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Abstract. This paper analyzes a discrete-time Geo/Geo/c queueing system with multiple
working vacations and reneging in which customers arrive according to a geometric process. As
soon as the system gets empty, the servers go to a working vacations all together. The service
times during regular busy period, working vacation period and vacation times are assumed
to be geometrically distributed. Customers waiting for service are subject to reneging and
the reneging times are also assumed to be geometrically distributed. The explicit expressions
for the steady-state probabilities are obtained recursively from the difference equations that
represent the model. Closed form expressions of the system size are also derived both during
regular busy period and during WV . In addition, we obtain some other performance measures
and a cost model is formulated to determine the optimal service rate during working vacation.
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1. Introduction

In classical vacation queues, the server completely stops service during the vacation
period. However, there are numerous situations where the server remains active and
provide service with lower rate during the vacation period. Such a vacation policy is
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known as working vacation (WV ). Servi and Finn [11] introduced this class of semi-
vacation policy. They studied an M/M/1 queue with multiple working vacations.
Wu and Takagi [18] generalized Servi and Finn’s [11] M/M/1/WV queue to an
M/G/1/WV queue. Banik et al. [3] studied a GI/M/1/N WV queue with limited
waiting space. Liu et al. [9] derived the stochastic decomposition results in an
M/M/1 queue with WV . An M/G/1 queue with exponential WV was analyzed
by Li et al. [8].
Considerable interest in discrete-time queues has arisen because of their poten-

tial applications in slotted digital computer, communication system, etc. The early
studies of discrete-time queues are found in Meisling [10], Hunter[4], etc. The study
of discrete-time multi-server queues was conducted Artalejo and Lopez- Herrero [2].
Li and Tian [5] presented the analysis of discrete-time Geo/Geo/1 queue with sin-
gle working vacation. The detailed analysis of discrete-time Geo/G/1 queues with
variety of vacation policies are given by Takagi [12]. Tian and Zhang [14] presented
a discrete-time GI/Geo/1 queue with multiple vacations. Alfa[1] analyzed a class
of discrete-time vacation models with non-exhaustive service in which inter-arrival
times, service times, vacation times and operational times follow phase type distri-
bution. Li and Tian [6] considered a discrete-time GI/Geo/1 queue with WV and
vacation interruption. Li et al. [7] considered a discrete-time GI/Geo/1 queue with
MWV under EAS and LAS schemes. Tian et al. [13] analyzed the discrete-time
Geom/Geom/1 queue with multiple working vacations under LAS −DA. Vijaya
Laxmi and Jyothsna [16] analyzed a discrete-time finite buffer renewal input queue
with multiple working vacations where services are performed in batches of maxi-
mum size b. Vijaya Laxmi et al. [17] presented a discrete-time single server finite
buffer queue with single working vacation wherein the customers decide either to
join the queue or balk. Recently, a retrial queue with working vacation for the batch
arrival GeoX/Geo/1 queue has been analyzed by Upadhyaya [15] by considering
the general early arrival system.

2. Model description

Let us consider a discrete-time Geo/Geo/c queueing system with MWV s under
LAS −DA (late arrival system, delayed access) policy, where the time is divided
into constant length intervals (called slots) and the probability of an arrival and
a departure occurring simultaneously is not zero. A potential arrival occurs in
the interval (t−, t) and potential departure occurs in the interval (t, t+) for t =
0, 1, 2, · · · . The DA means that an arrival finding a server free starts its service
time in the next slot. In order to formulate the model, we assume the following:
Inter-arrival times of two successive arrivals are independent and identically dis-

tributed (i.i.d) random variables and follow geometric distribution with probability
mass function (p.m.f) :

P{A = m} = λλ̄m−1, m ≥ 1, 0 < λ < 1.

In MWV policy, servers are allowed to go back to working vacation if the system
remains empty at the end of a vacation. Suppose the beginning and ending of
vacation occur at the epoch which is similar to t in shape. The service is provided
with rate µ and at the end of a service if there is no customer in the system, servers
begin synchronous WV , i.e., they remain dormant between the service completion
epoch in (t, t+) and the next arrival epoch in ((t+ 1)−, t + 1). If some customers
arrive in ((t+ 1)−, t+1), the dormant period will last until the beginning of epoch
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Figure 1. various time epochs in LAS −DA.

of service in (t+ 1, (t+ 1)+); otherwise, the servers continues to be dormant until
the first vacation is completed and either proceed to the next WV or return to the
regular busy period based on the availability of customers in the system. During
WV , if customer arrives, the servers provide service with a rate η.
The service times during regular busy period (Sb) and service times during work-

ing vacation period (SWV ) are independently and geometrically distributed with
probability mass functions (p.m.fs) given respectively as:

P{Sb = m} = µµ̄m−1, m ≥ 1, 0 < µ < 1,

and

P{SWV = m} = ηη̄m−1, m ≥ 1, 0 < η < 1.

This means that for any busy server the probability that it will finish the undergoing
service in the next slot is µ and η respectively.
The average service rate during regular busy period when there are n customers
in the system is given by

µn =

{
1− µn, 0 ⩽ n ⩽ c
1− µc, n ⩾ c+ 1

The average service rate during working vacation period when there are n cus-
tomers in the system is given by

ηn =

{
1− ηn, 0 ⩽ n ⩽ c
1− ηc, n ⩾ c+ 1

The servers begin a working vacation of random length V at the epoch when the
queue becomes empty. The vacation times are independently and geometrically
distributed with probability mass function (p.m.f):

P{V = m} = θθ̄m−1, m ≥ 1, 0 < θ < 1,

After joining the queue each customer will wait a certain length of time T for
service to begin. If it has not begun by then, he will get impatient and leave the
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queue without getting service. The impatience time T is geometrically distributed
with probability mass function (p.m.f)

P{T = m} = αᾱm−1, m ≥ 1, 0 < α < 1,

where α is the rate of reneging. The average rate of reneging when there are n
customers in the system is given by

αn =

{
0, 0 ⩽ n ⩽ c
1− αn−c, n ⩾ c+ 1.

In the sequel, for any real number x ∈ [0, 1], we denote x̄ = 1− x.
If servers instantly find a customer at WV completion, they return to regular

busy period; otherwise, they continue to take WV s. The arrival times, service
times during regular busy period and working vacation period, the vacation times
and the reneging times are assumed to be mutually independent. In addition, the
service discipline is taken to be first in first out (FIFO).

3. Analysis of the model

In this section, we analyze the queueing model with the objective of obtaining the
steady state probabilities when the servers are at different states.
Let L(t+) denote the number of customers in the system at time t+ and J(t+)

denote the status of the server at time t+, which is defined as follows:

J(t+) =

{
0, the servers are on working vacation at time t+

1, the servers are on regular busy period at time t+.
The process {(L, J)} defines a discrete-time Markov process with state space
Ω = {(n, j) : n ≥ 0,j = 0, 1} .
Let Pn,j = P {L = n, J = j} , n ≥ 0, j = {0, 1} denote the steady-state proba-

bilities of the process {(L, J)}. The set of balance equations are written as:

P0,0 = λP0,0 + (λ(η1α1 + η1α1) + λη1α1)P1,0 + λη2α2P2,0

+(λ(µ1α1 + µ1α1) + λµ1α1)P1,1 + λµ2α2P2,1, (1)

Pn,0 = θ[ληn−1αn−1Pn−1,0 + (ληnαn + λ(ηnαn + ηnαn))Pn,0

+(λ(ηn+1αn+1 + ηn+1αn+1) + ληn+1αn+1)Pn+1,0

+ληn+2αn+2Pn+2,0], 1 ⩽ n ⩽ N − 3, (2)

PN−2,0 = θ[ληN−3αN−3PN−3,0 + (ληN−2αN−2 + λ(ηN−2αN−2 + ηN−2αN−2))PN−2,0

+(λ(ηN−1αN−1 + ηN−1αN−1) + ληN−1αN−1)PN−1,0

+ηNαNPN,0], (3)

PN−1,0 = θ[ληN−2αN−2PN−2,0 + (ληN−1αN−1 + λ(ηN−1αN−1 + ηN−1αN−1))PN−1,0

+(ηNαN + ηNαN )PN,0], (4)

PN,0 = θ[ληN−1αN−1PN−1,0 + ηNαNPN,0], (5)

P1,1 = (λµ1α1 + λ(µ1α1 + µ1α1))P1,1 + (λ(µ2α2 + µ2α2) + λµ2α2)P2,1

+λµ3α3P3,1 + θ[λP0,0 + (λη1α1 + λ(η1α1 + η1α1))P1,0

+(λ(η2α2 + η2α2) + λη2α2)P2,0 + λη3α3P3,0], (6)
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Pn,1 = λµn−1αn−1Pn−1,1 + (λµnαn + λ(µnαn + µnαn))Pn,1

+(λ(µn+1αn+1 + µn+1αn+1) + λµn+1αn+1)Pn+1,1 + λµn+2αn+2Pn+2,1

+θ[ληn−1αn−1Pn−1,0 + (ληnαn + λ(ηnαn + ηnαn))Pn,0

+(λ(ηn+1αn+1 + ηn+1αn+1) + ληn+1αn+1)Pn+1,0

+ληn+2αn+2Pn+2,0], 2 ⩽ n ⩽ N − 3, (7)

PN−2,1 = λµN−3αN−3PN−3,1 + (λµN−2αN−2 + λ(µN−2αN−2 + µN−2αN−2))PN−2,1

+(λ(µN−1αN−1 + µN−1αN−1) + λµN−1αN−1)PN−1,1 + µNαNPN,1

+θ[ληN−3αN−3PN−3,0 + (ληN−2αN−2 + λ(ηN−2αN−2 + ηN−2αN−2))PN−2,0

+(λ(ηN−1αN−1 + ηN−1αN−1) + ληN−1αn+1)PN−1,0

+ηNαNPN,0], (8)

PN−1,1 = λµN−2αN−2PN−2,1 + (λµN−1αN−1 + λ(µN−1αN−1 + µN−1αN−1))PN−1,1

+(µNαN + µNαN )PN,1

+θ[ληN−2αN−2PN−2,0 + (ληN−1αN−1 + λ(ηN−1αN−1 + ηN−1αN−1))PN−1,0

+(ηNαN + ηNαN )PN,0], (9)

PN,1 = λµN−1αN−1PN−1,1 + µNαNPN,1

+θ[ληN−1αN−1PN−1,0 + ηNαNPN,0], (10)

where we assume that the buffer space N is large compared to c. The normalizing
condition is given by

N∑
n=0

Pn,0 +
N∑

n=1

Pn,1 = 1. (11)

The state transition diagram of the model is presented in Figure 2. In the Figure,
the subscriptions used are as given below:

(1) Transitions due to arrival of a customer during WV

av n = θληnαn, n = 0, 1, 2, . . . , N − 1.

(2) Transitions due to arrival of a customer during regular busy period

ab n = λµnαn, n = 1, 2, . . . , N − 1.

(3) Transitions due to departure of a customer during WV

dv 1 = λ(η1α1 + η1α1) + λη1α1,

dv n = θ[λ(ηnαn + ηnαn) + ληnαn], n = 2, 3, . . . , N − 1,

dv N = θ(ηNαN + ηNαN ),

Due to departure of two customers at a time due to simultaneous service
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and reneging

ddv n = θληnαn, n = c+ 1, c+ 2, , . . . , N − 1,

ddv N = θηNαN .

(4) Transitions due to departure of a customer during regular busy period

db n = λ(µnαn + µnαn) + λµnαn, n = 2, . . . , N − 1,

db N = µNαN + µNαN .

Due to departure of two customers at a time due to simultaneous service
and reneging

ddb n = λµnαn, n = c+ 1, c+ 2, , . . . , N − 1,

ddb N = µNαN .

(5) Transition from state on to the same state (loop) during WV

sv 0 = λ,

sv n = θ[λ(ηnαn + ηnαn) + ληnαn], n = 1, 2, . . . , N − 1,

sv N = θηNαN .

(6) Transition from state on to the same state (loop) during regular busy period

sb n = λ(µnαn + µnαn) + λµnαn, n = 1, 2, . . . , N − 1,

sb N = µNαN .

(7) Vacation completion: Transition from WV with i customers to regular busy
period with j customers denoted by vi, j

vi, i− 1 = θ[λ(ηiαi + ηiαi) + ληiαi],

vi, i− 2 = θληiαi.

vi, i = θ[λ(ηiαi + ηiαi) + ληiαi],

vi, i+ 1 = θληiαi.

To obtain the steady state probabilities Pn,0, 0 ⩽ n ⩽ N and Pn,1, 1 ⩽ n ⩽ N ,
we solve the equations (1) - (10).
Solving equations (2) - (5) recursively, we find

Pn,0 = anPN,0, 0 ⩽ n ⩽ N, (12)
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where

aN = 1, (13)

aN−1 =
1− θηNαN

θληN−1αN−1

(14)

aN−2 = {(1− θ(ληN−1αN−1 + λ(ηN−1αN−1 + ηN−1αN−1)))aN−1

−θ(ηNαN + ηNαN )}(θληN−2αN−2)
−1 (15)

aN−3 = [(1− θ(ληN−2αN−2 + λ(ηN−2αN−2 + ηN−2αN−2)))aN−2

−θ(λ(ηN−1αN−1 + ηN−1αN−1) + ληN−1αN−1)aN−1

−θηNαN ](θληN−3αN−3)
−1 (16)

an = [(1− θ(ληn+1αn+1 + λ(ηn+1αn+1 + ηn+1αn+1)))an+1

−θ(λ(ηn+2αn+2 + ηn+2αn+2) + ληn+2αn+2)an+2

−θληn+3αn+3an+3](θληnαn)
−1, 1 ⩽ n ⩽ N − 4 (17)

a0 = [(1− θ(λη1 + λη1))a1 − θ(λ(η2α2 + η2α2) + λη2α2)a2

−θλη3α3a3](θλ)
−1, (18)

Substituting equation (12) in equations (6) - (10), yields

Pn,1 = βnPN,1 + γnPN,0, 1 ⩽ n ⩽ N, (19)

where

βN = 1, γN = 0.

βN−1 = (1− µNαN )(λµN−1αN−1)
−1

γN−1 = −θ[ληN−1αN−1aN−1 + ηNαN ](λµN−1αN−1)
−1

βN−2 = {(1− (λµN−1αN−1 + λ(µN−1αN−1 + µN−1αN−1)))βN−1

−(µNαN + µNαN )}(λµN−2αN−2)
−1,

γN−2 = {(1− (λµN−1αN−1 + λ(µN−1αN−1 + µN−1αN−1)))γN−1

−θ[ληN−2αN−2aN−2 + (ληN−1αN−1

+λ(ηN−1αN−1 + ηN−1αN−1))aN−1 + (ηNαN + ηNαN )]}

(λµN−2αN−2)
−1,

βN−3 = {(1− (λµN−2αN−2 + λ(µN−2αN−2 + µN−2αN−2)))βN−2

−(λ(µN−1αN−1 + µN−1αN−1) + λµN−1αN−1)βN−1 − µNαN}

(λµN−3αN−3)
−1,
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γN−3 = {(1− (λµN−2αN−2 + λ(µN−2αN−2 + µN−2αN−2)))γN−2

−(λ(µN−1αN−1 + µN−1αN−1) + λµN−1αN−1)γN−1

−θ[ληN−3αN−3aN−3 + (ληN−2αN−2

+λ(ηN−2αN−2 + ηN−2αN−2))aN−2

+(λ(ηN−1αN−1 + ηN−1αN−1) + ληN−1αN−1)aN−1

+ηNαN ]}(λµN−3αN−3)
−1,

βn−1 = {(1− (λµnαn + λ(µnαn + µnαn))βn

−(λ(µn+1αn+1 + µn+1αn+1) + λµn+1αn+1)βn+1 −

λµn+2αn+2βn+2}(λµn−1αn−1)
−1, 2 ⩽ n ⩽ N − 3,

γn−1 = {(1− (λµnαn + λ(µnαn + µnαn))γn

−(λ(µn+1αn+1 + µn+1αn+1) + λµn+1αn+1)γn+1 − λµn+2αn+2γn+2

−θ[ληn−1αn−1an−1 + (ληnαn + λ(ηnαn + ηnαn))an

+(λ(ηn+1αn+1 + ηn+1αn+1) + ληn+1αn+1)an+1

+ληn+2αn+2an+2]}(λµn−1αn−1)
−1, 2 ⩽ n ⩽ N − 3,

Substituting equations (12) and (19) in equation (6), we obtain

PN,1 = ωPN,0, (20)

where ω = D1

D2
, with

D1 = −γ1 + (λµ1α1 + λ(µ1α1 + µ1α1))γ1 + (λ(µ2α2 + µ2α2) + λµ2α2)γ2

+λµ3α3γ3 + θ[λa0 + (λη1α1 + λ(η1α1 + η1α1))a1 + (λ(η2α2 + η2α2)

+λη2α2)a2 + λη3α3a3],

D2 = β1 − (λµ1α1 + λ(µ1α1 + µ1α1))β1 − (λ(µ2α2 + µ2α2) + λµ2α2)β2 − λµ3α3β3.

Finally, PN,0 is obtained from the normalization condition

N∑
n=0

Pn,0 +
N∑

n=1

Pn,1 = 1

which is given by

PN,0 =

(
N∑

n=0

an +

N∑
n=1

βnω + γn

)−1

4. Performance measures and cost model

Once the state probabilities at are determined, we can evaluate various performance
measures such as the average number of customers in system during the different
vacation states and the average waiting time in system, etc. They are given by



10 P. Vijaya Laxmi & T. W. Kassahun/ IJM2C, 09 - 01 (2019) 1-15.

4.1 Performance measures

• Average system size during WV, E[LWV ]: The average system size during WV
is given by

E[LWV ] =
N∑

n=1

nPn,0,

• Average system size during regular busy period, E[LB]: The average system size
during regular busy period is given by

E[LB] =

N∑
n=1

nPn,1,

• Average system size, E[L]: The average system size is given by

E[L] = E[LWV ] + E[LB] =

N∑
n=1

n(Pn,0 + Pn,1),

• Average queue size, E[LQ]: The average queue size is given by

E[LQ] =

N∑
n=c+1

(n− c)(Pn,0 + Pn,1),

where
∑N

n=c+1(n− c)Pn,0, and
∑N

n=c+1(n− c)Pn,1, are respectively the average
queue sizes during WV and regular busy periods.

• Probability of loss due to finite system capacity, Ploss: The probability of loss of
customers or the blocking probability of the system is given by

Ploss = PN,0 + PN,1,

• Average waiting time in the system, E[W ]: The average waiting time of the
system (the sojourn time) is given by

E[W ] =
E[L]

λeff
, where λeff = λ(1− Ploss)

• Average reneging rate, E[R]: The average reneging rate of the system is given
by

E[R] =

N∑
n=c+1

(n− c)α(Pn,0 + Pn,1)

• Probability that servers are on busy state (PB) and on WV state (PWV ) are
given respectively as

PB =
N∑

n=1

Pn,1, PWV =
N∑

n=0

Pn,0
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• Probability that the servers are idle during WV , PIdle

PIdle = P0,0

4.2 Cost model

In this subsection, we formulate an expected cost function, in which mean service
rate µ is the control variable. For this purpose lets introduce the following cost
coefficients:

C1 = Cost per unit time when the servers are busy;

C2 = Cost per unit time when the servers are on working vacation period;

C3 = Cost per unit time when the servers are idles during WV;

C4 = Cost per unit time when a customer joins the queue and waits for service;

C5 = Cost per unit time when a customer reneges from the system;

C6 = Cost per service per unit time during WV period;

C7 = Cost per service per unit time during busy period;

C8 = Fixed cost of a server;

Then, let TC be the total expected cost per unit time of the system which is given
by:

TC = C1PB +C2PWV +C3PIdle+C4E[LQ]+C5E[R]+ c(C6η+C7µ)+C8c; (21)

Our objective is to determine the optimal mean service rate µ∗ that minimizes the
cost function TC(µ). We employ the quadratic fit search method (QFSM) to solve
the above optimization problem numerically.

4.3 Quadratic fit search method

In this section, we introduce the optimization technique by which the cost function
under consideration could be optimized. The quadratic fit search method (QFSM)
utilizes a 3-point pattern for fitting a quadratic function that has a unique opti-
mum. The objective is to determine the optimal service rate µ that minimizes
the total expected cost function. Keeping other parameters fixed, minimizing the
cost function TC with respect to the service rate µ is obtained in such a way
that given a 3-point pattern, we compute a quadratic function via corresponding
functional values that has a unique minimum, xq, for the given objective function
TC(µ). Quadratic fit uses this approximation to improve the current 3-point pat-
tern by replacing one of its points with optimum xq. The unique optimum xq of
the quadratic function that agrees with TC(µ) at the 3-points (xl, xm, xh) is given
by

xq ≊
1

2

[
F (xl)((xm)2 − (xh)2) + F (xm)((xh)2 − (xl)2) + F (xh)((xl)2 − (xm)2)

F (xl)(xm − xh) + F (xm)(xh − xl) + F (xh)(xl − xm)

]
.
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Table 1. Effect of µ and other parameters on some of the performance measures.

µ E[L] E[LQ] PB E[W ] E[R] PIdle TC
λ = 0.3 0.7395 0.0180 0.4169 2.4652 0.0090 0.4296 26.6716

0.5 λ = 0.4 0.9890 0.0404 0.5487 2.4725 0.0202 0.3015 27.0678
λ = 0.5 1.2395 0.0754 0.6713 2.4790 0.0377 0.1997 27.5905
λ = 0.3 0.5640 0.0073 0.2799 1.8800 0.0036 0.5305 27.2034

0.8 λ = 0.4 0.7465 0.0150 0.3822 1.8662 0.0075 0.4128 27.3917
λ = 0.5 0.9256 0.0250 0.4889 1.8512 0.0125 0.3105 27.6458

θ = 0.4 2.0089 0.2835 0.9427 2.5112 0.1417 0.0267 29.9631
0.5 θ = 0.6 1.9991 0.2783 0.9582 2.4989 0.1391 0.0275 29.9751

θ = 0.8 1.9939 0.2762 0.9664 2.4924 0.1381 0.0280 29.9869
θ = 0.4 1.4739 0.0525 0.8327 1.8424 0.0262 0.0780 28.6176

0.8 θ = 0.6 1.4112 0.0326 0.8697 1.7640 0.0163 0.0858 28.5928
θ = 0.8 1.3714 0.0250 0.8898 1.7142 0.0125 0.0919 28.6119

0.5 α = 0.3 2.1987 0.4351 0.9506 2.7484 0.1305 0.0230 30.6629
α = 0.4 2.0849 0.3432 0.9460 2.6061 0.1372 0.0251 30.2388
α = 0.5 2.0089 0.2835 0.9427 2.5112 0.1417 0.0267 29.9631

0.8 α = 0.3 1.5075 0.0740 0.8362 1.8844 0.0222 0.0764 28.7056
α = 0.4 1.4879 0.0614 0.8342 1.8599 0.0245 0.0774 28.6542
α = 0.5 1.4739 0.0525 0.8327 1.8424 0.0262 0.0780 28.6176

η = 0.3 2.0089 0.2835 0.9427 2.5112 0.1417 0.0267 29.9631
0.5 η = 0.4 1.9995 0.2789 0.9416 2.4994 0.1394 0.0275 30.3222

η = 0.5 1.9906 0.2753 0.9404 2.4883 0.1376 0.0284 30.6889
η = 0.3 1.4739 0.0525 0.8327 1.8424 0.0262 0.0780 28.6176

0.8 η = 0.4 1.4469 0.0423 0.8284 1.8086 0.0211 0.0810 28.9212
η = 0.5 1.4211 0.0346 0.8236 1.7764 0.0173 0.0843 29.2456

c = 2 2.0089 0.2835 0.9427 2.5112 0.1417 0.0267 29.9631
0.5 c = 3 2.3914 0.0840 0.9649 2.9892 0.0420 0.0163 39.6748

c = 4 2.6435 0.0174 0.9708 3.3043 0.0087 0.0136 50.4734
c = 2 1.4739 0.0525 0.8327 1.8424 0.0262 0.0780 28.6176

0.8 c = 3 1.5990 0.0068 0.8478 1.9987 0.0034 0.0710 40.0679
c = 4 1.6270 0.0010 0.8497 2.0338 0.0005 0.0701 51.8232

N = 10 2.0089 0.2835 0.9427 2.5112 0.1417 0.0267 29.9631
0.5 N = 15 13.8704 11.7827 1.5535 17.3379 5.8913 -0.0085 129.7730

N = 20 16.0001 14.0001 1.4054 20.0001 7.0001 ≈ 0 148.1200
N = 10 1.4739 0.0525 0.8327 1.8424 0.0262 0.0780 28.6176

0.8 N = 15 10.7172 8.7344 0.8496 13.3965 4.3672 0.0023 102.3210
N = 20 16.0000 14.0000 0.8536 20.0000 7.0000 ≈ 0 147.0880

5. Numerical results

To study the parameter impact on the system performance, numerical computa-
tions are carried out and a few of those are presented in this section in the form
of tables and graphs. This numerical results are obtained using Mathematica 9.0
software. For the purpose of numerical illustration we have assumed the following
constants for the system parameters involved in the queueing model under inves-
tigation: c = 2, λ = 0.8, η = 0.3, µ = 0.6, θ = 0.4, α = 0.5, and N = 10 and
the cost parameters are taken as: C1 = 5, C2 = 1.5, C3 = 2, C4 = 5, C5 = 7, C6 =
2, C7 = 1.5 and C8 = 10 unless they are considered as variables or their values are
mentioned in the respective tables or figures. In Table 1 we have investigated the
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effect of various parameters on the system performance measures where the change
in each parameter is associated with the effect of the change on the service rate µ.
Thus we present the numerical findings as follows:

(1) We observe that increasing the arrival rate λ results in an increase of all the
performance measures listed in the table except the idle state during WV ,
PIdle. This is because due to more arrivals the tendency of the system to
come to an idle state decreases. On the other hand, this trend is found to
be opposite for the expected waiting time E[W ] at µ = 0.8. That is, with
the increase in λ, E[W ] is found to show a decreasing trend. This can be
justified to the fact that the increase in the arrival rate is relatively smaller
compared to the increase in the service rate. Thus, a decrease in the waiting
time of the system unlike the trend that was observed when µ = 0.5.

(2) The effect of the system performance measures with the change in the value
of θ is presented. Since the mean vacation time is the inverse of the are of
vacation θ, increasing θ implies decreasing the mean vacation time. This the
mean busy time (regular busy period) time increases. Hence PB increases.
This in tern results in the use of higher service rate µ more time in the
system. Thus, the system (queue) sizes decrease with the increase in θ.
Waiting time E[W ] also shows a decreasing trend. With the decrease in the
system size, the reneging rate E[R] also decreases. Whereas, PIdle increases
since the queue size is getting smaller and smaller.

(3) The effect of increasing the reneging rate α is shown to have a decreasing
effect on E[L], W [LQ], PB, and E[W ]. That is, more reneging implies
less system (queue) size which leads to shorter waiting time and hence
higher probability to go to WV state. That is why PB decreases. On the
other hand, average reneging rate E[R] which is directly proportional to
the reneging rate (α) and PIdle increases with the increase in θ.

(4) The effect of increasing the WV service rate η is shown to have a decreasing
effect on all performance measures listed in the table except on PIdle. PIdle

shows an increasing trend due to the decrease in the queue size which
ultimately leads to the idle state of the system. It is also evident from
the table that increasing the busy period service rate µ results the same
effect on the performance measures. That is, all but PIdle decreases with
the increase in µ. The same reasoning that works for η works for µ because
basically both are service rates which have the same effect on the system
performance measures.

(5) Increasing the number of servers in the system increases the performance
measures E[L], E[W ] and PB. That is, customers which were expected to
renege from the system will be retained due to availability of more servers,
hence the reason for the increases in the system size. In the same line, the
waiting time in the system increases. The increases in the system size intern
results in the increase of PB. On the other hand, increasing c decreases the
queue size E[LQ] and the average reneging rate E[R]. Since customers in
the queue join the service due to the increase in the number of servers, the
queue size declines give the same arrival rate and service rates. The average
reneging rate E[R] decreases since it is directly proportional to the queue
size.

(6) Increasing the system capacity N on the system performance measures is
also shown to result in an increase of all the performance measures except
PIdle. We can see that increasing the system capacity reduces the blocking
probability. Hence results in a significant effect to make an increase in the
system (queue) size. Which intern makes the system more busy and results
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Figure 3. Effect of µ on the TC for different c values.

in more reneging. The sojourn time also increases proportionally. Thus the
only thing that decreases is the probability of the system to become idle.
Which is obvious because the system is getting busier and hence not likely
to come to an idle state.

Table 2. Search for optimum service rate µ for c = 2, λ = 0.8, N = 10, η = 0.3, θ =
0.4, α = 0.5, ϵ = 10−6.

µl µm µh TC(µl) TC(µm) TC(µh) µq TC(µq)
0.500000 0.650000 0.800000 29.9631 28.9145 28.6176 0.784256 28.6231
0.650000 0.784256 0.800000 28.9145 28.6231 28.6176 0.806548 28.6168
0.784256 0.806548 0.800000 28.6231 28.6168 28.6176 0.809644 28.6167
0.806548 0.809644 0.800000 28.6168 28.6167 28.6176 0.809861 28.6167
0.809644 0.809861 0.800000 28.6167 28.6167 28.6176 0.809883 28.6167
0.809861 0.809883 0.800000 28.6167 28.6167 28.6176 0.809886 28.6167
0.809861 0.809883 0.809886 28.6167 28.6167 28.6167 0.809877 28.6167
0.809877 0.809883 0.809886 28.6167 28.6167 28.6167 0.809878 28.6167
0.809878 0.809883 0.809886 28.6167 28.6167 28.6167 0.809887 28.6167
0.809883 0.809887 0.809886 28.6167 28.6167 28.6167 0.809885 28.6167
0.809885 0.809887 0.809886 28.6167 28.6167 28.6167 0.809887 28.6167

Table 3. Optimum values of µ at different c values.

c 2 3 4 6
µ∗ 0.809887 0.571157 0.428403 0.286118

TC(µ∗) 28.616652 39.582174 50.352499 71.627631

The effect of the service rate µ on the total expected cost, TC for different
values of c is presented in Figure 3. It can be seen that the optimum service rate
µ∗ decreases as the number of servers c increases. This is in agreement with what
is expected since the service rate can be increased either directly by increasing the
service rate itself or indirectly by increasing the number of servers. More servers
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means nothing but more service rate. The optimum service rate that is computed
for c = 2 is computed using QFSM and presented using Table 2. After about
11 iterations, the optimum service rate is found to be µ∗ = 0.809887 and the
corresponding TC is TC(µ∗) = 28.6167. In Table 3, we have given the optimum
service rate for different service rates.

6. Conclusions

In this paper, we have studied a Geo/Geo/c queueing system with MWV s and
reneging of customers. We have derived the mean system sizes when the servers
are in different states. The closed-form expressions of some performance measures
are derived and also a cost model is formulated to study the effect of the system
parameters on the cost function. Numerical results are presented in the form of
graphs. The technique adopted in this paper can be applied to analyze models like
GeoX/G/c queue with multiple working vacations, impatient customer GIX/Geo/c
queue with multiple working vacations, etc.
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