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1. Introduction

The situation of the fractional calculus (integrals and derivatives) has won vast pop-
ularity and significance throughout the previous there decades or so, due generally
to its demonstrated applications in numerous seemingly numerous and great fields
of science and engineering. Let 0 < 21 < 22 < ... <z, and let p; = (1, p2, .- fin)
nonnegative weights such that X7, u; = 1. The Jensen inequality [7] states that f
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is a convex function on the interval [a, b]; then,

f(%‘mm) < B pif (i),

where for all z; € [a,b] and u; € [0,1], (i = 1,n). The Hermite-Hadamard inequal-
ity states that if a mapping f: I C R — R is a convex function on I with a,b € I,
a < b then,

The double inequality holds in the reversed direction if f is concave (see, [6]).

Theorem 1.1 [11] If f is convex function on I = [a,b], then
f (a +b— E?zluz‘wz) < fla) + f(b) = By pa f (w4),

for each x; € [a,b] and p; € [0,1], (i = 1,n) with ¥ ,u; = 1. For some results
related with Jensen-Mercer inequality, (see, [3, 9-11, 14]).

After these necessary inequalities about convex functions, we will now give the
definitions which we will use in this paper.

Definition 1.2 [4, 17, 19, 20] Let f € L[a,b]. The Left sided and right sided
Riemann-Liouville fractional integrals J% f and J;* f of order a > 0 with a > 0
can be defined respectively by

1@ = g [ e =0 0t > a
b
T f(a) = r(la)/x (t—2)* L f(t)dt, @ <b

here I'(«) is Euler Gamma function. and JY, f(z) = J)- f(z) = f(z).

Definition 1.3 [12] Let f € L[a,b]. The Left sided and right sided k-Riemann-
Liouville integrals ,J& f and ,Ji* f of order > 0 with a > 0 can be defined
respectively by

@) = s [ =0 r>a
b
1@ = s [ =i 5 <b

here I'y(a) is the k-Gamma function defined as:

oo ok
Ii(a) = / t*Lexp™F dt,
0
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also
Tyl + k) = aly(a),

and 1JY, f(z) = 1JQ f(z) = f(x)

For k = 1, k-fractional integrals gives Riemann-Liouville integrals.

For some recent results connected with k-fractional integral inequalities (see, [1, 2,
8, 13, 18]).

In this paper, by means of the use of the Jensen-Mercer inequality, we prove
Hermite-Hadamard’s inequalities for k-fractional integrals and we mounted some
new fractional inequalities related with the left part of Hermite-Hadamard type
inequalities for differentiable mappings whose first derivatives in absolute value are
convex.

2. Main results

By using the Jensen-Mercer inequality, Hermite-Hadamard’s inequalities can be
represented in k-fractional integral forms as follows.

Theorem 2.1 Suppose f : [a,b] — R be a convex function, then

T +y I'y(at+k o e}
flato= ") <Rt e @t b—a) + 1y fla+b-y)]

< f(a-i—b—x);—f(a—i—b—y) < f(a) + f(b) - f(x);f(y) (2)

)

for all z,y € [a,b] and T >0 .

Proof From the convexity of f we have

§+¢ a+b—&+a+b—(
flaso=257) =4 2 )
<SUa+b=& + fla+b-0) g

for all €, ¢ € [a, b]. By changing of variables a+b—¢ = t(a+b—z)+(1—t)(a+b—y)
anda+b—C=(1—-t)(a+b—x)+tla+b—y) for z,y € [a,b] and t € [0,1] in (3)
we find that

f(a+o-"3Y)
< l(tatb— ) + (L= )a+b—y)) + (1~ t)a+b— ) +ta+b—y)]

(4)

Multiplying both sides of (4) by ¢+ ~! and then integrating the resulting inequality
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with respect to ¢ over [0, 1], we have

o2

L.
<2[Atk F(ta+b—2)+ (1~ t)(a+b—y))dt

+/3?4ﬂa—wm+b—@+¢m+b‘””4
0
a+b—x

:{L (u—(a+b—y)i ! f(w)du

+b—y

And so

T+ I'y(a o o
fa+b- zy)<2@%$zh%wbWJm+b—@+wﬁﬁbnf@+b—W}

The proof of first inequality in (2) is completed. On the other hand, using the
convexity of f we can write

ftla+b—z)+(1—-t)(a+b—y)) <tfla+b—2z)+(1—t)f(a+b—1y)

f(@=t)(a+b—z)+tla+b—y) <A -t)fla+b—2z)+tf(a+b—1y).
By adding these inequalities and using the Jensen-Mercer inequality, we have

f

<f
<2

(ta+b—z)+(1—-t)(a+b—y)+f(1—t)(a+b—z)+tla+b—1y))
(a+b—z)+ fla+b—y)
[f(a) + ()] = [f(z) + f(y)]. (5)

Multiplying both sides of (5) by t%~! and integrating the resulting inequality with
respect to ¢ over [0, 1], we obtain second and third inequalities in (2). |

Remark 2.2 Under the conditions of Theorem 2.1 with £ = 1, then Theorem 2.1
reduces to inequalities (2.2) in [15, Theorem 2].

Remark 2.3 Under the assumptions of Theorem 2.1 with a = k = 1, then Theo-
rem 2.1 reduces to [9, Theorem 2.1].

Remark 2.4 If in Theorem 2.1, we set « = k = 1, = a and y = b, then the
inequalities (2) become the inequalities (1).

Remark 2.5 If we take k = 1, x = a and y = b in Theorem 2.1, then Theorem
2.1 reduces in [16, Theorem 2].
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Remark 2.6 Under the assumption of Theorem 2.1, if x = a and y = b then

$(557) < e -+ pta)] < KO,

which is proved in [8].
Theorem 2.7 Suppose f : [a,b] — R be a convex function, then

o559

2 (a4 k) [ ., )
<(yk(5€))[kc]( +b— J—+y)+f(a/+b )+k‘](a+b_%)ff(a+b—y)

for all z,y € [a,b] and T > 0.

Proof To prove the first inequality of (6), by writing ¢ = L= + 2 2ty and ¢ =
2ty 4 Ly for 2,y € [a,b] and t € [0,1] in inequality (3), we get

2f(a+ —Lﬂ/>

2
<glr(aro- (G 5)
+f(a+b—(?x+gy))]. (7)

And then multiplying both sides of (7) by t* ! and then integrating the resulting
inequality with respect to ¢ over [0,1], we have

2Oéf(a+b :c—i—y)
< [ oo (s 250
+/01t1» 1f(a+b ( x+%y>>dt

1+y

T bt

+b—y

a+b—x
+/ ((”b—x)—U)?‘lf(u)dJ
a+b—2ty
25T+ k)1
= (yk—(x')k)[k (a+b7%)ff(a+b—y)+kj(a+b = +f(a+b—g;)]'

And so

T4y 25 71T (a o
f(a+o-"2) < (y_;)(:)[kj(a+b coy fatb=y) 3Ty sy Flatb—a)|.
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The first inequality of (6) is proved. For the proof of second inequality of (6), by
using Jensen-Mercer inequality, we obtain

Flats= (5o+ 25 )) < f@) + £6) - [55@) + 251 w)
Flatd— o+ 59)) < f@+ 50) - 2501w + L f)].

By adding these inequalities, we have

f(a—i—b— (%x+¥y))+f(a+b— (2;tx+§y)>
<2lf(a) + 5] - LTIW), 8)

Multiplying both sides of (8) by ¢+ ! and then integrating the resulting inequality
with respect to ¢ over [a,b], we find second inequality of (6). [ |

Remark 2.8 If we take kK = 1 in Theorem 2.7, then Theorem 2.7 reduces in [15,
Theorem 3].

Remark 2.9 Under the assumptions of Theorem 2.7 with a = k = 1, then Theo-
rem 2.7 reduces to [9, Theorem 2.1].

Remark 2.10 If in Theorem 2.7, we set « = k =1, x = a and y = b, then the
inequalities (6) reduces to the inequalities (1).

Remark 2.11 If we set k = 1, x = a and y = b in Theorem 2.7, then Theorem
2.7 reuces to [17, Theorem 3.

Corollary 2.1 If we choose © = a and y = b in Theorem 2.7, then we have
following inequalities for k-Riemann-Liouville fractional integrals:

atby _ 2+ .
H(557) S =g oot [ SO+ ey f(a)

@+ 1)
2

Lemma 2.12 Let f : [a,b] — R be a differentiable mapping on (a,b) with a < b.
If f' € Lla,b], then the following identity for k— fractional integrals holds:

fla+b—2)+ flatb—y) Tyla+k)
2 2y —)*

{ Satb—yyr F@a+0=2) + kG 0y Fla+b—y)

y—z (1 o an
~U5E [ —a-0hr arb— 0t

for all z,y € [a,b], T >0 andt € [0,1].
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Proof 1t suffices to note that

1 [ [e3 !
1:/ (tF = (L= D)) (a+b— (te+ (1— t)y))dt
0
:/lt?if’(aer—(tx+(1—t)y))dt—/l(l—t)if'(aer—(t:c+(1—t)y))dt
0 0

=0 — I

Integrating by parts, we get

1
I1:/0 thf(a+b— (tx+ (1 —t)y))dt

Ctiflatb—(tz+ (1 -ty |} o b B B
_ L 0 k(y_x)/ot fla+b— (te+ (1= t)y))dt

fla+b—2) Trpla+k)
- - a+tk JO(;, —x)~ a+b— .
y—a (y_x):k(er )f( Y)

Similarly, we get

1 (o9 ’
[2:/0 (=05 f(a+b— (tz+ (1 t)y))dt

C(L=t)ifla+b—(tz+ (1 —t)y)! o b e B B
— . 0+k(yfx)/0t fla+b— (tz+ (1 —t)y))dt

fla+b—2) Tilat+k) B
ior oy @t o).

We can write

I=0LHL-1
_f(a+b—:n)+f(a+b—y)_ Ii(a+ k)

- a+tk

y-= (y—x) =

X e Gpyye Fa+ b= @) + ey e fla+b— y)] .

Multiplying both sides by Y5, we have the desired identity. [ ]

Remark 2.13 Under assumption of Lemma 2.12, ifa = k=1, x =aand y = b
then

. b —a [! '
PO IO [ pa =" [ - nf (- v+ mar

which is proved in [5].
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Remark 2.14 Under the assumption of Lemma 2.12, if x = a and y = b then

fla) + f(b) _Tirla+k)
2 2(b—a)*

—a 1 o o
:b2 /O(tk—(l—t)k)f (1— t)a + th)dt,

(2 () + 5 ()

which is proved in [8].

Remark 2.15 Under assumption of Lemma 2.12, if K =1, x = a and y = b then

o o b—a [! o o g
R [Jmf(b)-f-bef(a)} = /O(t — (1=t f (1 —t)a+tb))dt,

—_
~ | —

which is proved in [16].

Remark 2.16 If we take a = k = 1, in Lemma 2.12, then Lemma 2.12 gives [15,
Corollory 1].

Theorem 2.17 Let f : [a,b] — R be a differentiable mapping on (a,b) with a < b.

If |f'| is convex on [a,b], then the following inequality for k—fractional integrals
holds:

)f(a—kb—z)-i-f(a—l—b—y) Tp(a+k) [kJ&+b7y)+f‘(a+b_$)+’€J(aa+b7x)+f(a+b_y)}'

o

2 2y —w)x

e (EE S| IBTEATIOEERC AT

for all z,y € [a,b] and T > 0.

Proof By means of Lemma 2.12 and jensen-mercer inequality, we find that

‘f(a+bx)+f(a+by)
2
r +k o o
_Qg‘y(a_x):)[kJ(a+by)+f(a+b—fl')+kj(a+b$)+f(a+b—y):|’
y_x 1 [e] [e] ’
U3 [ - =011 @ b (1= o)
0

- 1 « «
<Y / 5 — (1 )|
2 Jo

Fa)l+1f @) — (¢

F @)+ =0)lf (y)Dldt

=1 {/2«1 —OF —E)[5 @1+ 1 B)] = @1 @)+ (1= 0LF W)l
0

1
+/ (th (1t)i|)[|f/(a)|+|f'(b)l(tlf/($)|+(1t)lf’(y)l)]dt}

1
2

—z
:y2 (S1+ S2)




M. A. Ali et al./ IJM?C, 10 - 03 (2020) 227-238. 235

Calculating S; and S2, we obtain

1

5 = (|f’<a>|+f’(b))/(f((l—t)Z ~thdt - {|f’<x>|[/02t<1_tﬁdt_/jtwt]

1

+ fl(y)|{/0;(1 —t)%kdt—/og(l —t)t%’“dt}}

G k2 (zﬂ’}k))

a+k a—Hc)_{|f/(w)|((a+k)(a+2k) a4tk
k
+k)

(g - 22

= (f @] + 17 ) (

and

Sy = (f’(a>|+|f’(b)l)ﬁ1(t? —(1—t)¥dt - {|f/($)|{/}1t(vzkdt—/lt(1—t)‘idt]

+1f () [/}1(1 — 1) dt - [(1 - t)t“T“‘dt}}
k

.
S T L 2y (i L 2
k

, 2 (W)
l (y)|((oe+k)k(a+2k) Ttk )}

By adding S7 and S3, we have the conclusion Theorem 2.17. [ ]

Remark 2.18 Under the assumption of Theorem 2.17, if a = k = 1, x = a and
y = b then

217 @l +17 ®)),

<

flap+fe) 1 [
5 _b—a/a f(u)du

which is proved in [5].

Remark 2.19 If we take £ = 1 in Theorem 2.17, then Theorem 2.17 reduces in
[15, Theorm 4] .

Remark 2.20 Under the assumption of Theorem 2.17, if x = a and y = b then

'f(a) +f(b)  Tyla+k) [kJ&)+f(b) + k,](cl“)),f(a)} ‘

2 2(b—a)*
< 212@_5)(# (a)I-QHf (b)\)7

which is proved in [8].

Remark 2.21 Under the assumption of Theorem 2.17,if k =1,z =a and y = b
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then

'f () -QF f) QF((baj D) [J&)J(b) +JG)-f (a)] ‘

a)®
< (1= o) (IF @]+ 17 )
S 2(a+1) 20 ’
which is proved in [16].

Lemma 2.22 Let f : [a,b] — R be a differentiable mapping on (a,b) with a < b.
if f* € Lla,b], then the following equality for k— fractional integrals holds:

2%Fk(a+k> « e T4y
W{ (Hbi%ﬁf(ava—a:)+kJ(a+b7%),f(a+b—y)} —f(a+b— 5 )
1
=0 [l o (e gu) oo (Gee T
for all z,y € [a,b], ¢ >0 and t € [0,1].
Proof It can be prove similar to the proof of Lemma 2.12. [ |

Remark 2.23 If we take k£ = 1 in Lemma 2.22, then Lemma 2.22 reduces in [15,
Lemma 2].

Remark 2.24 If we take k£ = 1 along with x = a and y = b in Lemma 2.22, then
Lemma 2.22 reduces in [17, Lemma 3.

Theorem 2.25 Let f : [a,b] — R be a differentiable mapping on (a,b) with a < b.
If f' € Lla,b], then the following equality for k—fractional integrals holds:

a—k

2% T'pla+ k

‘W[’CJ&M—T)J(“”_%) +kJ(‘2+b_%),f(a+b—y)} - f<a+b—

< k(y — )
2(a+k)

x—l—y)
2

[ @)+ 1 W)
2 )

1 @] +1f @) -

for all z,y € [a,b] and T >0 .

Proof Using the Lemma 2.22 and Jensen-mercer inequality, we find

2T Thla+ k) [ o , N
’W[k']((rkbf%)‘*f(a*»bi1)+k'](a+b7%)_f(a+biy)] 7f(a+b7

_ 1
()
4 0

< y;m{/olt% “f/(a)\ +1f (b)] - (?\f/(x)\ + %|f/(y)‘)}dt

m+y>
2

oo (gt e [l oo (o250 )

+ [ @11 1= (51 @1+ 2 ) o

_kly—a)1 : [ (@) +1f ()]
= St [ @117 )] -
which completed the proof. |

Remark 2.26 If we take £ = 1 in Theorem 2.25, then Theorem 2.25 reduces in
[15, Theorm 5].



M. A. Ali et al./ IJM?C, 10 - 03 (2020) 227-238. 237

Remark 2.27 If we take o = 1 along with k = 1 in Theorem 2.25, then Theorem
2.25 gives [15, Corollary 2].

Theorem 2.28 Let f : [a,b] — R be a differentiable mapping on (a,b) with a < b.
if | £ is convex on [a,b], ¢ > 1, then for all z,y € [a,b] and >0, the following
inequality for k—fractional integrals holds:

Q%Fk(a+k) o o , Tty
‘W[ k(s +y)+f(“+b_i"’)+1«J<a+bfm)ff(a+b—y)]—f(a+b— . )’
=2k _yol(y : 317 ()| + |f ()7 2
<O | (r@i s o - £ @lry:
3 2 "(2)|7 + 3] f (y)]9 *
+ (17 @p 15 @ - ALY
where % + % =1.
Proof From Lemma 2.22, using the Hélder’s inequality, we have
2°% Tyl + k) . iy
S s S )ﬂjw%,f(am,y)] - 1(avo-5Y)]
y—x
<4/tdf{/ ))\do
I t 2—1t a.\3
S oo (o)) }-
Using Jensen-Mercer inequality because of the convexity of |f'|, we have
2 Fk(Oé+ k) i «a Tty
‘W[kj( +b— z+u)+f( x)+kJ(a+b_%),f(a+b7y)} —f(a+b, 5 )‘

<= ap+k {/lf )7+ (b \*(%‘f/(x”q*;f/(y)'q))dt)i

/\f e lf o - (255 @ |(w»ﬁﬁ}

- 4 <ap + k) '
’ , ! q ! q i , , ’ q , q Tll
<17 @i+ 17 o - ALY (g g e - LAWY,
and so the proof is completed. -

Remark 2.29 If we take k =1, x = a and y = b in Theorem 2.28, then Theorem
2.28 reduces in [17, Theorm 6].

Remark 2.30 If we take £ = 1 in Theorem 2.28, then Theorem 2.28 reduces in
[15, Theorm 6.

3. Conclusions

In this paper, we prove some new inequalities of Hermite-Hadamard-Mercer like as-
sociated with k-fractional integrals. The results of this paper generalize the several
obtained results in the field of Hermite-Hadamard and Hermite-Hadamard-Mercer
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type inequalities. We hope that the ideas and techniques of this paper will inspire
to interested readers working in this direction.
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