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Abstract. In this manuscript, a new class of extended (m1,m2)-convex and concave func-
tions is introduced. After some properties of (m1,m2)-convex functions have been given, the
inequalities obtained with Holder and Hélder-i§can and power-mean and improwed power-
mean integral inequalities have been compared and it has been shown that the inequality
with Hoélder-Iscan inequality gives a better approach than with Hoélder integral inequality and
improwed power-mean inequality gives a better approach than with power-mean inequality.
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1. Introduction
Definition 1.1 A function f: I C R — R is said to be convex if the inequality
flte+ (1 —-t)y) <tflx) + (1 —1)f(y)

is valid for all x,y € I and t € [0, 1]. If this inequality reverses, then the function
f is said to be concave on interval I # ().
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Definition 1.2 f: [a,b] — R be a convex function, then the inequality

f<a+b> /f )—2i—f(b)

is known as the Hermite-Hadamard inequality.

Convexity theory has appeared as a powerful technique to study a wide class of
related problems in pure and applied sciences. Some improvements and refinements
of the H-H inequality on convex functions have been extensively investigated by a
number of authors (e.g., [1, 5]) and the authors obtained a new refinement of the
H-H inequality for convex functions. Also, in recent years, readers can find differ-
ent convex functions classes and Hermite-Hadamard type inequalities obtained for
these classes in ([1, 2, 7, 8, 10, 11, 15, 19]) and references therein.

Definition 1.3 ([18]) The function f : [0,b] — R, b > 0, is said to be m-convex
function, where m € [0, 1]; if we have

ftz+m(l—t)y) <tf(z)+m(l—1)f(y)

for all z,y € [0,b] and ¢ € [0,1]. We say that the function f is m-concave function
if (—f) is m-convex.

Obviously, for m = 1 the above definition recaptures the concept of standard
convex functions on [a,b]; and for m = 0 the concept star-shaped functions. For
many papers connected with m-convex and (a, m)-convex functions see ([2, 4, 12—
14, 16, 17, 20]) and the references therein.

In [6], Iscan gave a refinement of the Holder integral inequality as follows:

Theorem 1.4 (Holder-Iscan integral inequality [6]) Letp > 1 and %—i—% =1.
If f and g are real functions defined on interval [a,b] and if |f|P, |g|? are integrable
functions on [a,b] then

[ (o)’ ([-awore)
) (/ab(a:—a)‘f(x)‘pdx>; (/ab(a:—a) l9( )\qdm)l}

An refinement of power-mean integral inequality as a different version of the
Holder-Iscan integral inequality can be given as follows:

Theorem 1.5 (Improved power-mean integral inequality [9]) Let ¢ > 1. If
f and g are real functions defined on interval [a,b] and if | f|, |f| |g|? are integrable
functions on [a,b] then

[ ot ‘dx<1a{(/ab(b—x)|f(m)dx>1; ([ o=@t >rqdm)2
([0 \f(x>!dw>1; ([w-alsw) g(x)‘qu);}
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2. Definition of (m;, my)-convex function

In this section, we begin by setting some algebraic properties for (mq,ms)-convex
functions.

Definition 2.1 The function f : [0,b] — R, b > 0 is said to be (m1, ma)-convex, if

[ (mate +mo(1 —t)y) < matf(x) +ma(l —1)f(y)

for all z,y € I, t € [0,1] and (mq,ms) € (0, 1]?.

We will denote by Ky, m, (b) the class of all (m1, mg)-convex functions on interval
I for which f(0) < 0.

Definition 2.2 Let f:[0,b] — R. If f(tz) < tf(x) is valid for all x € [0,b], then
we say that f(x) is an starshaped function on [0, ].

Definition 2.3 Let f : [0,b] — R and m; € (0,1]. If f(mitz) < matf(x) is
valid for all z € [0,b] and ¢ € [0,1], then we say that the function f(z) is an
mi-starshaped function on [0, b]. Specially, for m; = 1, we have f (tz) < tf(x).

Remark 2.4 In Definition 2.1, if we choose mo = 0, we get the concept of («, my)-
starshaped functions on [0, b].

Proposition 2.5 If the function f is in the class Ky, m,(b), then it is mi-
starshaped.

Proof For any x € [0,b], t € [0,1] and (m1, m2) € (0, 1]?, we have
f(mitz) = f (mytz +ma(l —t).0) < mytf(x) +mo(l —1)f(0) < mitf(x).

Specially, for m; = 1, we have f (tx) < tf(x). Lemma is proved. [ ]
Following theorems can be proved easily.

Theorem 2.6 Let f,g:[0,b] — R. If f and g are (m1, mg)-convez, then f + g is
(mq, m2)-convex and for c € R (¢ > 0) cf is (m1, ma)-conver.

Theorem 2.7 Let f be a (my,mga)-convex function. If the function g is an
(m1, mg)-conver and increasing, then the function gof is an (mi, ms)-convex.

Theorem 2.8 Let f,g:[0,b] — R are both nonnegative and monotone (increasing
or decreasing). If f and g are (my, ma)-convex function, then fg is (m1, mg)-convex
function under the condition [f(z) — f(y)] [9(y) — g(x)] < 0.

Theorem 2.9 Let mi,mg € [0,1],b > 0 and f, : [0,b] = R be an arbitrary family
of (my, mga)-convex functions and let f(x) = sup,, fo(x). If

J = {ue 0,0 : —, L € [0,8] andf(u),f<7;‘1> f(“) <oo}

mip ma ma

is nonempty, then J is an interval and f is (m1, ma)-convex on J.

Theorem 2.10 Let f : [0,b] — R be a finite function on - b

ma ? mo
[0,0%], (m1, ma)-conver with my,ma € (0,1]. Then the function f is on bounded

any closed interval [a,b].
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3. Hermite-Hadamard inequality for (mj, msy)-convex functions

The goal of this paper is to develop concepts of the (m;, ma)-convex functions and
to establish some inequalities of H-H type for these classes of functions.

Theorem 3.1 Let the function f : [0,b*] = R, b* > 0, be an (mi, ma)-convex
functions with mi,ma € (0,1)%. If 0 < a < b < b* and f € Lla,b], then the
following inequalities holds:

muf () +maf () mif (&) +maf ()
/f < min 5 , 5

b—a

Proof By using (mi, mg)-convexity of the function f, if the variable is changed as
u=ta+ (1 —1t)b, then
/ flu
—a

) 2]
() s ()

I-/fta—i— (1—1)b

2
and similarly for z = tb + (1 — t)a, then
1_/ Ftb+(1—ba _a/ £z g/ol[tf(b>+(1—t)f(a)]dt
_mif () et (i)
B 2

So, we have

o P £ ) o (8) s ()

2 ’ 2

b—a

This completes the proof of theorem. [ |

Remark 3.2 Under the conditions of Theorem 3.1, if m; = 1, mg = m, then, the
following inequality holds:

2 ’ 2

mm{f<a>+mf(,§;) f(b)+mf(#1)}‘

This inequality is the Hermite-Hadamard inequality for the m-convex functions [1].

Remark 3.3 Under the conditions of Theorem 3.1, if m; = mgy = 1, then, the
following inequality holds:

b
[ oo < LOEIO)

b—a J, 2
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This inequality is the Hermite-Hadamard inequality for the convex functions [2].

Theorem 3.4 Let the function f:]0,6*] — R, b* > 0,be an (ml,mg) -conves
functions with my,ma € (0,1]2. If m = min {ml,mg} 0<a<b< = <b* and
felL [a, %], then the following inequalities holds:

(3t L s () w2

Proof By the (m1, mg)-convexity of the function f, we have

a+b\ [mltmil + ma(1 —t)miz] + [ml(l —1);% + mat - }
("5 =+ .
1 a mo b 1 b mi a

. %mlf (m+(11— t)b> PR (tb+(1 —t)a> |

m 2 mo

Now, if we take integral the last inequality on ¢ € [0, 1] and choose x = ta+ (1 —t)b
and y = tb+ (1 — t)a, we deduce

a—+b my b x 1 mo b Y
f( 2 )< b—a/af<m)d“zb /af(m)dy
() e ()]
—a J, m1 ma2

This completes the proof of theorem. [ |

1
2
1
2

Remark 3.5 Under the conditions of Theorem 3.4, if m; = mo = 1, then, the
following inequality holds:

f<a+b> /f

This inequality is the left hand side of Hermite-Hadamard inequality for the convex
functions [17].

4. Some new inequalities for (mq, my)-convexity

Dragomir and Agarwal in [3] used the following lemma to prove Theorems.

Lemma 4.1 ([3]) Let f: I° C R — R be differentiable mapping on I°, a,b € I°
with a < b. If f' € Lla,b], then the following equality holds:

1
f()';f —a/f 0(1_2t)f’(m+(1—t)b)dt.

The main purpose of this section is to establish new estimations and refine-
ments of the Hermite-Hadamard inequality for functions whose first derivatives in
absolute value are (mi,mg)-convex. Also, the inequalities obtained with Holder
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and Holder-Iscan integral inequalities have been compared and it has been shown
that the inequality with Hélder-Iscan inequality gives a better approach than with
Holder integral inequality. Similarly, it will be shown that the result obtained with
improwed power-mean integral inequalities gives a better approach than power-
mean integral inequalities. For this, we will use the following lemma.

Lemma 4.2 Let f : I° CR — R be a differentiable mapping on I°, mia, mob € I°
with mya < mab. If f' € Lmia, meb], then the following equality

f(mia) + f(mad) 1 mab
2 mob — mia / flw)dx

mia
mob — mya

1
= 2/0 (1 —2¢t)f" (myta + mo(1l —t)b) dt

holds for t € [0,1] and my,ms € (0, 1]2.

Proof Integrating by parts, it can be seen easily that

mab — mia

5 /O (1 —2t)f" (myta +ma(1 —t)b)dt

mab — mia
= [—(1—-2¢
2 { ( ) maob — mia

_ flma) + f(meb) 1 mef(x)dx

2 mab —mia Jp, .

/ f(mita+meo(1 — )b)dt

maob — mia

Theorem 4.3 Let f:1° CR — R be a differentiable mapping on 1°, mia, mob €
I° with mya < mab and f' € L[mya,mab]. If |f'| is (m1, m2)-convex on interval
[m1a, mobl, then the following inequality

f(mia) 4 f(m2b) 1 mab (m2b —mya) [my [f'(a)| + ma [f'(D)]]
2 B mob — mya / fl@)dz < 8

mia

holds for t € [0,1] and m1,ms € (0, 1]2.

Proof Using Lemma 4.2 and the inequality

[ (mata +ma(1 —t)b) <matf'(a) +ma(1—1t)f'(b),
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we get

‘f(mm) + f(mab) 1 /mgb

2 mab — mia

flx)dx

mia

mob — mia
2

N

/1(1 —2t) f' (mata + ma(1 — t)b) dt‘
0

maob — mia

2

N

1
/ |1 —2t||f' (mita + ma(1 — t)b)| dt
0

N

mab —mia [*
21)21/0 ‘]_—Qt‘ [mﬂj'f’(a)’+m2(1_t)’f/(b)|] dt

mob — mia

1 1
_ mab e [ml‘f(aﬂ/o ty1—2tydt+m2\f(b)\/0 (1= 1)1 — 2t dt

mab—mia [ma |f'(a)]  ma |f'(b)

_ b {14 s }

_ (mab = maa) [ma | /()] + ma S (5))
8

Remark 4.4 When m; = mgy = 1, our result coincides with [3].

Theorem 4.5 Let f:I° CR — R be a differentiable mapping on I°, mia, mob €
I° with mia < meb and let ¢ > 1. If the mapping |f'|? is (my, mz)-conver on
interval [mya, mab], then the following inequality

mab
f(maa) + f(mab) 1 / F(a)da

2 mab —mia S, 4

_mab—ma (1 v ma | f(@)] + ma | F(b)[2
= 2 p+1 2

holds for t € [0,1] and m1, ma € (0,1]2, where % + % =1

Proof Using Lemma 4.2, Holder’s integral inequality and inequality

| (mita+ ma(1 = t)b)|* <mat|f(a)|* + ma(1 —t) | f/(b)|°

which is the (my, ms)-concexity of |f/|?, we obtain
b 1 mab
 mgb—mia mia

<m2b me /ll—ztypdt>p(/11f’(m1ta+mz(1—t)b)‘th>q
0

(
mab e ( 1)( wmvmW+mm—wM@mwf
(5

)imu%W+mu%w
! .

P+

mab — mla

p+1
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Remark 4.6 When m; = mg = 1, our result coincides with [3].

Theorem 4.7 Let f:I° CR — R be a differentiable mapping on I°, mia, mob €
I° with mya < mab and let f' € L[mya,mab]. If the mapping |f'|* is (m1,m2)-
convez on interval [mya, mabl, for ¢ > 1, then the following inequality

2 maob — mia

foma) £ fmah) L [ g < M 4 )
= 4

smz | ®)[)
(2)

mia

holds for t € [0,1] and m1,mg € (0,1)%, where 1% + % =1 and A is the arithmetic
mean.

Proof From Lemma 4.2, well known power-mean integral inequality and (m;, ms2)-

convexity of |f’|?, we have
f(mia) + f(mab) 1 /me N
‘ 2 mab —mia Jp,,. f(@)dz

_ 1 1-3 1 i
M(/ \pu\dt) (/ |1*2t|}fl(mltaJF”LZ(l*t)b”th)

mzb*mla (/ \1—2f\(it)

mab —mia mla =5 q

= \1—2t|dt my |f'(a } t|1—2t|dt+m2|f )|? 1—t|1—2t|dt
0

,mzb mia } K ml\f a)l! +m2\f()\q .
- 2 4

N

! / |1 —2¢| TrLlf’f ’q+TrL2 (1-1%) ‘f |}dt)q

//\

mob — mla

LA G | £ @) o |7 0.

Corollary 4.8 Under the assumption of Theorem 4.7 with g =1, we get

f(maa) + f(mad) B 1 mab f(@)dz < mab — mia

2 ma2b —mia Jp, . 4

A (my|f'(a)|,mz|f(B)]) .
3)

Corollary 4.9 Under the assumption of Theorem 4.7 with m1 = mg = 1, we get

flay+f) 1 b
5 _b—a/af(x)d$<

Corollary 4.10 Under the assumption of Theorem 4.7 with m1 = my = q¢ = 1,

we get
f(a)+ f(b b b
(CL)2 () bla/af(;)dl.<

Theorem 4.11 Let f: I° CR — R be a differentiable mapping on I°, mia, mob €
° with mya < mob and let ¢ > 1. If the mapping |f'|? is (m1, mz)-conver on

Ok

HOIDE
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interval [mya, mab], then the following inequality

2 meob — mia

mab
f(mla) + f(me) 1 / f(x)dac (5)

mia

<m2b—m1a( 1 >i<m1|f'<a>"+2m2!f'<b>|q)i
h 2 2p+1) 6 6

mgb — mia 1 \* /2mif@)  ma|f (b))
T <2<p+1>>< 6 6 )

holds for t € [0,1] and my,mg € (0,1]?, where zla + % =1.

Proof Using Lemma 4.2, Holder-Iscan integral inequality and the (mq,msg)-

concexity of |f/|?, we obtain
f(maa) + f(mab) 1 /mzb
’ 2 m2b —mia J,. f(@)de

N

_ 1
M/ |1 —2t| | f (mita + ma(1 — t)b)| dt
0
maob — mia 1 ’ - 1 ., \ :
gf(/ (1_15)‘1—2“”6#) (/ (1 —t) | £ (mita + ma(1 — )b)|" dt
0 0

_ 1 B 1 :
+M</ t|1—2t|pdt> (/ t|f’(m1m+m2(1—t)b)|th>
0 0

. M </01(1_t)1—2tpdt); (ml |f/(a)|q/01t(1_t)dt+m2|f/(b)|q/01(1—t)2dt);

— 1 i 1 1 é
*M </ t|1*2t|”dt> <m1|f’(a)|q/ t2dt+m2|f/(b)|q/ t(kt)dt)
0 0 0

_ mob e (1 )é (m1|f'<a>|q+2m2|f'<b>|‘I>3
- 2 2(p+1) 6 6

mab — mya 1 v2ma|f (@)Y ma|f )|\
P () ()

where

1 1
1
1-—t 1—2tpdt:/tl—2tpdt:
[a-on—apa= [ep-opa-

1 1 1 1 1
/ t(1 —t)dt = -, / (1 —t)%dt :/ t2dt = .
0 6 Jo 0 3

Remark 4.12 When m; = mg = 1, we get the following inequality:

f(a) + f(b) I b—a 1 z F@l | 2AF G\
2 _ba/af(x)dx< 2 <2(p+1)> [( ¢ T )

2 (@) | | (B)" )
+ (ALl ) ]
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Remark 4.13 The inequality (5) gives better result than (1). Let us show that

b (1 )é (relpr, 2 f’(bw)i
2 2(p+1) 6 6

b (] >i (2l f'<b>rq>3
2 2(p+1) 6 6

P mab — mia 1 my | f'(a)|* +ma | f'(b)]*
S 2 p+1 2 '

If we use the concavity of h : [0,00) = R, h(z) = 2},0 < A < 1, we get

mzb — mia (2( 1 )i (m1 F@l", 2my f'<b>|q>i

2 p+1) 6 6
mab—ma [ 1 \7 (2my|f'(@)]"  ma|f(B)|7\
T <2<p+1>) ( 6 6 )

combme () () oo

_mgb—m1a< 1 )im1|f’<a>|q+m2\f/<b>q

2 p+1 2 ’

which completes the proof of remark.

Theorem 4.14 Let f : I° CR — R be a differentiable mapping on 1°, mia, mob €
I° with mia < mab and let f' € L[mia, mab]. If the mapping |f'|* is (m1, m2)-
convez on interval [mia, mab], for ¢ > 1, then the following inequality

N

f(ma) + flmab) 1 /be(l,)dx m2b—m1a<1>1—3 Kml\{'ﬁ(anq

2 _mgb —mia 2 4

mia

L 3ms ﬁ(b)ﬁ)é s <3m1 @) m f’(b)!q> i} ©)

16 16

holds for t € [0,1] and my, ms € (0,1]2, where % + % =1

Proof From Lemma 4.2, improwed power-mean integral inequality and (m1, ma)-
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convexity of |f’|?, we have
flmia) + f(mgb) 1 /mzb
‘ 2 maeb —mia Ji,,q f(@)de

< mabZma </01(1 —t)1- 2t|dt)1_‘l' (/01(1 — )1 = 2] | (mata + ma(1 —t)bﬂth)q

_ 1 1-1 1 ;
+M (/ t1—2t|dt> (/ t|1—2t||f’(m1ta+m2(1_t)b)|th>
0 0
mob — mia 1 1-2 1
cmnzme ([ <1—t)|1—2t|dt) <m1|f’(a)|q/ o1 — 1) |1 — 21] di
0 0
e [ 2 © meb—mia 1 1=
+m2}f (b)| (1*t) ‘1*2t|dt +f t‘1*2t|dt
0 0
1 1 %
X (m1|f’(a)|q/ t2|1—2t\dt+m2|f’(b)|q/ t(l—t)1—2t|dt>
0 0

_ mab—mia (1)1i Kml S @I, 3ms |f’<b>q>i N (3ml F@" |, my f’(b)ﬂﬂ |

4

2 16 16 16 + 16

where

1 1 1
/(1—t)\1—2t\dt—/ L1 —2t|dt = 1,
0 0 4

1 1
/ t(1—t) |1 —2t|dt = —,
0 16

1 1 3
/t2|1—2t|dt:/(1—t)2\1—2tdt:.

]
Corollary 4.15 Under the assumption of Theorem 4.14 with ¢ =1, we get
f(m1a) + f(msh) L mab—mua , ,
_ < M2b—mia
2 mab —mia S, fla)dr < 4 A (m1 ‘f (a)| , M2 |f (b) ) )

where A is the arithmetic mean. This inequality coincides with the inequality (3).

Corollary 4.16 Under the assumption of Theorem 4.14 with m1 = mo = 1, we
get

2
cre ) gy (g gy

Corollary 4.17 Under the assumption of Theorem 4.14 with m1 = mg = q =1,
we get

fla)+f0) 1
o [t

E

fla)+ f(b) _
2

b —a
i [ e <P @] o),
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where A is the arithmetic mean. This inequality coincides with the inequality (4).

Remark 4.18 The inequality (6) gives better result than the inequality (2). That

is,

maob — mia

~

mab — mya (1)1—2 (m F@l, 3m; |f'<b>|q>3 . <3m1 1F (@)

4

2 16 16

ma | f'(B)|7 *
16 + 16

A | @] ma | £ 0)).

This remark’s proof can be done in a similar way to the Reamark 4.13.

5.

Conclusion

In this article, the inequalities obtained with Holder and Holder-Iscan and power-
mean and improwed power-mean integral inequalities are compared and results
giving better approach are obtained. This method can be applied to different classes
of convexity.
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