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1. Introduction

Fractional calculus is a new powerful tool which has been recently employed to
model complex biological systems with non-linear behavior and long-term mem-
ory. One of the important branches of this theory is impulsive fractional differential
equations. The idea of the theory of impulsive fractional differential equations has
emerged as an effective tool area of investigation in recent years (see [8, 10, 11]). J.
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Wang, W. Wei and Y. Yang [36], solved impulsive fractional differential equations
in banach spaces. Q. Wang, D. Lu and Y. Fang [37], showed that the impulsive
fractional differential is stable. Also, [10], showed that the impulsive fractional dif-
ferential equations exist and has unique solutions. The concept of the fuzzy set
theory was first proposed by Zadeh, Zimmerman and Kaleva ( see[20, 39, 40]). As
a result, many things happening in the real world have fuzzy meanings. Therefore,
the fuzzy set theory is a significant tool for modeling unknown problems and can
be found in many branches of regional, physical, mathematical and engineering
sciences. One of the very important branches of the fuzzy theory is fuzzy impulsive
fractional differential equations. In recent years, there has been a growing interest
in the fuzzy impulsive fractional differential equations which are a combination
of impulsive differential equations and fractional differential equations.The fuzzy
impulsive fractional differential equation zqas play an important role in character-
izing many social, biological, physical and engineering sciences (for more details see
[25] and references cited therein). Fuzzy impulsive fractional differential equations
are usually hard to solve analytically and the exact solution is rather difficult to
be obtained. But the idea of fuzzy impulsive fractional differential equations has
been studied by scientists and engineers like [26, 27]. In this paper, we defined the
generalized fractional derivatives of fuzzy-valued functions in the spaces of absolute
differentiable continuous and differentiable continuous of fuzzy-valued functions to
solve the fuzzy impulsive fractional differential equations. Since Caputo derivatives
better describe some physical problems involving memory effect, we defined the
Caputo version of the generalized fractional derivatives. We believe that this Ca-
puto version of the generalized fractional derivative would be useful for researchers
working on modeling real world phenomena described by fractional operators. Also,
we will use combination of RKHSM to solve fuzzy impulsive fractional differential
equations with the help of the concept of generalized Hukuhara differentiability.

cD
1

α y(t) = f(t, y(t)), t ∈ [0, T ], t ̸= tk, m− 1 <
1

α
< m, m ∈ N, (1)

∆y|t=tk = Ik(y(t
−
k (t))), (2)

y(0) = y0. (3)

In this paper the set of all fuzzy numbers is denoted as RF . Where k = 1, 2, . . . ,m
, cD

1

α denotes the Caputo fractional generalized derivative of order 1
α , y(t) is

an unknown fuzzy function of crisp variable t and f : [0, T ] × RF → RF ,
is a continuous fuzzy function, Ik : RF → RF, y0 ∈ RF , 0 = t0 < t1 <
· · · < tm < tm+1 = T, ∆|t=tk = y(t+k ) ⊖gH y(t−k ), y(t

+
k ) = limh→0+y(tk + h),

and y(t−k ) = limh→0−y(tk + h) represent the right and left limits of y(t) at
t = tk. The fractional differrential transform is a numerical method for solving
differential equations. Reproducing kernel theory has important applications in
numerical analysis, differential equations, probability and statistics, learning the-
ory and so on [4–6, 12–16, 21, 23, 38]. Also the idea of reproducing kernel theory has
been studied by scientists and engineers such as S. Abbasbandy, et al [2, 3, 17, 34].
They considered a new method for solving initial value problems, singular integral
equations, nonlinear partial differential equations and operator equations with the
help of the concept of reproducing kernel Hilbert space method. The rest of this
paper is organized as follows:
In Section 2, we present the basic notions of requirements in this article. Fuzzy
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impulsive fractional differential equations is introduced in Section 3. The applica-
tion of RKHSM for solveing the problems. (1)-(3) is explained in Section 4. We
introduc error estimations and error bounds in Section 5. The numerical examples
are presented in Section 6. The conclusions is brought in Section 7.

2. Basic preliminaries

Definition 2.1 ([22, 30]) We represent an arbitrary fuzzy number by an ordered
pair function (u(r), u(r)), which satisfies the following requirements:

L1: u(r) is a bounded monotonic increasing left continuous function,
L2: u(r) is a bounded monotonic decreasing left continuous function,
L3: u(r) ⩽ u(r), 0 ⩽ r ⩽ 1.

Definition 2.2 ([24]) A crisp number θ is simply represented by θ(t, r) = θ(t, r) =
θ, 0 ⩽ r ⩽ 1. We recall that for a < b < c which a, b, c ∈ R, the triangular fuzzy
number u = (a, b, c) is determined by a, b, c such that u(t, r) = a + (b − c)r and
u(t, r) = c− (c− b)r are left branch and right branch, ∀ r ∈ [0, 1].

Definition 2.3 ([1]) Let u, v ∈ RF . If there exists w ∈ RF such that u = v ⊕ w,
then w is called the H-difference of u and v, and it is denoted by w = u⊖gH v.

Definition 2.4 ([33]) The generalized Hukuhara difference of two fuzzy numbers
u, v ∈ RF is defined as follows:

u⊖gH v = ϕ ⇐⇒

 (i) u = v ⊕ ϕ,
or
(ii) v = u⊕ (−1)ϕ.

The condition u ⊖gH v ∈ RF is given in [33]. Please note that a function
f : [a, b] → RF so called fuzzy-valued function. The r-level representation of fuzzy-
valued function f is expressed by fr(t) = [f(t, r), f(t, r)], t ∈ [a, b], r ∈ [0, 1]. We
will denote RF the set of fuzzy numbers, i.e. normal, fuzzy convex, upper semi con-
tinuous and compactly supported fuzzy sets dened over the real line. Fundamental
concepts in fuzzy sets theory are the support, the level-sets (or level-cuts) and the
core of a fuzzy number.

Definition 2.5 ([9]) Let u ∈ RF be a fuzzy number. For r ∈ (0, 1], the r-level
set of u (or simply the r-cut) defined by [u]r = {t ∈ R|u(t) ⩾ r} = [u(r), u(r)]
and for r = 0 by the closure of the support [u]0 = cl{t|t ∈ R, u(t) > 0} where cl
denotes the closure of a subset. The addition u+ v and the scale multiplication ku
are defined as

[u⊕ v]r = [u]r ⊕ [v]r = {x+ y|x ∈ [u]r, y ∈ [v]r},

[k ⊙ u]r = k.[u]r = {kx|x ∈ [u]r}, [0] = {0}, ∀ r ∈ [0, 1].

The subtraction of fuzzy numbers u − v is defined as the addition u + (−1)v, if
v = [v, v] where (−1)v = [−v,−v].

Definition 2.6 The Hausdorff distances between fuzzy numbers is given by d :
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RF × RF → R+ ∪ {0} as in [7].

d(u, v) = sup
0<r≤1

max
(
|u(r)− v(r)|, |u(r)− v(r)|

)
.

Consider u, v, w, z ∈ RF and λ ∈ R, then the following properties are well-known
for metric d

1): d(u⊕ w, v ⊕ w) = d(u, v),
2): d(λu, λv) = |λ|d(u, v),
3): d(u⊕ v, w ⊕ z) ≤ d(u,w) + d(v, z),
4): d(u⊖gH v, w ⊖gH z) ≤ d(u,w) + d(v, z).

as long as u ⊖gH v and w ⊖gH z exist, where u, v, w, z ∈ RF . Where, ⊖ is the
Hukuhara difference.

Theorem 2.7 ([31])Let f : [a, b] → RF be fuzzy continuous. Then
∫ b
a f(x)dx exists

and belongs to RF , furthermore it holds∫ b

a
f(x, r)dx =

(∫ b

a
f(x, r)dx,

∫ b

a
f(x, r)dx

)
.

Definition 2.8 ([18]) let f : [a, b] −→ RF is called fuzzy continuous if for arbitrary
fixed x0 ∈ RF and ξ > 0, there exists an δ > 0, such that if

|x− x0| < δ, then d(f(x), f(x0)) < ξ

Lemma 2.9 For all α > 0 and γ > −1∫ t

0
(t− s)

1

α
−1sγds =

Γ( 1α)Γ(γ + 1)

Γ( 1α + γ + 1)
t

k

α
+γ ,

where Γ is the gamma function and defined by

Γ(z) =

∫ ∞

0
e−ttz−1dt.

Proof Lemma 2.6 [36]. ■

Definition 2.10 ([7]) The generalized Hukuhara derivative of a fuzzy-valued func-
tion f : (a, b) → RF at x0 is defined

f
′

gH(x0) = lim
h→0

f(x0 + h)⊖gH f(x0)

h
(4)

If f
′

gH(x0) ∈ RF satisfying (7) exists, we say that f is generalized Hukuhara

differentiable (gH-differentiable for short) at x0. Also we say that f is [(i)-gH]-
diferentiable at x0 if

(i) f
′

gH(x0) = [f
′
(x0, r), f

′

(x0, r)] (5)

and if f is [(ii)-gH]-diferentiable at x0 if

(ii) f
′

gH(x0) = [f
′

(x0, r), f
′
(x0, r)] (6)
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Throughout this paper, we denote the space of all Lebesgue integrable fuzzy-
valued function on the bounded interval [a, b] ⊂ R by LF [a, b]. Also, we denote
CF [a, b] as the space of all continuous fuzzy-valued function on [a, b], Moreover we
suppose that the generalized Hukuhara difference of any two fuzzy numbers exist.

Definition 2.11 ([7]) Let f : (a, b) → RF . We say that f is gH- differentiable
of the nthorder at x0 whenever the function f is gH-differentiable of the order
j, j = 1, 2, . . . , n − 1 , at x0 provided that gH-differentiable type has no change,
then there exist (f)ngH(x0) ∈ RF such that

f
(n)
gH (x0) = lim

h→0

f (n−1)(x0 + h)⊖gH f (n−1)(x0)

h
(7)

Definition 2.12 ([27]) Let f : [a, b] → RF , the fuzzy Riemann-Liouville integral
of fuzzy -valued f is defined as follows:

(Iαa|tf)(t, r) =
1

Γ(α)

∫ t

a

f(t, r)

(t− s)1−α
ds, t > a,

where

[Iαa|tf ](t, r) =
[

1
Γ(α)

∫ t
a

f(t,r)

(t−s)1−αds,
1

Γ(α)

∫ t
a

f(t,r)
(t−s)1−αds

]
,

for a ≤ s ≤ t and 0 < α ≤ 1.

Definition 2.13 ([27]) The Caputo generalized Hukuhara differentiability of
fuzzy-valued function f([gH]−differentiability for short), where x > a, is defned as
following:

cD
α
a|tfgH(t, r) =

1

Γ(m− α

∫ t

a

f
(m)
gH (t, r)ds

(t− s)α−m+1
, 0 < α < 1,

We suppose that any order of differentiability of fuzzy function f exist in the sense
of gH. Moreover we say that f is [(i)− gH]-differentiable at t if

[cD
α
a|tfi.gH ](t, r) = [cD

α
a|tf(t, r), cD

α
a|tf(t, r)],

as well as f is [(ii)− gH]-differentiable at t if

[cD
α
a|tfii.gH ](t, r) = [cD

α
a|tf(t, r), cD

α
a|tf(t, r)],

Definition 2.14 ([3, 17]) A Hilbert space is a complete infinite-dimensional inner-
product space. The elements of this space can be functions defined on a set T . In
particular, the abstract reproducing kernel Hilbert space (RKHS), H, is a Hilbert
space of functions defined on a set T such that there exists a unique function,
R(t, y), defined on T × T with the following properties:

(I). Ry(t) = R(t, y) ∈ H for all t ∈ T
(II). ⟨f(t), Ry(t)⟩ = f(y) for all t ∈ T for all f ∈ H

The function R(t, y) is called the reproducing kernel of the abstract RKHS.



42 N. Najafi and N. Biranvand/ IJM2C, 10 - 01 (2020) 37-56.

Definition 2.15 ([17, 29]) Let ϕ be a mapping from T into the space H such that
ϕ = R(t, .). A function R : T × T → R such that Ry = R(t, y) = ⟨ϕ(t), ϕ(y)⟩ ,for
all t, y ∈ T is called a kernel.

Definition 2.16 ([12, 21]) Wm
2 [0, 1] = {u(m−1)(t) is an absolutely continuous real

value function, u(m)(t) ∈ L2[0, 1],u(0) = 0, u(1) = 0}. Her L2[a, b] = {z|
∫ b
a z

2dt <
∞. The inner product and norm in Wm

2 [0, 1] are given respectively by

⟨u, v⟩ =
m−1∑
i=0

u(i)(0)v(i)(0) +

∫ 1

0
u(m)(t)v(m)(t)dx

and

∥u∥W =
√
⟨u, u⟩W , u, v ∈Wm[0, 1].

Wm[0, 1] is a reproducing kernel space and its reproducing kernel R(t, y) can be
obtained In [12].

Definition 2.17 ([2]) W 1
2 [a, b]={u(t)|u(t) is an absolutely continuous real value

function, on [a, b] and u, u
′ ∈ L2[a, b]}. The inner product and norm in W 1

2 [a, b] are
given respectively by

⟨u, v⟩ =
∫ b

a

(
u(t)v(t) + u

′
(t)v

′
(t)

)
dt

∥u∥W =
√

⟨u, u⟩W , u ∈W 1
2 [a, b].

Cui and Lin defined a reproducing kernel space W 1
2 [0, 1] and gave its reproducing

kernel

R̄(t, y) =

{
1 + y y ≤ t

1 + t y > t

Definition 2.18 ([2, 3]) W 2
2 [0, 1]={u : u(t), u

′
(t) is an absolutely continuous real

value function, on [0, 1] and u, u
′
, u

′′ ∈ L2[0, 1] and u(0) = 0}. The inner product
and norm in W 2

2 [0, 1] are given respectively by

⟨u, v⟩ = u(0)v(0) + u
′
(0)v

′
(0) +

∫ 1

0
u

′′
(t)v

′′
(t)dt

and

∥u∥W =
√

⟨u, u⟩W , u ∈W 2
2 [0, 1].

Using Mathematica 8.0 software package, the representation of the reproducing
kernel function Rt(y) is provided by

Rt(y) =

{
1
6(y − a)(2a2 − y2 + 3t(2 + y)− a(6 + 3t+ y)), y ≤ t,
1
6(t− a)(2a2 − t2 + 3y(2 + t)− a(6 + 3y + t)), y > t.

(8)
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3. Fuzzy impulsive fractional differential equations

In this section, we are going to introduce fuzzy integral equations method expansion
for solving fuzzy impulsive fractional differential equations by using concept of
generalized Hukuhara differentiability.

cD
1

α y(t) = f(t, y(t)), t ∈ [0, T ], t ̸= tk, m− 1 <
1

α
< m, m ∈ N, (9)

∆y(t)|t=tk = Ik(y(t
−
k (t))), (10)

y(0) = y0. (11)

where k = 1, 2, . . . ,m, cD
1

α denotes the Caputo fractional generalized derivative of
order 1

α , y(t) is an unknown fuzzy function of crisp variable t and f : [0, T ]×RF →
RF , is continuous fuzzy function, Ik : RF → RF, y0 ∈ RF , 0 = t0 < t1 <
· · · < tm < tm+1 = T, ∆|t=tk = y(t+k ) ⊖gH y(t−k ), y(t

+
k ) = limh→0+y(tk + h),

and y(t−k ) = limh→0−y(tk + h) represent the right and left limits of y(t) at
t = tk.

Lemma 3.1 ([8]) The initial value problem (9)under the conditions (10) and (11)
is equivalent to one of the following integral equations:

y(t) = y0 ⊕
1

Γ( 1α)

∫ t

0
(t− s)

1

α
−1f(s, y(s))ds, t ∈ [0, t1] (12)

whenever y(t) as [(i)− gH]-differentiable,

y(t) = y0 ⊖ (−1)
1

Γ( 1α)

∫ t

0
(t− s)

1

α
−1f(s, y(s))ds, t ∈ [0, t1] (13)

whenever y(t) as [(ii)− gH]-differentiable,

y(t) =


y0 ⊕ 1

Γ( 1

α
)

∫ t
0 (t− s)

1

α
−1f(s, y(s))ds, t ∈ [0, t1]

y0 ⊖ (−1) 1
Γ( 1

α
)

∑m
k=1

∫ tk
tk−1

(tk − s)
1

α
−1f(s, y(s))ds⊖ (−1)

1
Γ( 1

α
)

∫ t
tk
(t− s)

1

α
−1f(s, y(s))ds⊖ (−1)

∑m
k=1 Ik(y(t

−
k )), if t ∈ (t1, tk+1]

(14)

if there exists a point t1 ∈ (0, tk+1) such that y(t) is [(i) −
gH]−differentiable on [0, t1] and [(ii)− gH]− differentiable on (t1, tk+1).

Theorem 3.2 ([26])Assume that
∗(H1) There exists a constant 0 ≤ l such that d(f(t, y), f(t, y)) ≤ ld(y, y),
for each t ∈ [0, T ], and each u, u ∈ RF

(H2) There exists a constant 0 ≤ l∗ such that d(Ik(y), Ik(y)) ≤ l∗d(y, y), for
each y, y ∈ RF , and k = 1, 2, . . . ,m. if

[
T

1

α l(m+ 1)

Γ( 1α + 1)
+ml∗] < 1
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Such that T is very small numbers therefore, Eqs. (9)-(11) has a unique solution
on [0, T ].

4. Solving fuzzy impulsive fractional differential equation in W 2
2 [a, b]

Using Lemma (3.1), the solution of Eqs. (9)-(11) is equivalent to solution of Eqs.
(12)-(14). We show how RKHSM applied to solve integral equation Eq. (14). Thus

y(t) =


y0 ⊕ 1

Γ( 1

α
)

∫ t
0 (t− s)

1

α
−1f(s, y(s))ds, t ∈ [0, t1],

y0 ⊖ (−1) 1
Γ( 1

α
)

∑m
k=1

∫ tk
tk−1

(tk − s)
1

α
−1f(s, y(s))ds⊖ (−1)

1
Γ( 1

α
)

∫ t
tk
(t− s)

1

α
−1f(s, y(s))ds⊖ (−1)

∑m
k=1 Ik(y(t

−
k )), t ∈ (t1, tk+1],

(15)

By impulsive effect, we have:

∆y(t) = y(0+)⊖gH y(0−) = I0(y(0
−))

=⇒

{
y(0+) = I0(y(0

−))⊕ y(0−), t ∈ [0, t1],

y(0−) = y(0+)⊕ (−1)I0(y(0
−)), t ∈ (t1, tk+1].

(16)

By substituting Eq. (16) into Eq. (15) we have

y(t) =


y(0−)⊕ I0(y(0

−))⊕ 1
Γ( 1

α
)

∫ t
0 (t− s)

1

α
−1f(s, y(s))ds, t ∈ [0, t1],

y(0−)⊖ (−1)I0(y(0
−))⊖ (−1) 1

Γ( 1

α
)

∑m
k=1

∫ tk
tk−1

(tk − s)
1

α
−1f(s, y(s))ds⊖ (−1)

1
Γ( 1

α
)

∫ t
tk
(t− s)

1

α
−1f(s, y(s))ds⊖ (−1)

∑m
k=1 Ik(y(tk)), t ∈ (t1, tk+1],

(17)

In Eq. (17), we define y(t−) = y(t). Thus

y(t) =


I0(y(0))⊕ y(0)⊕ 1

Γ( 1

α
)

∫ t
0 (t− s)

k

α
−1f(s, y(s))ds, t ∈ [0, t1],

y(0)⊖ (−1)I0(y(0))⊖ (−1) 1
Γ( 1

α
)

∑m
k=1

∫ tk
tk−1

(tk − s)
1

α
−1f(s, y(s))ds⊖

(−1) 1
Γ( 1

α
)

∫ t
tk
(t− s)

1

α
−1f(s, y(s))ds⊖ (−1)

∑m
k=1 Ik(y(tk)), t ∈ (t1, tk+1],

(18)

To solve Eq. (18); we define operator

L =W 2
2 [a, b] →W 1

2 [a, b], t ∈ [0, tk+1]
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as follows:

Ly(t) =


y(t)⊖ I0(y(0))⊖ y(0)⊖ 1

Γ( 1

α
)

∫ t
0 (t− s)

k

α
−1f(s, y(s))ds, t ∈ [0, t1],

y(t)⊕ (−1)I0(y(0))⊕ y(0)⊕ (−1) 1
Γ( 1

α
)

∑m
k=1

∫ tk
tk−1

(tk − s)
1

α
−1f(s, y(s))ds⊕

(−1) 1
Γ( 1

α
)

∫ t
tk
(t− s)

1

α
−1f(s, y(s))ds⊕ (−1)

∑m
k=1 Ik(y(tk)), t ∈ (t1, tk+1],

(19)

It is clear that L is a bounded linear operator. Model problem Eq. (19) changes to
the following problems:

Ly(t) =

{
F (t, y(t), T1y(t)), t ∈ [0, t1],

F (t, y(t), T y(t), Sy(t)), t ∈ (t1, tk+1]
(20)

Such that

F (t, y(t), T1y(t)) = y(t)⊖ I0(y(0))⊖ y(0)⊕ (−1)T1y(t),

T1y(t) =
1

Γ( k

α
)

∫ t
0 (t− s)

k

α
−1f(s, y(s))ds,

and

F (t, y(t), T y(t), Sy(t)) = y(t)⊖ I0(y(0))⊖ y(0)⊕ (−1)
∑k

k=1 Ik(y(tk))⊖ Ty(t)⊕ (−1)Sy(t),

Ty(x) = 1
Γ( k

α
)

∑m
k=1

∫ tk
tk−1

(tk − s)
k

α
−1f(s, y(s))ds,

Sy(x) = 1
Γ( k

α
)

∫ t
tk
(t− s)

k

α
−1f(s, y(s))ds.

Where y(t) ∈ W 2
2 [a, b], F (t, y(t), T1y(t)) and F (t, y(t), T y(t), Sy(t)) ∈ W 1

2 [a, b] for
t ∈ [a, b]. Where y(t) ∈ W 2

2 [a, b] and Ly(t) ∈ W 1
2 [a, b] for t ∈ [a, b]. Using the Eq.

(8) put ϕi(t) = R(t, ti) and ψi(t) = L∗ϕi(t) where {ti}∞i=1 in [a, b] and L∗ is the
adjoint operator of L. It is easy to see that

ψi(t) = [LyRt(y)](ti) =



R(t, ti)⊖ I0(R(0, ti)))⊖R(0, ti)⊖ 1
Γ( 1

α
)

∫ t
0 (t− s)

1

α
−1f(s,R(s, ti))ds, t ∈ [0, t1],

R(t, ti)⊕ (−1)I0(R(0, ti))⊕R(0, ti)⊕ (−1)
∑m

k=1 Ik(R(tk, ti))⊕ (−1)
1

Γ( 1

α
)

∑m
k=1

∫ tk
tk−1

(tk − s)
1

α
−1f(s,R(s, ti))ds

⊕(−1) 1
Γ( 1

α
)

∫ t
tk
(t− s)

1

α
−1f(s,R(s, ti))ds, t ∈ (t1, tk+1]

Theorem 4.1 If {ti}∞i=1 is dense on [a, b] then {ψi}∞i=1 is the complete function
system of the space W 2

2 [a, b] and ψi(t) = [LyRt(y)](ti), where the subscript t in the
operator L indicates that the operator L applies to the function of t.

Proof We have

ψi(t) = ⟨(L∗ϕi)), Ry(t)⟩W 2
2
= ⟨(ϕi)), LtRy(t)⟩W 2

2
= LtRy(t)|t=yi

, t ∈ [0, tk+1]

Clearly ψi ∈W 2
2 [a, b].For each fixed y(t) ∈W 2

2 [a, b], let

⟨y(t), ψi(t)⟩W 2
2 [a,b]

= 0, t ∈ [0, tk+1]

i = 1, 2, . . . , it means

⟨y(t), L∗ϕi(t)⟩W 2
2 [a,b]

= ⟨Ly(t), ϕi(t)⟩W 2
2 [a,b]

= Ly(ti) = 0, t ∈ [0, tk+1]
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Assume that {ti}∞i=1 is dense on [a, b] and so Ly(t) = 0. It follows that y = 0 from
the existence of L1. Now, the theorem is proved. ■

Definition 4.2 The orthonormal system {ψ̂i(t)}∞i=1 of W 2[a, b] can be derived
from the Gram-Schmidt orthogonalization process of {ψi(t)

∞
i=1},

ψ̂i(t) =

i∑
k=1

βikψk(t), t ∈ [0, tk+1], (21)

where βik{(i = 1, 2, . . .), (k = 1, 2, . . .)} are coefficients of Gram-Schmidt orthonor-

malizarion and {ψ̂i(t)}∞i=1 is an orthonormal system, could be determined by solving
the following equations.

Bik = ⟨ψi, ψ̂i⟩ = ψi(a)ψ̂i(a) + ψ
′

i(a)ψ̂
′

i(a) +
∫ b
a ψ

′′

i (t)ψ̂
′′

i (t)dt, t ∈ [0, tk+1],

βii = 1/
(√

[(ψi(a))2 + (ψ
′

i(a))
2 +

∫ b
a (ψ

′′

i (t))
2dt−

∑i−1
k=1B

2
ik]

)
, t ∈ [0, tk+1],

βij = βii ∗ (−
∑i−1

k=j Bik ∗ βkj) (i = 1, 2, . . .), (j = 1, 2, . . . , i− 1), (k = 1, 2, . . . , i− 1).

Theorem 4.3 If {ti} is dense on [a, b] and the solution of Eq. (20) is unique, then
the solution of Eq. (20) is

u(t) =
∞∑
i=1

i∑
k=1

βiky(tk)ψ̂i(t), t ∈ [0, tk+1] (22)

Put throughout this article t1 = 1

Proof Using Eq. (21), we have

u(t) =
∑∞

i=1⟨y(t), ψ̂i(t)⟩W 1
2
ψ̂i(t)

=
∑∞

i=1⟨y(t),
∑i

k=1 βikψk(t)⟩W 1
2
ψ̂i(t)

=
∑∞

i=1

∑i
k=1 βik⟨y(t), ψk(t)⟩W 1

2
ψ̂i(t)

=
∑∞

i=1

∑i
k=1 βik⟨y(t), L∗ϕk(t)⟩W 1

2
ψ̂i(t)

=
∑∞

i=1

∑i
k=1 βik⟨Ly(t), ϕk(t)⟩W 1

2
ψ̂i(t)

=
∑∞

i=1

∑i
k=1 βikLy(tk)ψ̂i(t)

=
∑∞

i=1

∑i
k=1 βiky(tk)ψ̂i(t), t ∈ [0, tk+1]

On the other hand, y(t) ∈W 2
2 [a, b] and

y(t) =
∞∑
i=1

aiψ̂i(t), t ∈ [0, tk+1],

where

ai = ⟨y(t), ψ̂i(t)⟩, t ∈ [0, tk+1]



N. Najafi and N. Biranvand/ IJM2C, 10 - 01 (2020) 37-56. 47

are the Fourier series expansion about normal orthogonal system {ψ̂i(t)}∞i=1 and

W 2
2 [a, b] is the Hilbert space. Thus the series

∑∞
i=1 aiψ̂i(t), t ∈ [0, tk+1]. is conver-

gent in the sense of ||.||W 2
2
and the proof would be complete. ■

Now the approximate solution yN (t) can be obtained by the N -term intercept of
the exact solution y(t) and

yN (t) =
N∑
i=1

i∑
k=1

βiky(tk)ψ̂i(t), t ∈ [0, tk+1] (23)

In the sequel, a new iterative method to achieve the solution of Eq. (20) is presented.
If

Ai =
i∑

k=1

βiky(tk), t ∈ [0, tk+1]

then Eq. (22) can be written as

y(t) =

∞∑
k=1

Aiψ̂i(t), t ∈ [0, tk+1].

Now suppose, for some ti, y(ti) is known. There is no problem if we assume i = 1.We
put y0(t1) = y(t1) and define the N -term approximation to y(t) by

yN (t) =
N∑
k=1

ciψ̂i(t), t ∈ [0, tk+1], (24)

where

ci =
k∑

i=1

βikyk−1(tk), t ∈ [0, tk+1]. (25)

In the following, it would be proven that the approximate solution yN (t) in the
iterative Eq.(24) is convergent to the exact solution of Eq. (20) uniformly.

Theorem 4.4 Suppose that ||yN (t)||W 2
2
is bounded in Eq. (24). If {ti}∞i=1 is dense

on [a, b] then N -term approximate solution yN (t) in the iterative Eq. (24) converges
to the exact solution y(t) of Eq. (20) and

y(t) = lim
n→∞

n∑
i=1

cNi ψi(t), t ∈ [0, tk+1],

where as ci are give by Eq. (25).

Proof First of all,the convergence of uN (t) from Eq. (24) will be proved. We infer

yn+1(t) = yn + cn+1ψ̂n+1(t), t ∈ [0, tk+1]

It is obvious that the sequence ||yn(t)||W 2
2
is monotonically increasing. Because

||yn(t)||W 2
2
is bounded and ||yn(t)||W 2

2
is convergent, then

∑∞
i=1 c

2
i is bounded and
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this implies that {ci}∞i=1 ∈ L2. If m > n then

||ym − yn||2W 2
2 [a,b]

= ||
n+1∑
i=m

(yi − yi−1)||2W 2
2 [a,b]

=
n+1∑
i=m

||(yi − yi−1)||2W 2
2 [a,b]

.

So ||(yi − yi−1)||2W 2
2 [a,b]

= c2i . Consequently ||ym − yn||2W 2
2 [a,b]

=
∑∞

i=1 c
2
i → 0 as

n → ∞. To prove the completeness of W 2
2 [a, b] it requires ŷ, where ŷ ∈ W 2

2 [a, b]
that yn → ŷ as n → ∞ . Now we can prove ŷ is the solution of Eq. (20). If we

take limit from Eq. (24), we will have ŷ(t) =
∑N

i=1 ciψ̂i, so Lŷ(t) =
∑N

i=1 ciLψ̂i.
Let tl ∈ {ti}∞i=1, then

Lŷl(t) =
∑∞

i=1 ciψ̂i(tl)

=
∑∞

i=1 ci⟨Lψ̂i(t), ϕl(t)⟩W 2
2 [a,b]

=
∑∞

i=1 ci⟨ψ̂i(t), L
∗ϕl(t)⟩W 2

2 [a,b]

=
∑∞

i=1 ci
⟨
ψ̂i(t), ψ̂l(t)

⟩
W 2

2 [a,b]

=
∑∞

i=1 ci

⟨
ψ̂i(t),

∑i
l=1 cilψl(t)

⟩
W 2

2 [a,b]
, t ∈ (t1, tk+1]

From Eq. (24),it is concluded that Lŷ(tl) = ŷ(tl). {ti}∞i=1 is dense on [a, b]. For each
t ∈ [a, b], {tni

}∞i=1 subsequence exists that tni
→ t, as i→ ∞. Hence, when i→ ∞,

we have ly(t) = y(t) which indicates that ŷ is the solution of Eq. (20). ■

Lemma 4.5 If y(t) ∈ W 2
2 [a, b], then there exists a constant C such that | y(t) |⩽

C ∥ y(t) ∥W , | y′
(t) |⩽ C ∥ y(t) ∥W .

Proof.

| y(t) |=| ⟨y(y), R(t, y)⟩ |⩽∥ y(y) ∥W ∥ k(t, y) ∥W

there exists a constant c0 such that

c0 =∥ k(t, y) ∥W∈W 2
2 [a, b], | y(x) |⩽ c0 ∥ y(t) ∥W .

Note that

| y(i)(t) |=| ⟨y(t), ∂
ik(t, y)

∂ti
⟩W | ⩽∥ y(t) ∥W ∥ ∂

ik(t, y)

∂ti
∥W

⩽ ci ∥ y ∥W

where ci are constants. Putting C = max ci and the proof of the lemma is complete.

Theorem 4.6 The approximate solution yn(t) and its derivatives y
′

n(t), are all
uniformly convergent.

Proof. We know

|yn(t)− y(t)| = |⟨yn(t)− y(t), R(t, y)⟩| ≤ ∥yn − y∥∥R(t, y)∥W 2 ≤M∥yn − y∥.
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Also

y
′

n(t)− y
′
(t) = (yn(t)− y((t))

′

= ∂
∂t⟨(yn(t)− y(t)), k(t, y)⟩W 2

2

= ⟨yn(t)− y(t), ∂
∂tk(t, y)⟩W 2

2

≤ ∥(yn(t)− y(t))∥ ∥ ∂
∂tk(t, y) ∥,

∂
∂tk(t, y) ∈W 2

2 [a, b]

one obtains

| y′

n(t)− y
′
(t) |⩽∥ yn(y)− y(y) ∥W 2

2
∥ ∂

∂t
k(t, y) ∥ .

Also ∥ ∂
∂xk(x, y) ∥W 2

2
is continuous with respect to x in [a, b], then

| y′

n(t)− y
′
(t) |⩽M ∥ yn(t)− y(y) ∥W 2

2

where M is a positive number. So that

lim
x→n

yn(t) = y(t) ⇒ lim
t→n

y
′

n(t) = y
′
(t).

5. Error estimations and error bounds

Lemma 5.1 Suppose that yj ∈ Cm[a, b] and y
(m+1)
j ∈ L2[a, b], for some 1 ≤ m. If

yj vanishes at M with N ≤ m + 1,then uj ∈ W 2
2 [a, b] and there is a constant Aj

such that

||yj ||W 2
2
≤ Ajh

mmax
∣∣∣y(m+1)

j (t)
∣∣∣, t ∈ [0, tk+1],

where j = 1, 2, . . . , n. We mention here that for the next results the hypotheses of
Lemma 5.1 are hold.

Proof The proof similar Lemma 3 [5]. ■

Theorem 5.2 If y(t) = (y1(t), y2(t), . . . , yn(t)), then there is a constant D =
(D1, D2, . . . , Dn) such that

||y||H ≤ hm||D||2
∣∣∣∣∣∣max |y(m+1)(t)|

∣∣∣∣∣∣
2
, t ∈ [0, tk+1]

Proof Considering Denition 2.17, one can write

||y||H =
(∑n

j=1 ||yj ||2W 2
2

) 1

2

≤
√∑n

j=1

(
hmDj

∣∣∣max |y(m+1)(t)
∣∣∣)2

= hm
√∑n

j=1D
2
j

(∣∣∣max |y(m+1)(t)
∣∣∣)2

≤ hm
√∑n

j=1D
2
j

∑n
j=1

(∣∣∣max |y(m+1)(t)
∣∣∣)2

= hm||D||2||max |y(m+1)(t)|||2, t ∈ [0, tk+1]
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■

Definition 5.3 we may use a norm that represents the maximum value at each
function. That means, if y(t) = (y1(t), y2(t), . . . , yn(t)), then

||y(t, r)||∞ = max
j

(
sup |yj |

)
, t ∈ (0, tk+1]

and j = 1, 2, . . . n.

Theorem 5.4 Let y(t, r) and yn(t, r) are given by Eqs. (22) and (23), respectively,
then there is a constant B such that

||y(i) − y(i)n ||∞ ≤=

B1h
m, i = 0, 1

B2h
m, i = 0, 1

Proof The proof will be obtained by mathematical inductionas follows: from Eq
yn(t) =

∑N
j=1Ajψ̂j ,∀ j ≤ n, we see that

LyN (t) =

N∑
j=1

AjLψ̂j

and

(LyN )(tn) =
N∑
j=1

Aj(Lψ̂j , ϕn) =
N∑
j=1

Aj(ψ̂j , L
∗ϕn) =

N∑
j=1

Aj(ψ̂j , ψ̂n)

therefore

n∑
i=1

βni(LyN )(ti) =
N∑
j=1

Aj(Lψ̂j ,
n∑

i=1

βniϕi) =
N∑
j=1

Aj(ψ̂i, ψ̂n) = An.

If n = 1, then

(LyN )(t1) =

{
F (t1, y(t1), T1y(t1)), t ∈ [0, t1],

F (t1, y(t1), T y(t1), Sy(t1)), ∈ (t1, tk+1].

If n = 2, then

β21(LyN )(t1) + β22(LyN )(t2) =

{
β21F (t1, y(t1), T1y(t1)), t ∈ [0, t1],

β21F (t1, y(t1), T y(t1), Sy(t1)), t ∈ (t1, tk+1].

+

{
β22F (t2, y(t2), T1y(t2)), t ∈ [0, t1],

β22F (t2, y(t2), T y(t2), Sy(t2)), t ∈ (t1, tk+1].

It is clear that

(LyN )(t2) =

{
F (t2, y(t2), T1y(t2)), t ∈ [0, t1],

F (t2, y(t2), T y(t2), Sy(t2)), t ∈ (t1, tk+1].
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Moreover, it is easy to see by induction that

(LyN )(tj) =

{
F (tj , y(tj), T1y(tj)), t ∈ [0, t1],

F (tj , y(tj), T y(tj), Sy(tj)), t ∈ (t1, tk+1],

where j = 1, 2, . . . , N. Clearly RN ∈ Cm[o, tk+1] and R
(m+1)
N ∈ L2[0, tk+1]. There-

fore, from Theorem 5.2 there is a constant D = (D1, D2, . . . , Dn) such that

||RN || ≤ hm||D||2
∣∣∣∣∣∣max |R(m+1)

N (t)|
∣∣∣∣∣∣
2
, t ∈ (0, tk+1].

Recalling that the error function

RN (t) = (LyN )(tj)− F (tj , y(tj), T y(tj), Sy(tj))

= LyN (t)− Ly(t) = L(yN (t)− y(t)), t ∈ (0, tk+1]

Hence, yN − y = L1RN , then there is fixed a E so that

||y − yN ||W = ||L−1RN ||

≤ ||L−1||||RN ||

≤ Ehm||D||2
∣∣∣∣∣∣max |R(m+1)

N (t)|
∣∣∣∣∣∣
2
, t ∈ (0, tk+1]

Eventually, in view of Lemma 4.5, we can nd that

||y(i)(t)−y(i)N (t)||∞ ≤ K||y−yN ||W ≤ KEhm||D||2
∣∣∣∣∣∣max |R(m+1)

N (t)|
∣∣∣∣∣∣
2
, t ∈ (0, tk+1]

=

B1h
m

B2h
m

where

B1 = KE||D||2||max |R(m+1)
N (t)|||2, t ∈ [0, t1],

B2 = KE||D||2||max |R(m+1)
N (t)|||2, t ∈ (t1, tk+1].

■

Lemma 5.5 Suppose that h =

{ t1−t0
N

tk+1−tk
N

is the ll distance for the uniform partition

of t ∈
{
[0, t1],
(t1tk+1]

. Let y(t) and yN (t) are given by Eqs. (22) and (23), respectively,

then

||y(i)(t)− y
(i)
N (t)||∞ = O(N−m), i = 0, 1.

Proof The proof follows directly from Theorem 5.4. ■
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Theorem 5.6 Let ϵN = ||y − yN ||W ,where y(t) and yN (t) are the exact and the
numerical solution, respectively. Then, the sequence of numbers {ϵN} are decreasing
in the sense of the norm of W 2

2 [a, b] and ϵN → 0 as N → ∞.

Proof Using the expansions form of y(t) and yN (t) in Eqs.(22) and (23), we can
write

ϵ2N = ||
∞∑

i=N+1

n∑
j=1

βijψ̂ij(t)||2, t ∈ [0, tk+1]

and

ϵ2N−1 = ||
∞∑

i=N

n∑
j=1

βijψ̂ij(t)||2 =
∞∑

i=N

(
n∑

j=1

βij)2, t ∈ [0, tk+1].

Clearly,ϵN ≤ ϵN−1, and consequently {ϵN}∞N=1 are decreasing in the sense of||.||W 2
2
.

By Theorem 6, we know that

∞∑
i=N

n∑
j=1

βijψ̂ij(t), t ∈ [0, tk+1]

is convergent. Thus,ϵ2N → 0 or ϵN → 0. So, the proof of the theorem is complete.
■

6. Numerical examples

In this section, we solve the following one example appearing in Ref.[26], by using
the method discussed above. All experiments were performed in MATHEMATICA
8.0. For solving fuzzy impulsive fractional differential equations using the following
algorithm.
Algorithm: The approximate and exact solution yN (t, r) and y(t, r) for fuzzy
impulsive fractional differential equations (9)-(11), we do the following main steps:
Step 1. Fixed t, y ∈ [a, b],
if y ≤ t set R2

t (y) =
1
6(y − a)(2a2 − y2 + 3t(2 + y)− a(6 + 3t+ y))

Else set R2
t (y) =

1
6(t− a)(2a2 − t2 + 3y(2 + t)− a(6 + 3y + t))

For i = 1, 2, . . . , n,h = 1, 2, . . . ,m and j = 1, 2 ,do the following:
Set ti =

i−1
n−1 ,

Set rh = h−1
m−1 ,

Set

ψi(ti) = L−1R2
t (y)|y=ti , t ∈ [0, tk+1].

Output: The orthogonal function system ψi(ti).
Step 2.

Bik = ⟨ψi, ψ̂i⟩ = ψi(a)ψ̂i(a) + ψ
′

i(a)ψ̂
′

i(a) +
∫ b
a ψ

′′

i (t)ψ̂
′′

i (t)dt, t ∈ (0, tk+1].

βii = 1/
(√

[(ψi(a))2 + (ψ
′

i(a))
2 +

∫ b
a (ψ

′′

i (t))
2dt−

∑i−1
k=1B

2
ik]

)
, t ∈ (0, tk+1].

βij = βii ∗ (−
∑i−1

k=j Bik ∗ βkj) (i = 1, 2, . . .), (j = 1, 2, . . . , i− 1), (k = 1, 2, . . . , i− 1).
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Output: The orthogonalization coefficients βik
Step 3. Set ψ̂i(t) =

∑i
k=1 βikψk(t), (βii > 0, i = 1, 2, . . .).

Output: The orthogonal function system ψ̂i(t)
Step 4. Set y0(t1) = y(t1)
Step 5. Set n = 1
Step 6. Set

cn =
n∑

k=1

βnkyk−1(tk), t ∈ (0, tk+1].

Step 7. Set

yn(t) =

n∑
i=1

ciψ̂i(t), ∈ (0, tk+1].

Step 8. Set

yn(t, r) =

n∑
i=1

ciψ̂i, t ∈ (0, tk+1].

And

yn(t, r) =

n∑
i=1

ciψ̂i, t ∈ (0, tk+1].

if y(t, r) is [(i)-gH]-differentiability then:

y(t, r) =
[ n∑

i=1

ciψ̂i,
n∑

i=1

ciψ̂i

]
.

And if y(t, r) is [(ii)-gH]-differentiability then:

y(t, r) =
[ n∑

i=1

ciψ̂i,

n∑
j=1

ciψ̂i

]
.

Example 6.1 Let us consider the fuzzy impulsive fractional differential equation,

cD
1

α y(t) = 1|y(t)|
10(1+|y(t)|) , t ∈ J := [0, 1], t ̸= 1

2 , m− 1 < 1
α < m, m ∈ N ,

∆y|t= 1

2
=

|y( 1−
2
)|

3+|y( 1−
2
)|
,

y(0) = [0̃, 0̃].

Set

Ik(t) = [ (3r−1)t
t+3 , (3−r)t

t+3 ],

f(t, yii.gH(t)) =
[

(r−1)t
10(1+t) ,

(1−r)t
10(1+t)

]
.



54 N. Najafi and N. Biranvand/ IJM2C, 10 - 01 (2020) 37-56.

Table 1. Numerical results of Example 1 for yi.gH(t) and yii.gH(t).

r/t 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.55 -0.00540 -0.00480 -0 .00420 -0.00360 -0.0030 -0.00243 -0.00180 -0.00120 -0.00060 0
0.60 -0.00662 -0.00589 -0.00515 -0.00441 -0.00368 -0.00294 -0.00221 -0.00147 -0.00074 0
0.65 -0.00802 -0.00713 -0.00748 -0.00535 -0.00445 -0.00365 -0.00267 -0.00178 -0.00089 0
0.70 -0.00961 -0.00854 -0 .00888 -0.00761 -0.00534 -0.00427 -0.00320 -0.00213 -0.00107 0
0.75 - 0.01142 -0.01015 -0.01047 -0.00897 -0.00634 -0.00507 -0.00380 -0.00254 -0.00127 0
0.80 -0.01346 -0.01196 -0.01225 -0.01012 -0.00747 -0.00598 -0.00448 -0.00350 -0.00149 0
0.85 -0.01576 -0.01401 -0.01426 -0.01050 -0.00875 -0.00700 -0.00525 -0.00407 -0.00175 0
0.90 - 0.01834 -0.01630 -0.01426 -0.01212 -0.01018 -0.00814 -0.00610 -0.22024 -0.00203 0
0.95 -0.02122 -0.01886 -0.01650 - 0.01414 -0.01178 -0.00942 -0.00706 -0.00471 -0.00235 0
1 -0.02443 - 0.02171 -0 .01899 -0.01628 -0.01365 -0.01084 -0.00813 -0.00542 -0.00271 0

Table 2. Numerical results of Example 1 for yi.gH(t) and yii.gH(t).

r/t 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.55 0.00539 0.00479 0 .00419 0.00359 0.00288 0.00239 0.00179 0.00119 0.00059 0
0.60 0.00660 0.00587 0.00514 0.00440 0.00367 0.00293 0.002204 0.00147 0.00073 0
0.65 0.00800 0.00711 0.00622 0.00533 0.00444 0.00355 0.00266 0.00342 0.00089 0
0.70 0.00958 0.00852 0 .00745 0.00639 0.00533 0.00426 0.00319 0.00178 0.00107 0
0.75 0.01138 0.01012 0 .00885 0.00759 0.00633 0 0.00506 0.00379 0.00253 0.00126 0
0.80 0.01341 0.01192 0 .01043 0.00895 0.00746 0 0.00596 0.00447 0.00298 0.00149 0
0.85 0.01570 0.01396 0 .01221 0.01047 0.00087 0.00698 0.00524 0.00349 0.00174 0
0.905 0.01826 0.01623 0 .01421 0.01218 0.01015 0.00812 0.00609 0.00406 0.00203 0
0.95 0.02112 0.01878 0 .01644 0.01409 0.01174 0.00940 0.00703 0.00470 0.00235 0
1 0.02431 0.02162 0 .01892 0.01622 0.01352 0.01822 0.00811 0.00541 0.00270 0

Table 3. Numerical results of Example 2 for yi.gH(t) and yii.gH(t).

r/t 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.55 0.013806 - 0.01804 -0.04988 -0.00817 -0.11385 -0.14543 -0.17729 -0.20915 -0.27288 0
0.60 0.027612 -0.005760 -0.03913 -0.07251 - 0.10589 0.139280 -0.17267 -0.20607 -0.23947 0
0.65 0.044673 -0.009418 - 0.02584 -0.06111 -0.09639 -0.13167 -0.16696 -0.20226 -0.23757 0
0.70 0.065519 0.027961 -0.009610 -0.04719 -0.08477 - 0.12237 -0.15998 -0.19760 -0.23523 0
0.75 0.090734 0.050394 0 .010039 -0.03033 -0.07072 - 0.11112 -0.15153 -0.19176 -0.23241 0
0.80 0.120964 0.077291 0 .033597 -0.01012 -0.05386 - 0.09762 -0.14140 -0.18520 -0.22903 0
0.85 0.156914 0.109282 0 .061620 0.013927 -0.03380 -0.08155 -0.12933 -0.17715 -0.22500 0
0.90 0.199357 0.147954 0 .094710 0.042324 -0.01010 - 0.06257 -0.11509 -0.22024 -0.27288 0
0.95 0.249129 0.191353 0 .133522 0.075635 0.01769 - 0.04031 -0.09836 -0.15648 -0.21465 0
1 0.307135 0.242986 0 .178764 0.114469 0.05010 -0.01434 -0.07886 -0.14346 -0.20813 0

Using Eq.(22) and taking k = 2 and 1
α = 1

2 , the results are shown in Tables 1 and
2 and figures 1 and 2.

Example 6.2 Let us consider the fuzzy impulsive fractional equation,

cD
k

α y(t) = ty2(t)
(3+t)(1+y2(t)) , t ∈ J := [0, 1], t ̸= 1

2 , m− 1 < 1
α < m, m ∈ N ,

∆y|t= 1

2
=

|y( 1−
2
)|

2+|y( 1−
2
)|
,

y(0) = [0̃, 0̃].

Set

Ik(t) =
t

t+2 , t ∈ [0,∞),

f(t, y(t)) =
[

t3(r−1)
(3+t)(1+t2) ,

t3(1−r)
(3+t)(1+t2)

]
.

Using Eq.(22) and taking k = 2 and 1
α = 1

2 , the results are shown in Tables 3 and
4 and figures 3 and 4.
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Table 4. Numerical results of Example 2 for yi.gH(t) and yii.gH(t).

r/t 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.55 0.028928 0.025721 0 .022512 0.019302 0.016089 0.012875 0.009659 0.006441 0.003221 0
0.60 0.020779 0.018476 0.016171 0.013865 0.011557 0.009249 0.006938 0.004627 0.002314 0
0.65 0.015366 0.013663 0.011958 0.011025 0.008547 0.006839 0.005131 0.003422 0.001711 0
0.70 0.011649 0.010357 0 .009065 0.007773 0.006479 0.005185 0.003890 0.002594 0.001297 0
0.75 0.009022 0.008022 0 .007022 0.006020 0.005019 0.004016 0.003013 0.002009 0.001005 0
0.80 0.007121 0.006331 0 .005542 0.007452 0.003961 0.003170 0.002378 0.001586 0.000793 0
0.85 0.005713 0.00508 0 .004447 0.003813 0.003178 0.002543 0.001908 0.001273 0.000636 0
0.90 0.004652 0.004137 0 .003621 0.003105 0.002588 0.002071 0.001554 0.001036 0.000518 0
0.95 0.003838 0.003413 0 .002987 0.002561 0.002135 0.001709 0.001282 0.000855 0.000428 0
1 0.003204 0.002849 0 .002494 0.002138 0.001783 0.001427 0.001070 0.000714 0.000357 0

7. Conclusion

In this paper, a new algorithm was presented to solve linear and nonlinear fuzzy
impulsive fractional differential equations. This algorithm should be implemented
based on the reproducing Hilbert space method . In this algorithm, the fuzzy impul-
sive fractional differential equations is converted to linear and nonlinear differential
equations. There is an important point to make here, the results obtained by the
reproducing Hilbert space method are very effective and convenient in linear and
nonlinear cases with less computational iterative steps, work, and time. The nu-
merical representations indicate the complete validity, reliability and efficiency of
the presented method with a great potential in scientific applications.
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