^{1} |t - 1| dt = \frac{1}{8}$$

$$B_{1}(a, b, q, f) := \int_{0}^{\frac{1}{2}} t^{q} |f'(a)|^{qm_{1}t} |f'(b)|^{qm_{2}(1-t)} dt$$

$$B_{2}(a, b, q, f) := \int_{\frac{1}{2}}^{1} |t - 1|^{q} |f'(a)|^{qm_{1}t} |f'(b)|^{qm_{2}(1-t)} dt$$

where integrals can be calculated as above.

Corollary 4.7 Under the conditions of Theorem 4.6, if we take $m_1 = m_2 = 1$, then we get the following inequality:

$$\left|\frac{1}{b-a}\int_a^b f(x)dx - f\left(\frac{a+b}{2}\right)\right| \leqslant \frac{(b-a)}{8^{1-\frac{1}{q}}}\left[B_1^{\frac{1}{q}}\left(a,b,q,f\right) + B_2^{\frac{1}{q}}\left(a,b,q,f\right)\right]$$

Corollary 4.8 Under the conditions of Theorem 4.6, if we take q = 1, then we get the following inequality:

$$\left| \frac{1}{b-a} \int_{a}^{b} f(x) dx - f\left(\frac{a+b}{2}\right) \right|$$

$$\leq (m_{2}b - m_{1}a) \left[B_{1}(a,b,1,f) + B_{2}(a,b,1,f) \right]$$

$$= \frac{2(m_{2}b - m_{1}a)}{(\ln|f'(b)|^{m_{2}} - \ln|f'(a)|^{m_{1}})^{2}} \left[A\left(|f'(a)|^{m_{1}}, |f'(b)|^{m_{2}} \right) - G\left(|f'(a)|^{m_{1}}, |f'(b)|^{m_{2}} \right) \right]$$

This inequality coincides with the inequality in Theorem 4.2.

Corollary 4.9 Under the conditions of Theorem 4.6, if we take $m_1 = m_2 = 1$ and q = 1, then we get the following inequality:

$$\left| \frac{1}{b-a} \int_{a}^{b} f(x) dx - f\left(\frac{a+b}{2}\right) \right|$$

$$\leq \frac{2(b-a)}{\left(\ln|f'(b)| - \ln|f'(a)|\right)^{2}} \left[A\left(\left|f'(a)\right|, \left|f'(b)\right|\right) - G\left(\left|f'(a)\right|, \left|f'(b)\right|\right) \right].$$

Corollary 4.10 Under the conditions of Theorem 4.6, we can also write the following inequality:

$$\left| \frac{1}{m_{2}b - m_{1}a} \int_{m_{1}a}^{m_{2}b} f(x)dx - f\left(\frac{m_{1}a + m_{2}b}{2}\right) \right|$$

$$\leq \frac{m_{2}b - m_{1}a}{8^{1 - \frac{1}{q}}} \left[\frac{|f'(b)|^{qm_{2}} - G(|f'(a)|^{qm_{1}}, |f'(b)|^{qm_{2}})}{\ln|f'(b)|^{qm_{2}} - \ln|f'(a)|^{qm_{1}}} \right]^{\frac{1}{q}}$$

$$+ \frac{m_{2}b - m_{1}a}{8^{1 - \frac{1}{q}}} \left[\frac{G(|f'(a)|^{qm_{1}}, |f'(b)|^{qm_{2}}) - |f'(a)|^{qm_{1}}}{\ln|f'(b)|^{qm_{2}} - \ln|f'(a)|^{qm_{1}}} \right]^{\frac{1}{q}},$$

$$(2)$$

where G is the geometric mean.

Proof If we use the inequalities $t \le 1$, $|t-1| \le 1$, $|t-1|^q \le 1$ and $t^q \le 1$ in the the inequality (1), we obtain the desired result.

Corollary 4.11 If we take $m_1 = m_2 = 1$ in the inequality (2), we obtain the following inequality:

$$\left| \frac{1}{b-a} \int_{a}^{b} f(x) dx - f\left(\frac{a+b}{2}\right) \right| \\ \leq \frac{b-a}{8^{1-\frac{1}{q}}} \left[\frac{|f'(b)|^{q} - G\left(|f'(a)|^{q}, |f'(b)|^{q}\right)}{\ln|f'(b)|^{q} - \ln|f'(a)|^{q}} \right]^{\frac{1}{q}} + \frac{b-a}{8^{1-\frac{1}{q}}} \left[\frac{G\left(|f'(a)|^{q}, |f'(b)|^{q}\right) - |f'(a)|^{q}}{\ln|f'(b)|^{q} - \ln|f'(a)|^{q}} \right]^{\frac{1}{q}}.$$

Corollary 4.12 If we take $m_1 = m_2 = 1$ and q = 1 in the inequality (2), we obtain the following inequality:

$$\left| \frac{1}{b-a} \int_{a}^{b} f(x) dx - f\left(\frac{a+b}{2}\right) \right| \leqslant \frac{2(b-a)}{\ln|f'(b)| - \ln|f'(a)|} A\left(\left|f'(a)\right|, \left|f'(b)\right|\right).$$

5. Conclusions

In this article, the inequalities obtained with Hölder and power-mean integral inequalities are obtained (m_1, m_2) -logarithmically convex (AG-convex) functions. This method can be applied to different classes of convexity.

References

- [1] A. O. Akdemir and M. Tunç, On some integral inequalities for s-logarithmically convex functions and their applications, arXiv:1212.1584 (2012).
- [2] R. F. Bai, F. Qi and B. Y. Xi, Hermite-Hadamard type inequalities for the m- and (α, m) logarithmically convex functions, Filomat, **27** (1) (2013), 1-7.
- [3] M. K. Bakula, M. E. Özdemir and J. Pečarić, Hadamard type inequalities for m-convex and (α, m) -convex functions, Journal of Inequalities in Pure and Applied Mathematics, **9** (4) (2008), Article 96
- [4] S. S. Dragomir and B. Mond, Integral inequalities of Hadamard type for logconvex functions, Demonstratio Mathematica, 31 (2) (1998) 355-364.
- [5] J. Hadamard, Étude sur les propriétés des fonctions entières en particulier d'une fonction considérée par Riemann, Journal de Mathmatiques Pures et Appliques, 58 (1893) 171-215.
- [6] İ. İmdat and S. Turhan. Generalized Hermite-Hadamard-Fejer type inequalities for GA-convex functions via Fractional integral, Moroccan Journal of Pure and Applied Analysis, 2 (1) (2016) 34-46.
- [7] İ. İşcan, A new improvement of Hölder inequality via isotonic linear functionals, AIMS Mathematics,
 5 (3) (2020) 1720-1728.
- [8] H. Kadakal, New Inequalities for Strongly r-Convex Functions, Journal of Function Spaces, 2019 (2019), Article ID 1219237, doi:10.1155/2019/1219237.
- [9] H. Kadakal, (m₁, m₂)-convexity and some new Hermite-Hadamard type inequalities, International Journal of Mathematical Modelling and Computations, 9 (4) (2019) 297-309.
- [10] H. Kadakal, (α, m₁, m₂)-convexity and some inequalities of Hermite-Hadamard type, Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 68 (2) (2019) 2128-2142.
- [11] S. Özcan, Some Integral Inequalities for Harmonically (α, s) -Convex Functions, Journal of Function Spaces, **2019** (2019), Article ID 2394021, doi:10.1155/2019/2394021.
- [12] S. Özcan and İ. İşcan, Some new Hermite-Hadamard type inequalities for s-convex functions and their applications, Journal of Inequalities and Applications, 2019 (2019), doi:10.1186/s13660-019-2151-2.
- [13] G. Toader, Some generalizations of the convexity, Proceedings of the Colloquium on Approximation and Optimization, Univ. Cluj Napoca, Cluj-Napoca, (1985) 329-338.
- [14] F. Usta, H. Budak and M. Z. Sarıkaya, Montgomery identities and Ostrowski type inequalities for fractional integral operators, Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 113 (2) (2019) 1059-1080.
- [15] F. Usta, H. Budak and M. Z. Sarikaya, Some New Chebyshev Type Inequalities Utilizing Generalized Fractional Integral Operators, AIMS Mathematics, 5 (2) (2020) 1147-1161.
- [16] F. Usta, H. Budak, M. Z. Sarıkaya and E. Set, On generalization of trapezoid type inequalities for s-convex functions with generalized fractional integral operators, Filomat, 32 (6) (2018) 2153-2171.
- [17] T. Y. Zhang, A. P. Ji and F. Qi, On integral inequalities of Hermite-Hadamard type for s-geometrically convex functions, Abstract and Applied Analysis, 2012 (2012), Article ID 560586, doi:10.1155/2012/560586.