International Journal of Mathematical Modelling & Computations Vol. 09, No. 04, Fall 2019, 297- 309

(m_1, m_2) -Convexity and Some New Hermite-Hadamard Type Inequalities

H. Kadakal*

Ministry of Education, Hamdi Bozbağ Anatolian High School, Giresun, Turkey.

Abstract. In this manuscript, a new class of extended (m_1, m_2) -convex and concave functions is introduced. After some properties of (m_1, m_2) -convex functions have been given, the inequalities obtained with Hölder and Hölder-İşcan and power-mean and improved power-mean integral inequalities have been compared and it has been shown that the inequality with Hölder-İşcan inequality gives a better approach than with Hölder integral inequality and improved power-mean inequality gives a better approach than with power-mean inequality.

Received: 30 July 2019, Revised: 01 September 2019, Accepted: 10 November 2019.

Keywords: (m_1, m_2) -Convex function; Hölder and Hölder-İşcan integral inequalities; Power-mean and improved power-mean integral inequalities; Hermite-Hadamard inequality.

AMS Subject Classification: 26A51, 26D10, 26D15.

Index to information contained in this paper

- 1 Introduction
- 2 Definition of (m_1, m_2) -convex function
- 3 Hermite-Hadamard inequality for (m_1, m_2) -convex functions
- 4 Some new inequalities for (m_1, m_2) -convexity
- 5 Conclusion

1. Introduction

Definition 1.1 A function $f: I \subseteq \mathbb{R} \to \mathbb{R}$ is said to be convex if the inequality

$$f(tx + (1-t)y) \le tf(x) + (1-t)f(y)$$

is valid for all $x, y \in I$ and $t \in [0, 1]$. If this inequality reverses, then the function f is said to be concave on interval $I \neq \emptyset$.

^{*}Corresponding author. Email: huriyekadakal@hotmail.com

Definition 1.2 $f:[a,b]\to\mathbb{R}$ be a convex function, then the inequality

$$f\left(\frac{a+b}{2}\right) \leqslant \frac{1}{b-a} \int_{a}^{b} f(x)dx \leqslant \frac{f(a)+f(b)}{2}$$

is known as the Hermite-Hadamard inequality.

Convexity theory has appeared as a powerful technique to study a wide class of related problems in pure and applied sciences. Some improvements and refinements of the H-H inequality on convex functions have been extensively investigated by a number of authors (e.g., [1, 5]) and the authors obtained a new refinement of the H-H inequality for convex functions. Also, in recent years, readers can find different convex functions classes and Hermite-Hadamard type inequalities obtained for these classes in ([1, 2, 7, 8, 10, 11, 15, 19]) and references therein.

Definition 1.3 ([18]) The function $f:[0,b]\to\mathbb{R},\ b>0$, is said to be m-convex function, where $m\in[0,1]$; if we have

$$f(tx + m(1-t)y) \leqslant tf(x) + m(1-t)f(y)$$

for all $x, y \in [0, b]$ and $t \in [0, 1]$. We say that the function f is m-concave function if (-f) is m-convex.

Obviously, for m=1 the above definition recaptures the concept of standard convex functions on [a,b]; and for m=0 the concept star-shaped functions. For many papers connected with m-convex and (α, m) -convex functions see ([2, 4, 12–14, 16, 17, 20]) and the references therein.

In [6], Işcan gave a refinement of the Hölder integral inequality as follows:

Theorem 1.4 (Hölder-İşcan integral inequality [6]) Let p > 1 and $\frac{1}{p} + \frac{1}{q} = 1$. If f and g are real functions defined on interval [a,b] and if $|f|^p$, $|g|^q$ are integrable functions on [a,b] then

$$\int_{a}^{b} |f(x)g(x)| dx \leq \frac{1}{b-a} \left\{ \left(\int_{a}^{b} (b-x) |f(x)|^{p} dx \right)^{\frac{1}{p}} \left(\int_{a}^{b} (b-x) |g(x)|^{q} dx \right)^{\frac{1}{q}} + \left(\int_{a}^{b} (x-a) |f(x)|^{p} dx \right)^{\frac{1}{p}} \left(\int_{a}^{b} (x-a) |g(x)|^{q} dx \right)^{\frac{1}{q}} \right\}$$

An refinement of power-mean integral inequality as a different version of the Hölder-İşcan integral inequality can be given as follows:

Theorem 1.5 (Improved power-mean integral inequality [9]) Let $q \ge 1$. If f and g are real functions defined on interval [a,b] and if |f|, $|f||g|^q$ are integrable functions on [a,b] then

$$\int_{a}^{b} |f(x)g(x)| dx \leq \frac{1}{b-a} \left\{ \left(\int_{a}^{b} (b-x) |f(x)| dx \right)^{1-\frac{1}{q}} \left(\int_{a}^{b} (b-x) |f(x)| |g(x)|^{q} dx \right)^{\frac{1}{q}} + \left(\int_{a}^{b} (x-a) |f(x)| dx \right)^{1-\frac{1}{q}} \left(\int_{a}^{b} (x-a) |f(x)| |g(x)|^{q} dx \right)^{\frac{1}{q}} \right\}$$

2. Definition of (m_1, m_2) -convex function

In this section, we begin by setting some algebraic properties for (m_1, m_2) -convex functions.

Definition 2.1 The function $f:[0,b]\to\mathbb{R}, b>0$ is said to be (m_1,m_2) -convex, if

$$f(m_1tx + m_2(1-t)y) \le m_1tf(x) + m_2(1-t)f(y)$$

for all $x, y \in I$, $t \in [0, 1]$ and $(m_1, m_2) \in (0, 1]^2$.

We will denote by $K_{m_1,m_2}(b)$ the class of all (m_1, m_2) -convex functions on interval I for which $f(0) \leq 0$.

Definition 2.2 Let $f:[0,b] \to \mathbb{R}$. If $f(tx) \leq tf(x)$ is valid for all $x \in [0,b]$, then we say that f(x) is an starshaped function on [0,b].

Definition 2.3 Let $f:[0,b] \to \mathbb{R}$ and $m_1 \in (0,1]$. If $f(m_1tx) \leq m_1tf(x)$ is valid for all $x \in [0,b]$ and $t \in [0,1]$, then we say that the function f(x) is an m_1 -starshaped function on [0,b]. Specially, for $m_1 = 1$, we have $f(tx) \leq tf(x)$.

Remark 2.4 In Definition 2.1, if we choose $m_2 = 0$, we get the concept of (α, m_1) -starshaped functions on [0, b].

Proposition 2.5 If the function f is in the class $K_{m_1,m_2}(b)$, then it is m_1 -starshaped.

Proof For any $x \in [0, b], t \in [0, 1]$ and $(m_1, m_2) \in (0, 1]^2$, we have

$$f(m_1tx) = f(m_1tx + m_2(1-t).0) \leqslant m_1tf(x) + m_2(1-t)f(0) \leqslant m_1tf(x).$$

Specially, for $m_1 = 1$, we have $f(tx) \leq tf(x)$. Lemma is proved.

Following theorems can be proved easily.

Theorem 2.6 Let $f, g : [0, b] \to \mathbb{R}$. If f and g are (m_1, m_2) -convex, then f + g is (m_1, m_2) -convex and for $c \in \mathbb{R}$ $(c \ge 0)$ of is (m_1, m_2) -convex.

Theorem 2.7 Let f be a (m_1, m_2) -convex function. If the function g is an (m_1, m_2) -convex and increasing, then the function g is an (m_1, m_2) -convex.

Theorem 2.8 Let $f, g : [0, b] \to \mathbb{R}$ are both nonnegative and monotone (increasing or decreasing). If f and g are (m_1, m_2) -convex function, then fg is (m_1, m_2) -convex function under the condition $[f(x) - f(y)][g(y) - g(x)] \leq 0$.

Theorem 2.9 Let $m_1, m_2 \in [0, 1], b > 0$ and $f_{\alpha} : [0, b] \to \mathbb{R}$ be an arbitrary family of (m_1, m_2) -convex functions and let $f(x) = \sup_{\alpha} f_{\alpha}(x)$. If

$$J = \left\{ u \in [0, b] : \frac{u}{m_1}, \frac{u}{m_2} \in [0, b] \text{ and } f(u), f\left(\frac{u}{m_1}\right), f\left(\frac{u}{m_2}\right) < \infty \right\}$$

is nonempty, then J is an interval and f is (m_1, m_2) -convex on J.

Theorem 2.10 Let $f:[0,b^*] \to \mathbb{R}$ be a finite function on $\frac{a}{m_1}, \frac{b}{m_2} \in [0,b^*]$, (m_1,m_2) -convex with $m_1,m_2 \in (0,1]$. Then the function f is on bounded any closed interval [a,b].

3. Hermite-Hadamard inequality for (m_1, m_2) -convex functions

The goal of this paper is to develop concepts of the (m_1, m_2) -convex functions and to establish some inequalities of H-H type for these classes of functions.

Theorem 3.1 Let the function $f:[0,b^*] \to \mathbb{R}$, $b^* > 0$, be an (m_1,m_2) -convex functions with $m_1, m_2 \in (0,1]^2$. If $0 \le a < b < b^*$ and $f \in L[a,b]$, then the following inequalities holds:

$$\frac{1}{b-a} \int_{a}^{b} f(x)dx \leqslant \min \left\{ \frac{m_1 f\left(\frac{a}{m_1}\right) + m_2 f\left(\frac{b}{m_2}\right)}{2}, \frac{m_1 f\left(\frac{b}{m_1}\right) + m_2 f\left(\frac{a}{m_2}\right)}{2} \right\}.$$

Proof By using (m_1, m_2) -convexity of the function f, if the variable is changed as u = ta + (1 - t)b, then

$$I = \int_0^1 f(ta + (1 - t)b) dt = \frac{1}{b - a} \int_a^b f(u) du$$

$$\leq \int_0^1 \left[tm_1 f\left(\frac{a}{m_1}\right) + (1 - t)m_2 f\left(\frac{b}{m_2}\right) \right] dt$$

$$= \frac{m_1 f\left(\frac{a}{m_1}\right) + m_2 f\left(\frac{b}{m_2}\right)}{2}$$

and similarly for z = tb + (1 - t)a, then

$$I = \int_0^1 f(tb + (1-t)a) dt = \frac{1}{b-a} \int_a^b f(z) dz \le \int_0^1 \left[tf(b) + (1-t)f(a) \right] dt$$
$$= \frac{m_1 f\left(\frac{b}{m_1}\right) + m_2 f\left(\frac{a}{m_2}\right)}{2}.$$

So, we have

$$\frac{1}{b-a} \int_{a}^{b} f(x)dx \leqslant \min \left\{ \frac{m_1 f\left(\frac{a}{m_1}\right) + m_2 f\left(\frac{b}{m_2}\right)}{2}, \frac{m_1 f\left(\frac{b}{m_1}\right) + m_2 f\left(\frac{a}{m_2}\right)}{2} \right\}.$$

This completes the proof of theorem.

Remark 3.2 Under the conditions of Theorem 3.1, if $m_1 = 1$, $m_2 = m$, then, the following inequality holds:

$$\frac{1}{b-a} \int_{a}^{b} f(x) dx \leqslant \min \left\{ \frac{f\left(a\right) + mf\left(\frac{b}{m}\right)}{2}, \frac{f\left(b\right) + mf\left(\frac{a}{m}\right)}{2} \right\}.$$

This inequality is the Hermite-Hadamard inequality for the m-convex functions [1].

Remark 3.3 Under the conditions of Theorem 3.1, if $m_1 = m_2 = 1$, then, the following inequality holds:

$$\frac{1}{b-a} \int_{a}^{b} f(x)dx \leqslant \frac{f(a) + f(b)}{2}.$$

This inequality is the Hermite-Hadamard inequality for the convex functions [2].

Theorem 3.4 Let the function $f:[0,b^*] \to \mathbb{R}$, $b^* > 0$, be an (m_1,m_2) -convex functions with $m_1, m_2 \in (0,1]^2$. If $m = \min\{m_1, m_2\}$, $0 \le a < b < \frac{b}{m} < b^*$ and $f \in L\left[a, \frac{b}{m}\right]$, then the following inequalities holds:

$$f\left(\frac{a+b}{2}\right) \leqslant \frac{1}{2(b-a)} \int_a^b \left[m_1 f\left(\frac{x}{m_1}\right) + m_2 f\left(\frac{x}{m_2}\right)\right] dx.$$

Proof By the (m_1, m_2) -convexity of the function f, we have

$$f\left(\frac{a+b}{2}\right) = f\left(\frac{\left[m_1t\frac{a}{m_1} + m_2(1-t)\frac{b}{m_2}\right] + \left[m_1(1-t)\frac{a}{m_1} + m_2t\frac{b}{m_2}\right]}{2}\right)$$

$$= f\left(\frac{1}{2}m_1\left[t\frac{a}{m_1} + \frac{m_2}{m_1}(1-t)\frac{b}{m_2}\right] + \frac{1}{2}m_2\left[t\frac{b}{m_2} + \frac{m_1}{m_2}(1-t)\frac{a}{m_1}\right]\right)$$

$$\leqslant \frac{1}{2}m_1f\left(\frac{ta + (1-t)b}{m_1}\right) + \frac{1}{2}m_2f\left(\frac{tb + (1-t)a}{m_2}\right).$$

Now, if we take integral the last inequality on $t \in [0,1]$ and choose x = ta + (1-t)b and y = tb + (1-t)a, we deduce

$$f\left(\frac{a+b}{2}\right) \leqslant \frac{1}{2}\frac{m_1}{b-a} \int_a^b f\left(\frac{x}{m_1}\right) dx + \frac{1}{2}\frac{m_2}{b-a} \int_a^b f\left(\frac{y}{m_2}\right) dy$$
$$= \frac{1}{2}\frac{1}{b-a} \int_a^b \left[m_1 f\left(\frac{x}{m_1}\right) + m_2 f\left(\frac{x}{m_2}\right)\right] dx.$$

This completes the proof of theorem.

Remark 3.5 Under the conditions of Theorem 3.4, if $m_1 = m_2 = 1$, then, the following inequality holds:

$$f\left(\frac{a+b}{2}\right) \leqslant \frac{1}{b-a} \int_{a}^{b} f(x)dx$$

This inequality is the left hand side of Hermite-Hadamard inequality for the convex functions [17].

4. Some new inequalities for (m_1, m_2) -convexity

Dragomir and Agarwal in [3] used the following lemma to prove Theorems.

Lemma 4.1 ([3]) Let $f: I^{\circ} \subseteq \mathbb{R} \to \mathbb{R}$ be differentiable mapping on I° , $a, b \in I^{\circ}$ with a < b. If $f' \in L[a, b]$, then the following equality holds:

$$\frac{f(a) + f(b)}{2} - \frac{1}{b-a} \int_{a}^{b} f(x)dx = \frac{b-a}{2} \int_{0}^{1} (1-2t)f'(ta + (1-t)b) dt.$$

The main purpose of this section is to establish new estimations and refinements of the Hermite-Hadamard inequality for functions whose first derivatives in absolute value are (m_1, m_2) -convex. Also, the inequalities obtained with Hölder

and Hölder-İşcan integral inequalities have been compared and it has been shown that the inequality with Hölder-İşcan inequality gives a better approach than with Hölder integral inequality. Similarly, it will be shown that the result obtained with improved power-mean integral inequalities gives a better approach than power-mean integral inequalities. For this, we will use the following lemma.

Lemma 4.2 Let $f: I^{\circ} \subseteq \mathbb{R} \to \mathbb{R}$ be a differentiable mapping on I° , $m_1 a, m_2 b \in I^{\circ}$ with $m_1 a < m_2 b$. If $f' \in L[m_1 a, m_2 b]$, then the following equality

$$\frac{f(m_1a) + f(m_2b)}{2} - \frac{1}{m_2b - m_1a} \int_{m_1a}^{m_2b} f(x)dx$$
$$= \frac{m_2b - m_1a}{2} \int_0^1 (1 - 2t)f'(m_1ta + m_2(1 - t)b) dt$$

holds for $t \in [0,1]$ and $m_1, m_2 \in (0,1]^2$.

Proof Integrating by parts, it can be seen easily that

$$\frac{m_2b - m_1a}{2} \int_0^1 (1 - 2t) f'(m_1ta + m_2(1 - t)b) dt$$

$$= \frac{m_2b - m_1a}{2} \left[-(1 - 2t) \frac{f(m_1ta + m_2(1 - t)b)}{m_2b - m_1a} \Big|_0^1 - 2 \int_0^1 \frac{f(m_1ta + m_2(1 - t)b)}{m_2b - m_1a} dt \right]$$

$$= \frac{f(m_1a) + f(m_2b)}{2} - \frac{1}{m_2b - m_1a} \int_{m_1a}^{m_2b} f(x) dx.$$

Theorem 4.3 Let $f: I^{\circ} \subseteq \mathbb{R} \to \mathbb{R}$ be a differentiable mapping on I° , $m_1 a, m_2 b \in I^{\circ}$ with $m_1 a < m_2 b$ and $f' \in L[m_1 a, m_2 b]$. If |f'| is (m_1, m_2) -convex on interval $[m_1 a, m_2 b]$, then the following inequality

$$\frac{f(m_1a) + f(m_2b)}{2} - \frac{1}{m_2b - m_1a} \int_{m_1a}^{m_2b} f(x)dx \leqslant \frac{(m_2b - m_1a)\left[m_1\left|f'(a)\right| + m_2\left|f'(b)\right|\right]}{8}$$

holds for $t \in [0,1]$ and $m_1, m_2 \in (0,1]^2$.

Proof Using Lemma 4.2 and the inequality

$$f'(m_1ta + m_2(1-t)b) \leqslant m_1tf'(a) + m_2(1-t)f'(b),$$

we get

$$\left| \frac{f(m_1a) + f(m_2b)}{2} - \frac{1}{m_2b - m_1a} \int_{m_1a}^{m_2b} f(x)dx \right|$$

$$\leq \left| \frac{m_2b - m_1a}{2} \int_0^1 (1 - 2t)f'(m_1ta + m_2(1 - t)b) dt \right|$$

$$\leq \frac{m_2b - m_1a}{2} \int_0^1 |1 - 2t| \left| f'(m_1ta + m_2(1 - t)b) \right| dt$$

$$\leq \frac{m_2b - m_1a}{2} \int_0^1 |1 - 2t| \left| m_1t \left| f'(a) \right| + m_2(1 - t) \left| f'(b) \right| \right] dt$$

$$= \frac{m_2b - m_1a}{2} \left[m_1 \left| f'(a) \right| \int_0^1 t \left| 1 - 2t \right| dt + m_2 \left| f'(b) \right| \int_0^1 (1 - t) \left| 1 - 2t \right| dt \right]$$

$$= \frac{m_2b - m_1a}{2} \left[\frac{m_1 \left| f'(a) \right|}{4} + \frac{m_2 \left| f'(b) \right|}{4} \right]$$

$$= \frac{(m_2b - m_1a) \left[m_1 \left| f'(a) \right| + m_2 \left| f'(b) \right| \right]}{8}.$$

Remark 4.4 When $m_1 = m_2 = 1$, our result coincides with [3].

Theorem 4.5 Let $f: I^{\circ} \subseteq \mathbb{R} \to \mathbb{R}$ be a differentiable mapping on I° , $m_1 a, m_2 b \in I^{\circ}$ with $m_1 a < m_2 b$ and let q > 1. If the mapping $|f'|^q$ is (m_1, m_2) -convex on interval $[m_1 a, m_2 b]$, then the following inequality

$$\frac{f(m_1a) + f(m_2b)}{2} - \frac{1}{m_2b - m_1a} \int_{m_1a}^{m_2b} f(x)dx$$

$$\leq \frac{m_2b - m_1a}{2} \left(\frac{1}{p+1}\right)^{\frac{1}{p}} \frac{m_1 |f'(a)|^q + m_2 |f'(b)|^q}{2} \tag{1}$$

holds for $t \in [0,1]$ and $m_1, m_2 \in (0,1]^2$, where $\frac{1}{p} + \frac{1}{q} = 1$.

Proof Using Lemma 4.2, Hölder's integral inequality and inequality

$$|f'(m_1ta + m_2(1-t)b)|^q \le m_1t |f'(a)|^q + m_2(1-t) |f'(b)|^q$$

which is the (m_1, m_2) -concexity of $|f'|^q$, we obtain

$$\left| \frac{f(m_1 a) + f(m_2 b)}{2} - \frac{1}{m_2 b - m_1 a} \int_{m_1 a}^{m_2 b} f(x) dx \right|$$

$$\leq \frac{m_2 b - m_1 a}{2} \left(\int_0^1 |1 - 2t|^p dt \right)^{\frac{1}{p}} \left(\int_0^1 \left| f'(m_1 t a + m_2 (1 - t) b) \right|^q dt \right)^{\frac{1}{q}}$$

$$\leq \frac{m_2 b - m_1 a}{2} \left(\frac{1}{p+1} \right)^{\frac{1}{p}} \left(\int_0^1 \left[m_1 t \left| f'(a) \right|^q + m_2 (1 - t) \left| f'(b) \right|^q \right] dt \right)^{\frac{1}{q}}$$

$$= \frac{m_2 b - m_1 a}{2} \left(\frac{1}{p+1} \right)^{\frac{1}{p}} \frac{m_1 \left| f'(a) \right|^q + m_2 \left| f'(b) \right|^q}{2}.$$

Remark 4.6 When $m_1 = m_2 = 1$, our result coincides with [3].

Theorem 4.7 Let $f: I^{\circ} \subseteq \mathbb{R} \to \mathbb{R}$ be a differentiable mapping on I° , $m_1a, m_2b \in I^{\circ}$ with $m_1a < m_2b$ and let $f' \in L[m_1a, m_2b]$. If the mapping $|f'|^q$ is (m_1, m_2) -convex on interval $[m_1a, m_2b]$, for $q \geqslant 1$, then the following inequality

$$\frac{f(m_1a) + f(m_2b)}{2} - \frac{1}{m_2b - m_1a} \int_{m_1a}^{m_2b} f(x)dx \leqslant \frac{m_2b - m_1a}{4} A^{\frac{1}{q}} \left(m_1 \left| f'(a) \right|^q, m_2 \left| f'(b) \right|^q \right)$$
(2)

holds for $t \in [0,1]$ and $m_1, m_2 \in (0,1]^2$, where $\frac{1}{p} + \frac{1}{q} = 1$ and A is the arithmetic mean.

Proof From Lemma 4.2, well known power-mean integral inequality and (m_1, m_2) -convexity of $|f'|^q$, we have

$$\begin{split} &\left| \frac{f(m_1 a) + f(m_2 b)}{2} - \frac{1}{m_2 b - m_1 a} \int_{m_1 a}^{m_2 b} f(x) dx \right| \\ &\leqslant \frac{m_2 b - m_1 a}{2} \left(\int_0^1 |1 - 2t| dt \right)^{1 - \frac{1}{q}} \left(\int_0^1 |1 - 2t| \left| f'(m_1 t a + m_2 (1 - t) b) \right|^q dt \right)^{\frac{1}{q}} \\ &\leqslant \frac{m_2 b - m_1 a}{2} \left(\int_0^1 |1 - 2t| dt \right)^{1 - \frac{1}{q}} \left(\int_0^1 |1 - 2t| \left[m_1 t \left| f'(a) \right|^q + m_2 (1 - t) \left| f'(b) \right|^q \right] dt \right)^{\frac{1}{q}} \\ &= \frac{m_2 b - m_1 a}{2} \left(\int_0^1 |1 - 2t| dt \right)^{1 - \frac{1}{q}} \left(m_1 \left| f'(a) \right|^q \int_0^1 t \left| 1 - 2t \right| dt + m_2 \left| f'(b) \right|^q \int_0^1 (1 - t) \left| 1 - 2t \right| dt \right)^{\frac{1}{q}} \\ &= \frac{m_2 b - m_1 a}{2} \left(\frac{1}{2} \right)^{1 - \frac{1}{q}} \left(\frac{m_1 \left| f'(a) \right|^q}{4} + \frac{m_2 \left| f'(b) \right|^q}{4} \right)^{\frac{1}{q}} \\ &= \frac{m_2 b - m_1 a}{4} A^{\frac{1}{q}} \left(m_1 \left| f'(a) \right|^q, m_2 \left| f'(b) \right|^q \right). \end{split}$$

Corollary 4.8 Under the assumption of Theorem 4.7 with q = 1, we get

$$\frac{f(m_1a) + f(m_2b)}{2} - \frac{1}{m_2b - m_1a} \int_{m_1a}^{m_2b} f(x)dx \leqslant \frac{m_2b - m_1a}{4} A\left(m_1 \left| f'(a) \right|, m_2 \left| f'(b) \right|\right). \tag{3}$$

Corollary 4.9 Under the assumption of Theorem 4.7 with $m_1 = m_2 = 1$, we get

$$\frac{f(a) + f(b)}{2} - \frac{1}{b - a} \int_{a}^{b} f(x) dx \leqslant \frac{b - a}{4} A^{\frac{1}{q}} \left(\left| f'(a) \right|^{q}, \left| f'(b) \right|^{q} \right).$$

Corollary 4.10 Under the assumption of Theorem 4.7 with $m_1 = m_2 = q = 1$, we get

$$\frac{f(a) + f(b)}{2} - \frac{1}{b-a} \int_{a}^{b} f(x)dx \leqslant \frac{b-a}{4} A\left(\left|f'(a)\right|, \left|f'(b)\right|\right). \tag{4}$$

Theorem 4.11 Let $f: I^{\circ} \subseteq \mathbb{R} \to \mathbb{R}$ be a differentiable mapping on I° , $m_1 a, m_2 b \in I^{\circ}$ with $m_1 a < m_2 b$ and let q > 1. If the mapping $|f'|^q$ is (m_1, m_2) -convex on

interval $[m_1a, m_2b]$, then the following inequality

$$\frac{f(m_1a) + f(m_2b)}{2} - \frac{1}{m_2b - m_1a} \int_{m_1a}^{m_2b} f(x)dx \tag{5}$$

$$\leq \frac{m_2b - m_1a}{2} \left(\frac{1}{2(p+1)}\right)^{\frac{1}{p}} \left(\frac{m_1 |f'(a)|^q}{6} + \frac{2m_2 |f'(b)|^q}{6}\right)^{\frac{1}{q}}$$

$$+ \frac{m_2b - m_1a}{2} \left(\frac{1}{2(p+1)}\right)^{\frac{1}{p}} \left(\frac{2m_1 |f'(a)|^q}{6} + \frac{m_2 |f'(b)|^q}{6}\right)^{\frac{1}{q}}$$

holds for $t \in [0,1]$ and $m_1, m_2 \in (0,1]^2$, where $\frac{1}{p} + \frac{1}{q} = 1$.

Proof Using Lemma 4.2, Hölder-İşcan integral inequality and the (m_1, m_2) -concexity of $|f'|^q$, we obtain

$$\begin{split} &\left|\frac{f(m_1a)+f(m_2b)}{2}-\frac{1}{m_2b-m_1a}\int_{m_1a}^{m_2b}f(x)dx\right| \\ &\leqslant \frac{m_2b-m_1a}{2}\int_0^1|1-2t|\left|f'\left(m_1ta+m_2(1-t)b\right)\right|dt \\ &\leqslant \frac{m_2b-m_1a}{2}\left(\int_0^1(1-t)\left|1-2t\right|^pdt\right)^{\frac{1}{p}}\left(\int_0^1(1-t)\left|f'\left(m_1ta+m_2(1-t)b\right)\right|^qdt\right)^{\frac{1}{q}} \\ &\quad +\frac{m_2b-m_1a}{2}\left(\int_0^1t\left|1-2t\right|^pdt\right)^{\frac{1}{p}}\left(\int_0^1t\left|f'\left(m_1ta+m_2(1-t)b\right)\right|^qdt\right)^{\frac{1}{q}} \\ &\leqslant \frac{m_2b-m_1a}{2}\left(\int_0^1(1-t)\left|1-2t\right|^pdt\right)^{\frac{1}{p}}\left(m_1\left|f'(a)\right|^q\int_0^1t(1-t)dt+m_2\left|f'(b)\right|^q\int_0^1(1-t)^2dt\right)^{\frac{1}{q}} \\ &\quad +\frac{m_2b-m_1a}{2}\left(\int_0^1t\left|1-2t\right|^pdt\right)^{\frac{1}{p}}\left(m_1\left|f'(a)\right|^q\int_0^1t^2dt+m_2\left|f'(b)\right|^q\int_0^1t(1-t)dt\right)^{\frac{1}{q}} \\ &= \frac{m_2b-m_1a}{2}\left(\frac{1}{2(p+1)}\right)^{\frac{1}{p}}\left(\frac{m_1\left|f'(a)\right|^q}{6}+\frac{2m_2\left|f'(b)\right|^q}{6}\right)^{\frac{1}{q}} \\ &\quad +\frac{m_2b-m_1a}{2}\left(\frac{1}{2(p+1)}\right)^{\frac{1}{p}}\left(\frac{2m_1\left|f'(a)\right|^q}{6}+\frac{m_2\left|f'(b)\right|^q}{6}\right)^{\frac{1}{q}}, \end{split}$$

where

$$\int_0^1 (1-t) |1-2t|^p dt = \int_0^1 t |1-2t|^p dt = \frac{1}{2(p+1)}$$
$$\int_0^1 t(1-t) dt = \frac{1}{6}, \quad \int_0^1 (1-t)^2 dt = \int_0^1 t^2 dt = \frac{1}{3}.$$

Remark 4.12 When $m_1 = m_2 = 1$, we get the following inequality:

$$\begin{split} \frac{f(a)+f(b)}{2} - \frac{1}{b-a} \int_a^b f(x) dx \leqslant \frac{b-a}{2} \bigg(\frac{1}{2(p+1)} \bigg)^{\frac{1}{p}} \left[\left(\frac{|f'(a)|^q}{6} + \frac{2|f'(b)|^q}{6} \right)^{\frac{1}{q}} \right. \\ & + \left(\frac{2|f'(a)|^q}{6} + \frac{|f'(b)|^q}{6} \right)^{\frac{1}{q}} \right]. \end{split}$$

Remark 4.13 The inequality (5) gives better result than (1). Let us show that

$$\frac{m_{2}b - m_{1}a}{2} \left(\frac{1}{2(p+1)}\right)^{\frac{1}{p}} \left(\frac{m_{1} |f'(a)|^{q}}{6} + \frac{2m_{2} |f'(b)|^{q}}{6}\right)^{\frac{1}{q}} + \frac{m_{2}b - m_{1}a}{2} \left(\frac{1}{2(p+1)}\right)^{\frac{1}{p}} \left(\frac{2m_{1} |f'(a)|^{q}}{6} + \frac{m_{2} |f'(b)|^{q}}{6}\right)^{\frac{1}{q}}$$

$$\leqslant \frac{m_{2}b - m_{1}a}{2} \left(\frac{1}{p+1}\right)^{\frac{1}{p}} \frac{m_{1} |f'(a)|^{q} + m_{2} |f'(b)|^{q}}{2}.$$

If we use the concavity of $h:[0,\infty)\to\mathbb{R}, h(x)=x^{\lambda}, 0<\lambda\leqslant 1$, we get

$$\frac{m_{2}b - m_{1}a}{2} \left(\frac{1}{2(p+1)}\right)^{\frac{1}{p}} \left(\frac{m_{1} |f'(a)|^{q}}{6} + \frac{2m_{2} |f'(b)|^{q}}{6}\right)^{\frac{1}{q}} + \frac{m_{2}b - m_{1}a}{2} \left(\frac{1}{2(p+1)}\right)^{\frac{1}{p}} \left(\frac{2m_{1} |f'(a)|^{q}}{6} + \frac{m_{2} |f'(b)|^{q}}{6}\right)^{\frac{1}{q}} \\
\leqslant 2\frac{m_{2}b - m_{1}a}{2} \left(\frac{1}{2(p+1)}\right)^{\frac{1}{p}} \left(\frac{1}{2}\right)^{\frac{1}{q}} A^{\frac{1}{q}} \left(|f'(a)|^{q}, |f'(b)|^{q}\right) \\
= \frac{m_{2}b - m_{1}a}{2} \left(\frac{1}{p+1}\right)^{\frac{1}{p}} \frac{m_{1} |f'(a)|^{q} + m_{2} |f'(b)|^{q}}{2},$$

which completes the proof of remark.

Theorem 4.14 Let $f: I^{\circ} \subseteq \mathbb{R} \to \mathbb{R}$ be a differentiable mapping on I° , $m_1 a, m_2 b \in I^{\circ}$ with $m_1 a < m_2 b$ and let $f' \in L[m_1 a, m_2 b]$. If the mapping $|f'|^q$ is (m_1, m_2) -convex on interval $[m_1 a, m_2 b]$, for $q \ge 1$, then the following inequality

$$\frac{f(m_1a) + f(m_2b)}{2} - \frac{1}{m_2b - m_1a} \int_{m_1a}^{m_2b} f(x)dx \leqslant \frac{m_2b - m_1a}{2} \left(\frac{1}{4}\right)^{1 - \frac{1}{q}} \left[\left(\frac{m_1 |f'(a)|^q}{16} + \frac{3m_2 |f'(b)|^q}{16}\right)^{\frac{1}{q}} + \left(\frac{3m_1 |f'(a)|^q}{16} + \frac{m_2 |f'(b)|^q}{16}\right)^{\frac{1}{q}} \right]$$
(6)

holds for $t \in [0,1]$ and $m_1, m_2 \in (0,1]^2$, where $\frac{1}{p} + \frac{1}{q} = 1$.

Proof From Lemma 4.2, improved power-mean integral inequality and (m_1, m_2) -

convexity of $|f'|^q$, we have

$$\begin{split} &\left|\frac{f(m_{1}a)+f(m_{2}b)}{2}-\frac{1}{m_{2}b-m_{1}a}\int_{m_{1}a}^{m_{2}b}f(x)dx\right| \\ &\leqslant \frac{m_{2}b-m_{1}a}{2}\left(\int_{0}^{1}(1-t)\left|1-2t\right|dt\right)^{1-\frac{1}{q}}\left(\int_{0}^{1}(1-t)\left|1-2t\right|\left|f'\left(m_{1}ta+m_{2}(1-t)b\right)\right|^{q}dt\right)^{\frac{1}{q}} \\ &+\frac{m_{2}b-m_{1}a}{2}\left(\int_{0}^{1}t\left|1-2t\right|dt\right)^{1-\frac{1}{q}}\left(\int_{0}^{1}t\left|1-2t\right|\left|f'\left(m_{1}ta+m_{2}(1-t)b\right)\right|^{q}dt\right)^{\frac{1}{q}} \\ &\leqslant \frac{m_{2}b-m_{1}a}{2}\left(\int_{0}^{1}(1-t)\left|1-2t\right|dt\right)^{1-\frac{1}{q}}\left(m_{1}\left|f'(a)\right|^{q}\int_{0}^{1}t(1-t)\left|1-2t\right|dt \\ &+m_{2}\left|f'(b)\right|^{q}\int_{0}^{1}(1-t)^{2}\left|1-2t\right|dt\right)^{\frac{1}{q}}+\frac{m_{2}b-m_{1}a}{2}\left(\int_{0}^{1}t\left|1-2t\right|dt\right)^{1-\frac{1}{q}} \\ &\times\left(m_{1}\left|f'(a)\right|^{q}\int_{0}^{1}t^{2}\left|1-2t\right|dt+m_{2}\left|f'(b)\right|^{q}\int_{0}^{1}t(1-t)\left|1-2t\right|dt\right)^{\frac{1}{q}} \\ &=\frac{m_{2}b-m_{1}a}{2}\left(\frac{1}{4}\right)^{1-\frac{1}{q}}\left[\left(\frac{m_{1}\left|f'(a)\right|^{q}}{16}+\frac{3m_{2}\left|f'(b)\right|^{q}}{16}\right)^{\frac{1}{q}}+\left(\frac{3m_{1}\left|f'(a)\right|^{q}}{16}+\frac{m_{2}\left|f'(b)\right|^{q}}{16}\right)^{\frac{1}{q}}\right], \end{split}$$

where

$$\int_0^1 (1-t) |1-2t| dt = \int_0^1 t |1-2t| dt = \frac{1}{4},$$

$$\int_0^1 t(1-t) |1-2t| dt = \frac{1}{16},$$

$$\int_0^1 t^2 |1-2t| dt = \int_0^1 (1-t)^2 |1-2t| dt = \frac{3}{16}.$$

Corollary 4.15 Under the assumption of Theorem 4.14 with q = 1, we get

$$\frac{f(m_1a) + f(m_2b)}{2} - \frac{1}{m_2b - m_1a} \int_{m_1a}^{m_2b} f(x)dx \leqslant \frac{m_2b - m_1a}{4} A\left(m_1 \left| f'(a) \right|, m_2 \left| f'(b) \right|\right),$$

where A is the arithmetic mean. This inequality coincides with the inequality (3).

Corollary 4.16 Under the assumption of Theorem 4.14 with $m_1 = m_2 = 1$, we get

$$\frac{f(a) + f(b)}{2} - \frac{1}{b - a} \int_{a}^{b} f(x) dx$$

$$\leq \frac{b - a}{2} \left(\frac{1}{4}\right)^{1 - \frac{1}{q}} \left[\left(\frac{|f'(a)|^{q}}{16} + \frac{3|f'(b)|^{q}}{16}\right)^{\frac{1}{q}} + \left(\frac{3|f'(a)|^{q}}{16} + \frac{|f'(b)|^{q}}{16}\right)^{\frac{1}{q}} \right].$$

Corollary 4.17 Under the assumption of Theorem 4.14 with $m_1 = m_2 = q = 1$, we get

$$\frac{f(a)+f(b)}{2} - \frac{1}{b-a} \int_a^b f(x) dx \leqslant \frac{b-a}{4} A\left(\left|f'(a)\right|, \left|f'(b)\right|\right),$$

where A is the arithmetic mean. This inequality coincides with the inequality (4).

Remark 4.18 The inequality (6) gives better result than the inequality (2). That is,

$$\frac{m_{2}b - m_{1}a}{2} \left(\frac{1}{4}\right)^{1 - \frac{1}{q}} \left[\left(\frac{m_{1} |f'(a)|^{q}}{16} + \frac{3m_{2} |f'(b)|^{q}}{16}\right)^{\frac{1}{q}} + \left(\frac{3m_{1} |f'(a)|^{q}}{16} + \frac{m_{2} |f'(b)|^{q}}{16}\right)^{\frac{1}{q}} \right] \\
\leqslant \frac{m_{2}b - m_{1}a}{4} A^{\frac{1}{q}} \left(m_{1} |f'(a)|^{q}, m_{2} |f'(b)|^{q}\right).$$

This remark's proof can be done in a similar way to the Reamark 4.13.

5. Conclusion

In this article, the inequalities obtained with Hölder and Hölder-İşcan and powermean and improved power-mean integral inequalities are compared and results giving better approach are obtained. This method can be applied to different classes of convexity.

References

- [1] S. S. Dragomir, On some new inequalities of Hermite-Hadamrd type for *m*-convex functions, Tamkang Journal of Mathematics, **33** (1) (2002) 45-55.
- [2] S. S. Dragomir, Refinements of the Hermite-Hadamard integral inequality for log-convex functions, Gazette of the Australian Mathematical Society, 28 (3) (2001) 129-134.
- [3] S. S. Dragomir and R. P. Agarwal, Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula, Applied Mathematics Letters, 11 (1998) 91-95.
- [4] S. S. Dragomir and C. E. M. Pearce, Selected Topics on Hermite-Hadamard Inequalities and Applications, RGMIA Monographs, Victoria University, (2000).
- [5] J. Hadamard, Etude sur les proprits des fonctions entires et en particulier d'une fonction considre par Riemann, Journal de Mathmatiques Pures et Appliques, 58 (1893) 171-215.
- [6] İ. İşcan, New refinements for integral and sum forms of Hölder inequality, Journal of Inequalities and Applications, 2019 (2019) 304.
- [7] İ. İşcan, M. Kadakal and A. Aydın, Some New Integral Inequalities for Lipschitzian Functions, An International Journal of Optimization and Control Theories & Applications, 8 (2) (2018) 259-265.
- [8] İ. İşcan, N. Kalyoncu and M. Kadakal, Some New Simpson Type Inequalities for the p-Convex and p-Concave Functions, Communications Faculty of Sciences University of Ankara Series A1-Mathematics and Statistics, 67 (2) (2018) 252-263.
- [9] M. Kadakal, İ. İşcan, H. Kadakal and K. Bekar, On improvements of some integral inequalities, Researchgate, Preprint, (2019), doi: 10.13140/RG.2.2.15052.46724.
- [10] H. Kadakal, M. Kadakal and İ. İşcan, Some New Integral Inequalities for n-Times Differentiable Godunova-Levin Functions, Cumhuriyet Science Journal, 38 (4) (2017) 1-5.
- [11] H. Kadakal, M. Kadakal and İ. İşcan, Some New Integral Inequalities for n-Times Differentiable r-Convex and r-Concave Functions, Miskolc Mathematical Notes, **20** (2) (2019) 997-1011.
- [12] T. Lara, E. Rosales and J. L. Sánchez, New Properties of m-Convex Functions, International Journal of Mathematical Analysis, 9 (15) (2015) 735-742.
- [13] S. Maden, H. Kadakal, M. Kadakal and İ. İşcan, Some new integral inequalities for n-times differentiable convex and concave functions, Journal of Nonlinear Sciences and Applications, 10 (12) (2017) 6141-6148.
- [14] B. Mihaly, Hermite-Hadamard-type inequalities for generalized convex functions, Ph.D. thesis, Journal of Inequalities in Pure and Applied Mathematics, 9 (3) (2008) 63.
- [15] C. P. Niculescu and L. E. Persson, Convex Functions and Their Applications, Springer Science+Business Media, Inc., (2006).
- [16] C. E. M. Pearce, J. Pečaric and V. Šimić, Stolarsky means and Hadamard's inequality, Journal of Mathematical Analysis and Applications, 220 (1998) 99-109.
- [17] J. E. Pečarić, F. Proschan and Y. L. Tong, Convex Functions, Partial Orderings, and Statistical Applications, Academic Press Inc., (1992).
- [18] G. Toader, Some Generalizations of the Convexity, Proceedings of the Colloquium on Approximation and Optimization, (1985) 329-338.
- [19] T. Toplu, İ. İşcan and M. Kadakal, On n-polinomial convexity and some related inequalities, Aims Mathematics, 5 (2) (2020) 1304-1318.

[20] G. Zabandan, A new refinement of the Hermite-Hadamard inequality for convex functions, Journal of Inequalities in Pure and Applied Mathematics, 10 (2) (2009), ID 45.