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Abstract. Globally emerged Corona Virus Disease (COVID-19), has generated multi-
ple damages in the worldwide community and caused enormous mortality. In this pa-
per, a researcher develops SLEAIQRD (Susceptible-Lockdown-Exposed-Asymptomatic-
Symptomatic-Quarantine-Recovery-Death) COVID-19 spread model. The disease-free equi-
librium globally asymptotically stable when R0 ⩽ 1. And also endemic equilibrium stable
whenever R0 > 1. COVID-19 spread dies out when R0 ⩽ 1, while the spread continue in the
community when R0 > 1. For the lockdown intervention measure, at least 30% of coverage
and competence needed to mitigate and control COVID-19 spread. Early identification, quar-
antine suspected peoples, quickly laboratory tests, and isolation of contagious individuals are
inherent for COVID-19 containment. The researcher’s conclusion suggests that high coverage
of the contact tracing process is vital to stop the pandemic outbreak. Further curiously, beyond
60% exposed quarantine and a minimum of 50% isolation of infectious individuals overcome
the burden and begin to control the COVID-19 outbreak. Numerical solutions strengthen the
theoretical analysis.
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1. Introduction

Globally emerged Corona Virus Disease(COVID-19) caused by severe acute res-
piratory syndrome coronavirus 2 (SARS-CoV-2) originated from a wet market in

∗Corresponding author. Email: ketemadejen@gmail.com

c⃝ 2020 IAUCTB
http://ijm2c.iauctb.ac.ir



162 D. K. Mamo/ IJM2C, 10 - 03 (2020) 161-177.

Wuhan, China, is now widespread in the world and has severely affected many
counties. [17] [18]. It has generate multiple damages in worldwide community and
caused enormous mortality. The most common symptoms of COVID-19 are fever,
tiredness, and dry cough. Some patients may have aches and pains, nasal conges-
tion, runny nose, sore throat or diarrhea. These symptoms may appear 2-14 days
after exposure, most commonly around five days [16, 19].
People infected by those initial cases spread the disease to other drastically due

to human to human transmission [15]. Although Corona represents a major public
health issue in world, as of March 11, 2020, over 118,000 infections spanning 113
countries have been confirmed by the World Health Organization (WHO). The
WHO declared this public health emergency as a pandemic [9]. As of 14 April
2020, WHO reported 1, 844, 863 confirmed case and 117, 021 deaths have been
recorded globally [5].
Mathematical modeling based on system of differential equations may provide a

comprehensive mechanism for the dynamics of a disease transmission. The study
about the spread and control of COVID-19 is essential at this time. Different schol-
ars are study about infectious disease spread control by using modeling approach
[1–3, 7, 8, 10]. Recently, researcher study a bout COVID-19 [4, 11, 13, 20]. The
present work is SEIR form [12], which incorporates the recommended public health
interventions in the current pandemic. The recommended mitigation strategies of
the pandemic are lockdown, quarantine, and isolation of infected individuals by
efficient identification process. A researcher focus on the impact of intervention
measures by varying the parameter values. The model result indicates that the
containment of the pandemic requires high level of both identification and separa-
tion of infected individuals from the susceptible population.

2. Model formulation

In this model, consider N(t) be the total population at any time t, and divided
into eight sub-populations.

• S(t)- susceptible population, which denotes individuals who are susceptible to
get the virus and so might become infectious when exposed at a time t.

• L(t)- lockdown population, which represents some portion of the susceptible
population those are ordered at-home quarantined.

• E(t)- exposed population, which denotes the individuals who are COVID-19
infected, yet not contagious at a time t.

• A(t)- asymptomatic infected population, which represents contagious individu-
als, who don’t exhibit COVID-19 related symptoms at a time t

• Q(t)- quarantine population, which denotes individuals who are suspected by
COVID-19 becomes under quarantine at a time t.

• I(t)- symptomatic infected population, which denotes contagious individuals
those were manifested COVID-19 related symptoms at a time t.

• R(t)- recovered population, which represents the number of COVID-19 dis-
charged individuals at a time t.

• D(t)- deceased population, which represents the number of COVID-19 induced
death.

The model schematic diagram describes in Figure 1.
In the process of COVID-19 spreading, the spreading among these eight states

is governed by the following assumptions. It is assumed that β is the contact rate
of susceptible individuals with spreaders and the disease transmission follows the
mass action principle. The transmission contribution of asymptomatic infected is
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Figure 1. Schematic diagram of the model.

adjusted by the parameter η.
It is assumed that some portion of susceptible can be at-home quarantine order

by the rate of θ, those are avoiding contact with the infected individual to protect
themselves. The parameter φ is a measure of the accuracy of stay-at-home order.
Considering lockdown lifting rate is θ0 (so 1/θ0 is lockdown period). The one who
completed incubation period becomes to infected at a rate of σ, that means 1

σ is
the average duration of incubation. Moreover, the exposed population changed to
symptomatic by the probability of κ. By early identification and symptom manifes-
tation exposed, symptomatic and asymptomatic individuals becomes to quarantine
at a rate of ϕ, α, and ψ respectively. It is assumed that the infectious infected indi-
viduals, leading to disease prevalence. The average duration of infectiousness is 1

γ ,
when γ is the transmission rate from infected to recovery or death.In my assump-
tion recovery from quarantined is better than and symptomatic class due to clinical
treatment. Symptomatic infected and quarantine are recover with a probability of
τ1 and τ2, and also they will becomes to death with a probability of (1 − τ1) and
(1 − τ2) respectively. The parameter Λ is the recruitment, while µ natural birth
and death rate of each state individuals. The parameters are all non-negative.
Based on the above considerations, the pandemic spreading leads to dynamic

transitions among these states, shown in Figure 1. Taking into account the above
circumstances, the dynamics of COVID-19 outbreak is governed by the following
system of nonlinear ordinary differential equations:

dS

dt
= Λ− βS(t) (I(t) + ηA(t))− (µ+ φθ)S(t) + θ0L(t),

dL

dt
= φθS(t)− (θ0 + µ)L(t),

dE

dt
= βS(t) (I(t) + ηA(t))− (ϕ+ σ + µ)E(t),

dA

dt
= (1− κ)σE(t)− (ψ + γ + µ)A(t),

dI

dt
= κσE(t)− (α+ γ + µ)I(t),

dQ

dt
= ϕE(t) + ψA(t) + αI(t)− (γ + µ)Q(t),

dR

dt
= γA(t) + τ1γI(t) + τ2γQ(t)− µR(t),

dD

dt
= (1− τ1)γI(t) + (1− τ2)γQ(t)− µD(t)

(1)
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The total population N(t) would be a constant all the time in this model i.e.,

N(t) = S(t) + L(t) + E(t) + I(t) +A(t) +Q(t) +R(t).

Assumed the total population is normalized and it’s equals to one. We have the
non-negative initial conditions

(S(0), L(0), E(0), I(0), Q(0), A(0), R(0), D(0)) ∈ R8
+. (2)

3. Mathematical analysis of the model

Proposition 3.1 The biologically feasible region

Ω = {(S,L,E,A,Q, I,R) ∈ R8
+ : 0 < S + L+ E + I +A+Q+R ⩽ Λ

µ
}

is a positively invariant and attracting region for the disease transmission model
given by system (1) with initial conditions equation (2).

Proof Summing up the eight equations in system (1) and denoting

N(t) = S(t) + L(t) + E(t) + I(t) +A(t) +Q(t) +R(t)

we get

dN(t)

dt
⩽ Λ− µN(t)− µD(t).

This implies that

dN(t)

dt
+ µN(t) ⩽ Λ.

Now, integrating both sides of the above inequality, we obtain

0 < N(t) ⩽
(
N(0)e−µt +

Λ

µ
(1− e−µt)

)
.

N(t) approaches to Λ
µ , whenever t → ∞, this implies that N(t) ⩽ Λ

µ . Thus,
the set Ω is positive invariant, that is, all initial solutions belong to Ω remain in
Ω, ∀t > 0. ■

Hence, system (1) is considered mathematically and biologically well posed in
Γ[21].

3.1 Equilibrium analysis

In this subsection, we show the feasibility of all equilibria by setting the rate of
change with respect to time t of all dynamical variables to zero. The model (1) has
two feasible equilibria, which are listed as follows:

(i) Disease-free equilibrium (DFE) E0

(
Λ(θ0+µ)

µ(φθ+θ0+µ)
, Λφθ
µ(φθ+θ0+µ)

, 0, 0, 0, 0, 0, 0
)
.

(ii) Endemic equilibrium (EE) E∗ (S∗, L∗, E∗, A∗, I∗, Q∗, R∗, D∗).
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The existence of endemic equilibrium is computed after we have the basic repro-
ductive number R0.

3.1.1 Basic reproduction number

Here, we will find the basic reproduction number (R0) of the model (1) using
next generation matrix approach [14]. We have the matrix of new infection F(X)

and the matrix of transfer V(X). Let X = (E, A, I, Q, L, S, R, D)T , the model
(1) can be rewritten as:

dX

dt
= F(X)− V(X),

where

F(X) =



βS(t) (I(t) + ηA(t))
0
0
0
0
0
0
0


,

V(X) =



B3E(t)
B4A(t)− (1− κ)σE(t)

B5I(t)− κσE(t)
B6Q(t)− ϕE(t)− ψA(t)− αI(t)

B2L(t)− φθS(t)
βS(t) (I(t) + ηA(t))) +B1S(t)− Λ− θ0L(t)

µR(t)− γA(t)− τ1γI(t)− τ2γQ(t)
µD(t)− (1− τ1)γI(t)− (1− τ2)γQ(t)


,

where, B1 = (µ+φθ), B2 = (θ0+µ), B3 = (ϕ+σ+µ), B4 = (ψ+ω+γ+µ), B5 =
(α+ γ + µ), B6 = (γ + µ).
The Jacobian matrices of F(X) and V(X) at the disease free equilibrium

E0

(
Λ(θ0+µ)

µ(φθ+θ0+µ)
, Λφθ
µ(φθ+θ0+µ)

, 0, 0, 0, 0, 0, 0
)
are, respectively,

JF(E0) =

(
F 0
0 0

)
, and JV(E0) =

(
V 0
J1 J2

)
.

F =


0 ηA1 A1 0
0 0 0 0
0 0 0 0
0 0 0 0

 and V =


B3 0 0 0

(κ− 1)σ B4 0 0
−κσ 0 B5 0
−ϕ −ψ −α B6

 ,

where, A1 = βΛ µ+θ0
µ(µ+φθ+θ0)

.
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The inverse of V is computed as

V −1 =


1
B3

0 0 0
σB5B6−κσB5B6

B3B4B5B6

1
B4

0 0
κσ
B3B5

0 1
B5

0
ακσB4+ϕB5B4−κσψB5+σψB5

B3B4B5B6

ψ
B4B6

α
B5B6

1
B6

 .

The next generation matrix is computed as

F × V −1 =


η(σB5B6−κσB5B6)A1

B3B4B5B6
+ κσA1

B3B5

ηA1

B4

A1

B5
0

0 0 0 0
0 0 0 0
0 0 0 0

 .

The spectra radius of next generation matrix is

ρ(FV −1) =
σA1 ((1− κ)B5η +B4κ+ (1− κ)ω)

B3B4B5
.

Hence, the basic reproduction number is

R0 =
σA1 ((1− κ)(B5η + ω) +B4κ)

B3B4B5
.

3.1.2 Stability of the disease free equilibrium

In this subsection, a researcher shows linear stability of E0 by finding the sign of
eigenvalues of the Jacobian matrix of the model (1).

Theorem 3.1 If R0 < 1, the disease-free equilibrium E0 of system (1) is locally
asymptotically stable, and it is unstable if R0 > 1.

Proof In the absence of the disease, the model has a unique disease free equilib-
rium E0. Now the Jacobian matrix at equilibrium E0 is given by:



−B1 θ0 0 −ηA1 −A1 0 0 0
φθ −B2 0 0 0 0 0 0
0 0 −B3 ηA1 A1 0 0 0
0 0 (1− κ)σ −B4 0 0 0 0
0 0 κσ ω −B5 0 0 0
0 0 ϕ ψ α −B6 0 0
0 0 0 γ γτ1 γτ2 −µ 0
0 0 0 0 γ (1− τ1) γ (1− τ2) 0 −µ


. (3)

Here, we need find the eigenvalue of the system from the Jacobian matrix (3). We
obtain the characteristic polynomial

P (λ) = (−B6 − λ) (−λ− µ)2
(
λ2 + (B1 +B2)λ+B1B2 − φθθ0

) (
λ3 + c1λ

2 + c2λ+ c3
)
.

(4)

where, c1 = (B3 + B4 + B5), c2 = (B3B4(1−Ra) +B3B5 +B4B5) , and c3 =
B3B4B5(1−R0).
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From the characteristic polynomial in equation (4), it is easy to get three real
negative eigenvalues of J(E0), which are λ1,2 = −µ, and λ3 = −B6. We get the
other real negative eigenvalues from the expression

λ2 + (B1 +B2)λ+B1B2 − φθθ0 (5)

and

λ3 + c1λ
2 + c2λ+ c3. (6)

From the quadratics equation (5), (B1 +B2) > 0 and also B1B2 − φθθ0 > 0. This
implies that the eigenvalues λ4,5 are negative. Again from the polynomial (6), we
have negative real root λ6,7,8, whenever R0 < 1. Thus, the equilibrium E0 is locally
asymptotically stable if R0 < 1. E0 becomes unstable whenever E∗ is feasible (i.e.,
R0 > 1). The proof is complete. ■

Physically speaking, Theorem 3.1 implies that disease can be eliminated if the
initial sizes are in the basin of attraction of the DFE E0. Thus the infected popula-
tion can be effectively controlled if R0 < 1. To ensure that the effective control of
the infected population is independent of the initial size of the human population,
a global asymptotic stability result must be established for the DFE.

Theorem 3.2 If R0 ⩽ 1, then the disease-free equilibrium, E0, of system (1) is
globally asymptotically stable in Ω.

Proof To show the global stability of the disease-free equilibrium E0, we construct
the following Lyapunov function Let Z = (S,L,E,A, I,Q,R,D)T and consider a
Lyapunov function,

J (Z) = a1E + a2A+ a3I

in which we only considered the variables representing the infected components of
the model, where, a1 = σ(κB4 + η(1− κ)B5)/B3B4, a2 = ηB5/B4 and a3 = 1.
Differentiating J in the solutions of system (1) we get

J̇ = a1Ė + a2Ȧ+ a3İ ,

=
σ(κB4 + η(1− κ)B5)

B3B4
(βS(t) (I(t) + ηA(t))−B3E(t))

+
ηB5

B4
((1− κ)σE(t)−B4A(t)) + κσE(t) +−B5I(t)

= B5
σ(κB4 + η(1− κ)B5)

B3B4B5
βS(t) (I(t) + ηA(t))−B5(I(t) + ηA(t))

=

(
σ(κB4 + η(1− κ)B5)

B3B4B5
βS(t)− 1

)
B5(I(t) + ηA(t)).

Therefore,

J̇ ⩽
(
σ(κB4 + η(1− κ)B5)

B3B4B5
βS(0)− 1

)
B5(I(t) + ηA(t))

= (R0 − 1)B5(I(t) + ηA(t)),
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since S(t) ⩽ S(0) and S(t) ∈ Ω.
J̇ < 0 whenever R0 < 1. Furthermore, J̇ = 0 if and only if R0 = 1. Thus the

largest invariant set in
{
Z ∈ Ω|J̇ (E,A, I) = 0

}
is the singleton of E0. By LaSalle’s

Invariance Principle the disease-free equilibrium is globally asymptotically stable
in Ω, completing the proof. ■

Theorem 3.2 completely determines the global dynamics of model (1) in when
R0 ⩽ 1. It establishes the basic reproduction number R0 as a sharp threshold
parameter. Namely, if R0 < 1, all solutions in the feasible region converge to the
DFE E0, and the disease will die out from the community irrespective of the initial
conditions. If R0 > 1, E0 is unstable and the system is uniformly persistent, and
a disease spread will always exist.

3.1.3 Endemic equilibrium and its stability

Here, we show the existence and uniqueness of endemic equilibrium E∗. The
values of S∗, L∗, E∗, A∗, I∗, Q∗, R∗ and D∗ are obtained from the system (1), we
get

S∗ =
Λ(µ+ θ0)

R0µ(µ+ θ0 + φθ)
, L∗ =

Λφθ

R0
, E∗ =

Λ(R0 − 1)

B3R0
, A∗ =

Λσ(1− κ)(R0 − 1)

B3B4R0
,

I∗ =
κΛσ(R0 − 1)

B3B5R0
, Q∗ =

ϕE∗ + ψA∗ + αI∗

B6
, R∗ =

γA∗ + τ1γI
∗ + τ2γI

∗

µ
,

D∗ =
(1− τ1)γI

∗ + (1− τ2)γI
∗

µ
.

We obtain a unique positive endemic equilibrium E∗, when R0 > 1.

Theorem 3.3 If R0 > 1, then the endemic equilibrium point E∗ of system (1) is
locally asymptotically stable.

Proof The Jacobian matrix of the model at E∗ is



−B1 −H1 θ0 0 −ηD1 −D1 0 0 0
θ −B2 0 0 0 0 0 0
H1 0 −B3 ηD1 D1 0 0 0
0 0 (1− κ)σ −B4 0 0 0 0
0 0 κσ ω −B5 0 0 0
0 0 ϕ ψ α −B6 0 0
0 0 0 γ γτ1 γτ2 −µ 0
0 0 0 0 γ (1− τ1) γ (1− τ2) 0 −µ


(7)

where H1 = (I∗ + ηA∗), and D1 = βS∗.
From the Jacobian matrix (7) easily to get λ1,2 = −µ, λ3 = −B6 and the other

eigenvalues of the system needs further finding. The characteristic polynomial of
(7) is

P (λ) = λ5 + a1λ
4 + a2λ

3 + a3λ
2 + a4λ+ a5 = 0. (8)
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Where

a1 = B1 +B2 +B3 +B4 +B5 +H1

a2 = (B1 +B2 +H1) (B3 +B4 +B5)

a3 = (B1 +B2) (B3B4 +B3B5 +B4B5) +B2H1(B3 +B4 +B5) +B4B5H1

a4 = B2H1 (B3B4 +B3B5 +B4B5) +A1σ ((1− κ)η + κ) θφθ0

a5 = B3B4B5φθθ0(R0 − 1).

(9)

The polynomial (8) has negative roots (eigenvalues) if all its coefficients terms
are positive, or it satisfies Routh-Hurwitz criteria of stability [6]. From (9) we
can verify that ∀ai > 0, i = 1, 2, 2, 3, 4, 5 when R0 > 1. And also, a1a2a3 >
a23 + a21a4, (a1a4 − a5)

(
a1a2a3 − a23 − a21a4

)
> a5 (a1a2 − a3)

2 + a1a
2
5. Therefore,

according to the Routh-Hurwitz criterion, we can get that all the roots of the
above characteristic equation have negative real parts. Thus, the endemic equilib-
rium asymptotically stable. The proof is complete. ■

The local stability analysis of the endemic equilibrium tells that if the initial val-
ues of any trajectory are near the equilibrium E∗, the solution trajectories approach
to the equilibrium E∗ under the condition R0 > 1. Thus, the initial values of the
state variables S,L,E,A, I,Q,R and D are near to the corresponding equilibrium
levels, the equilibrium number of infected individuals get stabilized if R0 > 1.

3.2 Sensitivity analysis

Sensitivity analysis is used to identify parameters that have a tremendous impact
on R0 and should be targeted by intervention strategies. More precisely, graphical
displays allow measuring the relative change in a R0 when a parameter changes.
Epidemiological characteristics of COVID-19 quantify by some parameters, which
are averagely fixed. The remaining parameters are varying, which used to deter-
mines the status of the pandemic outbreak. The normalized sensitivity index Υλ

is given by

ΥR0

λ =
∂R0

∂λ
× λ

R0
.

The researcher focuses on varying parameter values, which involve R0 expression,
and their sensitivity will be described below.
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Figure 2. R0 vs the parameter β.
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Figure 3. R0 vs the parameter σ.

A researcher can find some interesting results, which have been showed in Figures
2 and 3, it can be seen that big β or σ can lead to large R0. That is to say, the
larger contact or short incubation period can increase the opportunity of disease
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spreading. If we reduce the transmission rate by quarantine or any appropriate
control measure, then the disease outbreak will end.
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Figure 4. R0 vs the parameter θ.
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Figure 5. R0 vs the parameter θ0.

As a result of Figures 4 and 5, R0 decreasing when θ increases, and increases
whenever θ0 increase respectively. This finding suggested that effective stay at home
intervention have been mitigates the COVID-19 spread, conversely the ineffective-
ness of this intervention measure can rising its spread.
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Figure 6. R0 vs the parameter η.
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Figure 7. R0 vs the parameter α.

Figures 6 and 7, show that the increment of η or α can reduce R0. That is
to say, effective quarantine of incubated and infectious individuals can reduce the
opportunity of disease spreading.
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Figure 8. R0 vs the parameter γ.
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Figure 9. R0 vs the parameter µ.

From Figures 8 and 9, we find that, short average time from the symptom onset
to recovery or death γ and large value of µ can reduce the COVID-19 spread.

4. Numerical results and analysis

In this section, numerical simulation of the model (1) demonstrated. Numerical
solutions obtained by using ode45 package which used to solves systems of ODEs.
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The simulation study explores the impact of prevention and control against the
spread of the COVID-19 outbreak. The general dynamics, dynamical solution of
equilibria, and impacts of prevention and control strategies are under consideration
in this section discussion.

4.1 General dynamics

We numerically illustrate the asymptotic behavior of the model (1). We take the the
initial conditions S(0) = 0.9, Q(0) = 0, E(0) = 0.06, A(0), I(0) = 0.04, L(0) =
0, R(0) = 0, andD(0) = 0.
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Figure 10. Evaluation of general dynamic for
R0 = 0.6355.
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Figure 11. Evaluation of general dynamic for
R0 = 0.6355 and varying initial values.

Consider system (1) with parameters β = 0.05, θ = 0, σ = 0.1923, α = 0, γ =
0.0714, µ = 0.01, θ0 = 0.0. Then, it follows by certain calculations that the thresh-
old R0 = 0.5842, which is below unity, thus Theorem 3.1 ensures that the disease-
free equilibrium E0 is globally asymptotically stable. For numerical simulation we
set initial values as S(0) = 0.9, E(0) = 0.05, A(0) = 0.02, I(0) = 0.03, Q(0) =
L(0) = R(0) = D(0) = 0. Figure 10 shows the evolutions of state variables, from
which it can be observed that the percentages of non-susceptible stat variables
population density finally converge to the constant zero, when susceptible popula-
tion density converge to unity. This means that COVID-19 pandemic would finally
tend to extinction and is in agreement with Theorem 3.1. Figure 11 shows the
plot of several solutions of system (1) with different randomly-given initial values.
It can be seen in Figure 11, that all of these solutions eventually converge to the
disease-free equilibrium E0, which is also consistent with Theorem 3.1.
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Figure 12. Evaluation of general dynamic for
R0 = 3.813.
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Figure 13. Evaluation of general dynamic for
R0 = 3.813 and varying initial value.
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Consider system (1) with parameters β = 0.8, θ = 0, σ = 0.1923, α = 0, γ =
0.0714, µ = 0.01, θ0 = 0.0. Figure 12 shows the time evolutions of state variables
which approach to the constants 0.223, 0.0, 0.0862, 0.01626, 0.0259, 0.0996, 0.524
and 0.0259, respectively. The simulation illustrates the disease spread to peak and
keep propagating through the community at a steady level. Figure 13 shows the
plot of its four solutions with varying initial values. It can be seen that all of these
solutions finally tend to the endemic equilibrium E∗. This result confirms that the
endemic equilibrium is asymptotically stable whenever R0 > 1.

4.2 Impact of the transmission rate

The parameter β describes the probability that a susceptible individual converts
to be an exposed class by a single infected individual per unit time. The impacts
of β on the susceptible, contagious, and deceased population will illustrate.
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Figure 14. Evaluation of susceptible popula-
tion.

0 50 100 150 200 250 300 350 400 450 500

Time(Days)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

F
ra

ct
io

n
 o

f 
cu

m
u

la
tiv

e
 in

fe
ct

e
d

R
0
=5.4,  β=0.85

R
0
=2.23,  β=0.35

 R
0
=1.27, β=0.2

R
0
=0.64, β=0.1

Figure 15. Evaluation of contagious popula-
tion.
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Figure 16. Evaluation of deceased population.

Consider system (1) and set the value of β = 0.85, 0.35, 0.2, 0.1. From Figure 14
to Figure 16, illustrates that the change of β leads to the uncertainty behavior
of the system. It can be seen in Figures 14, 15 and 16 that all these curves
ultimately converge to corresponding equilibria, respectively. The final percentage
of susceptible will remain stable at a higher level when the value of the parameter
β is lower. While the evolutions of the contagious, and deceased population will
steady at a higher value when β value high. The simulation designates that
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reducing contact transmission (β) treats to control COVID-19 propagation.

In the absence of intervention measures with R0 = 5.4, near to 90%, susceptible
population are being exposed to COVID-19 outbreak and 1.4% of deaths globally
this year. The 59% and 76.5% reduction of effective contact transmission provided
that, 25% and 60% reduction of the susceptible population exposedness respec-
tively. Also, 35.7% and 71.43% of death reduction obtained by 59% and 76.5%
discount of the transmission rate of β. Extensive countermeasures are required
to reduce person-to-person transmission of COVID-19. Appropriate care and en-
deavors to protect or reduce transmission should be involved in the susceptible
population.

4.3 Impact of lockdown

The impact of a lockdown on the contagious and deceased population will be
simulated.
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Figure 17. Evaluation of contagious popula-
tion by varying θ .
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Figure 18. Evaluation of deceased population
by varying θ .

Considering system (1) and the transmission rate β = 0.5. We observe the impact
of lockdown by setting the value of θ = 0.0, 0.05, 0.1, 0.3. Figures 17 and 18 show
that the impact of θ on infection and deceased case densities of the model. The
lockdown coverage rises from 5% to 10%, new infectiousness also reduced from
26.82% to 53.62% after 7 months respectively. Similarly, deceased density also
reduce by 26.86%, 53.65% and finally it tends to zero (see Figures 17 and 18). The
simulation provides, more than 30% of lockdown coverage with a minimum of 30%
efficiency could control the COVID-19 outbreak. Strict social distancing measures
were effective in reducing incidence and mortality rates.

4.4 Lockdown lifting impact

Restricting mass gathering or lockdown has an impact on the daily life activities
of every individual. The impact of lockdown relaxes, or intervention lifting on the
spread of COVID-19 will be represented.
Considering system (1)and the transmission rate β = 0.5 and θ = 0.4. We observe

the impact of lockdown return by setting the value of θ0 = 0.0, 0.05, 0.1, 0.7. Figures
19 and 20 illustrate that the impact of θ0 on contagious and deceased case densities
of the model. In the absence of lockdown lifting, the contagious curve persists at
disease-free equilibrium whenR0 = 0.56. The lockdown lifting rises from 5% to 70%
new infectiousness also increases from 3.412% to 11.42% after a year respectively.
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Figure 19. Evaluation of contagious popula-
tion by varying θ0.
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Figure 20. Evaluation of deceased population
by varying θ0.

Similarly, death percentage increase from 0.396% to 1.078% (see Figures 19 and
20. In the absence of other interventions, the result provides more than 5% lifting
of lockdown leads the second COVID-19 outbreak prevalence.

4.5 Impacts of quarantine

Study the recommended containment strategies of the pandemic, we conduct some
numerical simulations to show the contribution of quarantine. Here, we observe the
isolation of exposed and infected individuals within different rate:
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Figure 21. Evaluation of susceptible popula-
tion.
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Figure 22. Evaluation of contagious popula-
tion.

Considering system (1) and the rate β = 0.5 and θ = 0.4. We observe the
impact of exposed quarantine by setting the value of ϕ = 0.0, 0.1, 0.2, 0.6. It can
be observed in Figures 21, 22, and 23 that the impact of ϕ on the susceptible,
contagious, and decease population. In the absence of exposed quarantine, 70%
of the susceptible population will be exposed to COVID-19. And also, near to
1.2%, will die, when R0 = 3.18 in this year. Figure 22 displays the new infection
population density decreases when the diagnosis and tracing process rises.
Similarly, the deceased number decrease when the quarantine coverage of exposed
increases (see Figure 23). The result suggests that more than 60% of quarantine
of exposed individuals reclines R0 below one, this implies that COVID-19 spread
will be under control.

Now, the impacts of symptomatic infected isolation will be evaluated.
Considering system (1) with the transmission rate β = 0.5, and by setting the

value of α = 0.0, 0.1, 0.3, 0.5. It can be observed in Figures 24, 25, and 26 that
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Figure 23. Evaluation of deceased population.
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Figure 24. Evaluation of susceptible popula-
tion.

0 50 100 150 200 250 300 350 400 450 500

Time(Days)

0

0.05

0.1

0.15

0.2

0.25

F
ra

ct
io

n
 o

f 
cu

m
u

la
tiv

e
 in

fe
ct

e
d

R
0
=3.18, α=0.0

R
0
=1.92, α=0.1

R
0
=1.18, α=0.3

R
0
=0.91, α=0.5

Figure 25. Evaluation of symptomatic infected
population.
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Figure 26. Evaluation of deceased population.

the impact of α on susceptible, infected, and deceased population density. In the
absence of isolation of symptomatic infected, 70% of the susceptible population
being exposed to COVID-19, and near to 1.2% will die, when R0 = 3.18 in this
year. Figure 25 displays high coverage of isolation monitoring conquers the growth
of new symptomatic infected populations. Similarly, the deceased number decrease
when isolation rate increases(see Figure 26). The simulation indicates that more
than 50% isolation of symptomatic infected individuals defeat R0 below one, this
implies that COVID-19 spread will be under control.
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5. Conclusions

The control, containment, mitigation, and pleasant elimination of the coronavirus
pandemic requires the rapid and compatible implementation of control and miti-
gation strategies. Mathematical models are central to this effort but certain issues
have to be considered and measured for increased efficacy in their application.
The researcher develops a new SEIR type compartmental model it provides
insight into the transmission dynamics of COVID-19 with control measures. The
model incorporates asymptomatic and symptomatic infected with the modification
parameter. The sensitivity analysis gives insight that high contact transmission has
a positive impact on secondary infection reproduction of COVID-19. Furthermore,
lifting of intervention also accelerates the new infectiousness rate. For suspension
and mitigation of COVID-19 spread, appropriate implementation of lockdown and
quarantine incredibly valuable.

Numerical simulations are conducted aim to support theoretical analysis and
shows the significance of public health intervention to containment these pan-
demics. The general dynamics of the model with time is illustrated that the disease
is die out when R0 ⩽ 1 (see Figure 10), but its persists in the community whenever
R0 > 1 (see Figure 12). Moreover, socioeconomically crisis caused by these pan-
demic can be minimized and eliminated when we implemented appropriate control
measure.
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