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Abstract. In this paper, we aim at developing a model for option pricing to reduce the risks
associated with Ethiopian commodity prices fluctuations. We used the daily closed Unwashed
Nekempti grade 5 (ULK5) coffee and Whitish Wollega Sesame Seed Grade3 (WWSS3) prices
obtained from Ethiopia commodity exchange (ECX) market to analyse the prices fluctua-
tions.The natures of log-returns of the prices exhibit asymmetric heavy tails and high kur-
tosis. We used jump diffusion models for modeling and option pricing on commodity prices.
The method of maximum likelihood is applied to estimate the parameters under the models.
The root mean square error (RMSE) is used to test the goodness of fitting for the models to
the data. This test indicates that the models fit the data well. The techniques of analytical
and Monte Carlo simulation are used to find the call option pricing of the commodity prices.
Based on the empirical results, we conclude that double exponential jump diffusion model is
more efficient than Merton’s model for modeling and option pricing of the commodity prices.
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1. Introduction

In Ethiopia, the economy of the country is mainly dependent on the agricultural
sector. It contributes 85% of the population for employment, 44% to the country’s
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gross domestic product (GDP) and 85% of the country’s export earnings [28]. The
country has a total land area of 111.5 million hectares. Out of which 66% of it is
arable land. In 2015/2016, the total cultivated area is about 13 million hectares
[14]. Coffee and Sesame, which are the major exported agricultural commodities,
play vital roles for the growth of the Ethiopian economy. For instance, in 2012
fiscal year, Ethiopia was the major coffee producer and exporter in Africa and
ranked tenth of the largest coffee exporters in the world. The country exported 3.2
million bags of coffee and accounted for 3 percent of internationally traded coffee
in the same year [5]. Coffee, which covers the largest portion of total exports of
the country, has high contributions to its GDP and the most crucial source of hard
currency as it is pointed out by Ethiopia Revenue and Customs Authority(ERCA)
[13]. Similarly, sesame, which is produced by both small and large scale farmers, is
an important crop and export commodity. The total cultivated area of sesame, its
production value and productivity during 2013 were 0.299 million hectares, 0.220
million tonnes and 0.735 tone per hectare, respectively; and the total area and pro-
duction were increased by 61.23 % and 17.91 %, respectively [10]. It is the second
largest export crop in Ethiopia next to coffee, and it accounts for over 90% of the
value of oil seeds exports [15]. And the country has become the third largest ex-
porter of sesame seed after India and Sudan [1]. Its annual total exported quantity
increased from 50,000 to 150,000 tonnes, which is a threefold rise in eight years
time [9]. The main importers of Ethiopian sesame are China, Israel, Turkey, Japan
and other European countries [26].
Thus, some agricultural commodities like coffee, sesame, haricot bean, etc have

great significance in earning the foreign currency to the country. To this effect, the
Ethiopian ministry of agriculture has developed a master plan to enhance the pro-
ductivity, quality and market efficiency of the commodities. Therefore, Ethiopia is
leveled among the top commodity producer and exporter countries in the world as
it is suggested by [1, 5]. The market price of cereal crops exhibits great variability
and this leads to high price volatility in the country[25]. Agricultural markets also
have been exposed to high price fluctuations which resulted in excessive risk [23].
This price fluctuation has an impact on the economy of the country as well as
individuals whose life depend on agricultural products.
Therefore, it is of great significance to develop a model for option pricing to

reduce the risks associated with the commodity prices fluctuations. The Black-
Scholes model [6], which is based on Brownian motion and normal distribution,
has been widely used to model the return of assets and to price financial option for
almost four decades. However, many empirical evidences have recently shown the
leptokurtic features that the return distribution of assets may have a higher peak
and two asymmetric heavy tails than those of normal distribution, as well as an
abnormality, often referred to as volatility smile, that is observed in option pricing
[20, 22]. Many other models have been proposed in order to reflect the leptokur-
tic features under a market measure. However, this phenomena under risk-neutral
measure leads to the volatility smile in option pricing. For instance, an affine jump
diffusion model [12] was proposed to reflect the features. One of its special cases is
the normal jump diffusion model[16], which was also used by Merton.
In Merton’s model [24], the asset return follows a Brownian motion with drift

punctuated by jumps arriving according to a compound Poisson process with con-
stant intensity and with normally distributed jump sizes. Due to normality of the
jump size distribution, Merton was able to obtain explicit analytical solutions for
European style call options in this model. Kou [20] recently proposed a double
exponential jump-diffusion model where jump sizes are double exponentially dis-
tributed. This model has a memoryless property inherited from the exponential
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distribution. This property explains the reason why analytical or approximated
solutions for different option pricing problems are viable to this model. Thus, both
Merton’s jump diffusion and double exponential jump-diffusion models are pro-
posed to reflect the asymmetric leptokurtic features of asset prices under a risk
neutral measure leads to determine the call option pricing of some asset prices.
However, no study has been done on option pricing of Ethiopian agricultural

commodity prices using jump diffusion models. Therefore, in this paper we used
both the Merton’s jump diffusion and double exponential jump diffusion models
for modeling and call option pricing of commodity prices. Here, we also applied the
method of maximum likelihood to estimate the parameters with the models. Based
on the empirical results, we compared the models fitting them to the empirical
data. More over, we used RMSE to test the validation of these models. Finally,
we determined the call option pricing of Ethiopian agricultural commodity prices
with analytical and Monte Carlo simulation techniques.

2. Analysis of ULK5 coffee and WWSS3 sesame prices data

We considered the daily closed prices of ULK5 coffee and WWSS3 sesame recorded
from 31 May 2011 to 30 March 2018 and 8 November 2010 to 30 March 2018,
respectively obtained at Ethiopia commodity exchange (ECX) market to study
the prices movements. Ethiopian Birr(ETB) is used for the commodity market
prices exchanges (Figures 1 and 2).

Figure 1. The ULK5 coffee price from 2011 to 2018.

We assume that St is to denote the Ethiopian commodity prices. We insight into
the dynamic behavior of the prices by analyzing the log-return which is defined
as xt = ∆ln(St) = ln(St) − lnSt−1. The graphs of log-return prices are plotted
in Figures 3 and 4. These graphs illustrate that spikes are observed significantly
in the empirical data. More over, the histograms of log-return prices along with
the normal densities are plotted as shown in Figures 5 and 6. And the descriptive
statistics of log-return prices of the commodities are displayed in Table 1. So, these
figures and Table 1 show the existence of skewness, fat tails and high kurtosis in the
empirical distribution of the commodity prices. These indicate that the log-returns
of ULK5 and WWSS3 prices are not normally distributed.
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Figure 2. The WWSS3 sesame price from 2010 to 2018.

Figure 3. The log-return of ULK5 coffee price.

Table 1. Descriptive statistics of log-return of ULK5 and WWSS3 prices.

Commodity prices
Descriptive statistics ULK5 coffee price WWSS3 sesame price
Mean -0.0001962854402620 0.0004295737604181
Standard Deviation 0.022644750485283 0.031385155727349
Skewness 0.072619510431776 -0.890291718668269
Kurtosis 10.737615556289899 15.643591825205396

3. Jump diffusion models

Based on the analysis of commodity prices data, namely the presence of skewness,
fat tails and high kurtosis in the empirical distribution of the prices returns, the
adequate models for such prices would be jump diffusion models [2]. In fact, Merton
[24], recognizing the presence of jumps in asset prices and for more accurate option
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Figure 4. The log-return of WWSS3 sesame price.

Figure 5. The histogram and normal density of daily log-return ULK5 coffee price from
2011 to 2018.

pricing, proposed modeling the prices as a jump diffusion process instead of a pure
diffusion model. Pure diffusion based models could not adequately explain the smile
effect in short-dated option prices and emphasized the importance of adding a jump
component in modeling asset price dynamics [3]. Models with jumps generically
lead to significant skews for short-term maturities. More generally, adding jumps
to returns in a diffusion-based stochastic volatility model, the resulting model can
generate sufficient variability and asymmetry in the short-term returns to match
implied volatility skews for short-term maturities [2].

3.1 Merton’s jump diffusion model

The commodity prices process St under Merton’s jump diffusion model with the
physical probability measure P is assumed to follow the stochastic differential equa-
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Figure 6. The histogram and normal density of daily log-return WWSS3 sesame price
from 2010 to 2018.

tion

dSt

St−
= µdt+ σdBt + (yt − 1)dNt, (1)

where µ is the instantaneous expected return and σ is the instantaneous volatility
of the price return. The continuous component is given by a standard Brownian
motion, Bt, distributed as dBt ∼ (0, dt). The discontinuity of the prices process is
described by a Poisson counter Nt, characterized by its intensity, λ, and jump size
yt. The assumption is that the Brownian motion Bt, the Poisson process Nt and
the jump size yt are independent. The intensity of the Poisson process describes
the mean number of arrivals of abnormal information per unit of time dt and is
expressed as:

Prob[dNt = 1] = λdt, and Prob[dNt = 0] = 1− λdt. (2)

When abnormal information arrives, the commodity prices jump from St− (limit
from left) to St = ytSt−. The percentage change is measured by (yt − 1). The
price St presents log-normal jumps yt on each random time t which represents
the moments of jumping of a Poisson process [18, 19]. Introduction of the jump
diffusion model adds three extra parameters (β, δ2, λ) to the Black-Sholes process
model which contains two parameters (µ, σ2). Merton assumes that the log-price
jump size Yt=ln(yt) is normal random variables. Using Ito’s lemma, the log-price
return process becomes:

dln(St) = (µ− 1

2
σ2)dt+ σdBt + YtdNt. (3)

Discretized over [t, t+∆t], the model takes the form:

∆ln(St) = (µ− 1

2
σ2)∆t+ σ∆Bt +

∆Nt∑
j=0

Yj , (4)
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where ∆Bt = Bt+∆t − Bt ∼ N(0,∆t) and ∆Nt = Nt+∆t − Nt is the number of
jumps occurring during the time interval over (t, t+∆t) and Yt are independently
and identically distributed as Yt ∼ N(β, δ2) with probability density

fYt
(y) =

1√
2πδ2

exp

[
− (y − β)2

2δ2

]
, yϵIR. (5)

The log-return, xt = ∆ln(St), therefore includes the sum of two independent com-
ponents: a diffusion component with drift and a jump component. The probability
density of xt can be expressed [2] as:

f∆t(x) =
∞∑
n=0

(λ∆t)ne−λ∆t

n!

[
1√

(2π(σ2∆t+ nδ2))
exp

(
−
(x− (µ− 1

2σ
2)∆t− nβ)2

2(σ2∆t+ nδ2)

)]
,

(6)
with n = 0, 1, 2, .... Putting ∆t = 1, that is the time interval is (t, t+1), the density
function becomes

f(x) =
∞∑
n=0

(λ)ne−λ

n!

[
1√

2π(σ2 + nδ2)
exp

(
−

(x− (µ− 1
2σ

2)− nβ)2

2(σ2 + nδ2)

)]
. (7)

3.2 Double exponential jump diffusion (DEJD) model

The double exponential jump diffusion model, which is used to model the commod-
ity prices, consists of two parts. That is a continuous part driven by a geometric
Brownian motion, and a jump part, with the logarithm of jump sizes having a dou-
ble exponential distribution and the jump times corresponding to the event times
of a Poisson process. Thus, under the physical probability measure P, the dynamic
behavior of commodity prices is assumed to follow the stochastic differential equa-
tion

dSt

St−
= µ1dt+ σ1dBt + d

( Nt∑
i=1

(υi − 1)

)
, (8)

where Bt is a standard Brownian motion, Nt is a Poisson process with rate λ1, and
{υt} is sequence of independent identically distributed (i.i.d.) nonnegative random
variables such that Vt = log(υt) has an asymmetric double exponential distribution
with density
fVt

(y) = p η1e
−η1y1{y≥0} + q η2e

η2y1{y<0}, η1 > 1, η2 > 0, where p, q ≥ 0, p + q =
1 are constants and represent the probabilities of upward and downward jumps
respectively. This can be also written as:

log(υt) = Vt :=

{
ξ+ with probability p
−ξ− with probability q,

(9)

where ξ+ and ξ− exponentially random variables with mean 1
η1

and 1
η2

respectively.
The random variables Nt, Bt and Vt are letting to be independent and identically
distributed in the model. It is assumed that the drift µ1 and the volatility σ1 are
constants, while the Brownian motion and jumps are one- dimensional random
variables [20].
The solution of the stochastic differential equation (8) using Ito’s lemma can be
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expressed as:

St = S0 exp

(
(µ1 −

σ2
1

2
)t+ σ1Bt +

Nt∑
j=0

Vj

)
, (10)

where E[Vt] =
p
η1
− q

η2
, Var(Vt) = pq

(
1
η1

+ 1
η2

)2
+
(

p
η2
1
+ q

η2
2

)
and E[υt] = E[eVt ] =(

p η1

η1−1 + q η2

η2+1

)
, η1 > 1, η2 > 0. Here, η1 > 1 guarantees for E[υt] < ∞ and

E[St] < ∞. This means that the average upward jump cannot be greater than
100%, which is quite reasonable [21]. Based on (10), the rate of price return over
the time interval ∆t is given by:

∆St

St
=

St+∆t

St
− 1

= exp

(µ1 −
σ2
1

2
)∆t+ σ1∆Bt +

∆Nt∑
j=0

Vj

− 1.

If ∆t becomes small enough, by neglecting the terms with order higher than
∆t, the daily price return can be approximated in distribution using expansion
ex ≈ 1 + x+ x2

2 by

∆St

St
≈ µ1∆t+ σ1Z

√
∆t+ αVt, (11)

where Z is standard normal distribution and α is Bernoulli random variable with
P (α = 1) = λ∆t, P (α = 0) = 1−λ∆t and Vt is given by (9). The density function
g of the right side of (11) which is an approximation of the commodity prices return
∆St

St
is given by:

g(x) =
1− λ1∆t

σ1
√
∆t

ϕ

(
1− λ1∆t

σ1
√
∆t

)
+ λ1∆t

[
pη1e

σ2
1η2

1∆t

2 e−(x−µ1∆t)η1

×Φ

(
x− µ1∆t− σ2

1η1∆t

σ1
√
∆t

)
+ qη2e

σ2
1η2

2∆t

2 e−
(
x−µ1∆t

)
η2

×Φ

(
x− µ1∆t+ σ2

1η2∆t

σ1
√
∆t

)]
. (12)

Setting ∆t = 1, this density function can also be written as:

g(x) =
1− λ1

σ1
ϕ

(
1− λ1

σ1

)
+ λ1

[
pη1e

σ2
1η2

1
2 e−(x−µ1)η1 × Φ

(
x− µ1 − σ2

1η1
σ1

)
+qη2e

σ2
1η2

2
2 e−(x−µ1)η2 × Φ

(
x− µ1 + σ2

1η2
σ1

)]
, (13)

where ϕ(.) is density function of standard normal and Φ(.) is its distribution func-
tion. Using Le’vy-Khintchine theorem, the characteristic function of the double
exponential jump diffusion process of the log-return price ∆ln(St)=X∆t over the
time interval (t, t+ 1) is represented by:

ϕX∆t(u) = E[eiuX∆t ]
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= exp

[
iuµ1 −

σ2
1u

2

2
+ λ1(

pη1
η1 − iu

+
qη2

η2 + iu
− 1)

]
. (14)

4. Parameter estimation

The parameters vectors are denoted by θ = (µ, σ, β, δ, λ) and Θ =
(µ1, σ1, η1, η2, p, λ1) which are associated with both ULK5 coffee and WWSS3
sesame prices processes. The method of maximum likelihood estimation (MLE)
are applied to estimate the parameters, θ and Θ under Merton’s jump diffusion
and double exponential jump diffusion models by maximizing the likelihood func-
tions specified in (7) and (14), respectively. We considered 70% of the log-return
commodity prices for parameters estimation and 30% for testing purpose that is for
validation of the models. We truncate the number of jumps at n = 10 to estimate
the parameter values as it is pointed out by [4].
In this paper, the parameters are estimated with corresponding 95% confidence

intervals up on using this method. Finally, the values that we obtain here are shown
in Tables 2, 3, 4 and 5 below.

Table 2. Estimated parameters associated with ULK5 coffee price under Merton’s model.

95% Confidence Interval
Parameters Values Lower bound Upper bound

µ 0.000661044851657 -0.000362681038688 0.001684770742002
σ 0.008818424747690 0.007146008267170 0.010490841228210
β -0.000050175378757 -0.003218325439856 0.003117974682342
δ 0.028015238285806 0.022536305022630 0.033494171548982
λ 0.492344773106976 0.300409690894311 0.684279855319641

Table 3. Estimated parameters associated with ULK5 coffee price under DEJD model.

95% Confidence Interval
Parameters Values Lower bound Upper bound

µ1 0.000230016229897 -0.001443295436320 0.001903327896113
σ1 0.007215684412257 0.005335338788916 0.009096030035598
η1 68.192289084277704 48.908243457080431 87.476334711474976
η2 62.986124231755149 45.829123754834029 80.143124708676268
p 0.534295155560463 0.403372135894600 0.665218175226326
λ1 0.891506177000199 0.530430204612231 1.252582149388168

Table 4. Estimated parameters associated with WWSS3 sesame price under Merton’s
model.

95% Confidence Interval
Parameters Values Lower bound Upper bound

µ -0.000693057074750 -0.001969722278931 0.000583608129431
σ 0.015418827195508 0.013441562090757 0.017396092300259
β 0.002703106257488 -0.003593139843385 0.008999352358361
δ 0.050146989514887 0.040240773037236 0.060053205992539
λ 0.294915979685713 0.178442965540220 0.411388993831205
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Table 5. Estimated parameters associated with WWSS3 sesame price under DEJD model.

95% Confidence Interval
Parameters Values Lower bound Upper bound

µ1 0.000635640253018 -0.001496031483955 0.002767312650518
σ1 0.013076820113627 0.010726005471729 0.015427636255556
η1 32.817870116806390 23.945852466554875 41.689872510044857
η2 44.691965648828784 31.652376544118237 57.731543372990402
p 0.405554265070454 0.273928643735723 0.537179790408564
λ1 0.598874279773129 0.338214548299840 0.859533841874166

5. Goodness for fit

In order to assess the goodness of fit of Merton’s and double exponential jump
diffusion distributions to the dynamic behaviors of the ULK5 and WWSS3 prices
, we used the method of non-parametric fit with normal kernel. We applied this
technique to approximate the probability density functions of the models specified
in (7) and (13) respectively. As a result, we compared the densities of log-returns
of commodity prices to the densities of the simulated data with the same mean
and variance. This shows that the models provide good fit for the data. However,
double exponential jump diffusion model has better fitness to the empirical data
than Merton’s model as shown in Figures 7 and 8 below.

Figure 7. The probability density functions(pdf) of the models fitted with the log-return
of ULK5 price.

6. Model simulation

In this section, we used the Euler discretized version of both Merton’s and double
exponential jump diffusion models to simulate ULK5 and WWSS3 prices. The
discretized form of the Merton’s model as specified in (4) over the time interval
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Figure 8. The probability density functions(pdf) of the models fitted with the log-return
of WWSS3 price.

(t, t+∆t) can be expressed as:

ln(St+∆t) = ln(St) + (µ− 1

2
σ2)∆t+ σ∆Bt +

∆Nt∑
j=0

Yj , (15)

where ∆Bt=
√
∆tZ and Z ∼ N(0, 1). Putting ∆t =1, we obtain

ln(St+1) = ln(St) + (µ− 1

2
σ2) + σZ +

Nt∑
j=0

Yj . (16)

This implies that

St+1 = Stexp

(
(µ− 1

2
σ2) + σZ +

Nt∑
j=0

Yj

)
. (17)

Similarly, the discretized form of double exponential jump diffusion model specified
in (8) over the time interval (t, t+∆t) and using Ito’s lemma, it is given by:

ln(St+∆t) = ln(St) + (µ1 −
1

2
σ2
1)∆t+ σ1∆Bt +

∆Nt∑
j=0

Vj , (18)

where ∆Bt=
√
∆tZ and Z ∼ N(0, 1). Setting ∆t =1, we get

ln(St+1) = ln(St) + (µ1 −
1

2
σ2
1) + σ1Z +

Nt∑
j=0

Vj . (19)
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This expression can be also written as :

St+1 = Stexp

(
(µ1 −

1

2
σ2
1) + σ1Z +

Nt∑
j=0

Vj

)
. (20)

We used the models specified in (16), (17), (19) and (20) for the simulation of
commodity prices. The fitted values from the simulations are plotted against the
observed prices as shown in Figures 9, 10,11 and 12.

Figure 9. Simulated price fitted to ULK5 log-price(Upper panel) and ULK5 price (Lower
panel) under Merton’s model.

Figure 10. Simulated price fitted to ULK5 log-price(Upper panel) and ULK5 price (Lower
panel) under DEJD model.

In this paper, the root mean square error(RMSE) is used to validate the perfor-
mance of the models and we obtained the results as indicated in Table 6 below.
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Figure 11. Simulated price fitted to WWSS3 log-price(Upper panel) and WWSS3 price
(Lower panel) under Merton’s model.

Figure 12. Simulated price fitted to WWSS3 log-price(Upper panel) and WWSS3 price
(Lower panel) under DEJD model.

Table 6. RMSE values under DEJD and Merton’s models.

Commodity prices RMSE with DEJD model RMSE with Merton’s model
ULK5 coffee price 0.084568621148379 0.091967707613244
WWSS3 sesame price 0.108818914438138 0.115413737637904

7. Option pricing

7.1 Option pricing using Merton’s Jump diffusion model

In this section, Merton’s jump diffusion model are used to determine the call option
prices for ULK5 and WWSS3 prices. However, this model which is to the contrary
of Black-Scholes model is incomplete. So, there are many possible choices to define
a risk neutral measure Q equivalent to the physical probability measure P such
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that the discounted price, e−rtSt is a martingale where r is a risk free interest
rate. More over, in order to make the discounted price is a martingale, the drift
parameter µ must be set to µ = r − λκ defining the risk neutral measure. The
stochastic differential equation which represents the dynamics of the prices can be
expressed under the risk neutral measure Q as:

dSt

St−
= (r − λκ)dt+ σdBQ

t + (yt − 1)dNt, (21)

where BQ
t is a standard Brownian motion under a risk neutral probability measure.

The expected relative price change E[dSt

St
] from the jump part dNt with the change

of time dt is λκdt since E[yt − 1] = exp(β + δ2

2 ) − 1 = κ. This is the predictable
part of the jump. This is why the instantaneous expected return under the risk
neutral probability measure rdt is adjusted by −λκdt in the drift term of the jump
diffusion process to make the jump part unpredictable innovation.
The solution of the stochastic differential equation specified in (21) can be written

as:

St = S0 exp

(
(r − σ2

2
− λκ)t+ σBQ

t +

Nt∑
i=1

Yi

)
, 0 ≤ t ≤ T, (22)

where Yt=ln(yt) is the log-return price jump size. Assuming that the jumps are
log-normally distributed that is Yt ∼ N(β, δ2). The prices of European style call
options for the given strike price K, spot price S0 at time t0 and the terminal price
ST at maturity time T can be expressed [8, 24] as:

C(S0, T ) =

∞∑
n=0

(λ̂T )ne−λ̂T

n!
EQ

[
e−rT (ST −K)+|St = S0

]
(23)

C(S0, T ) =

∞∑
n=0

(λ̂T )ne−λ̂T

n!

[
S0Φ(d1,n)−Ke−rnTΦ(d2,n)

]
, (24)

where λ̂ = λ(1 + κ), σn =
√
σ2 + nδ2

T , rn = r − λκ + n ln(1+κ)
T , d1,n =

ln
S0
K

+(rn+
σ2

2
)T

σn

√
T

, d2,n = d1,n − σn
√
T .

7.2 Option pricing using double exponential jump diffusion model

In this section , the double exponential jump diffusion model are used to find the
call option prices for ULK5 coffee and WWSS3 sesame prices. However, this model
is not complete because of its jump component. We considered the rational expec-
tations arguments with a hyperbolic absolute risk aversion type utility function
for the representative agent, as it is suggested by [22]. So, one can choose a risk

neutral probability measure Q̂ equivalent to the physical probability measure P
so that the equilibrium price of an option is given by the rational expectation of
the discounted option payoff with the risk neutral measure. The commodity price
St still follows a double exponential jump diffusion process under the risk neu-
tral probability measure. The stochastic differential equation which describes the
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dynamic behavior of the prices under this measure is given by:

dSt

St−
= (r − λ̂1ζ̂)dt+ σ1dB̂t + d

( N̂t∑
i=1

(υ̂i − 1)

)
. (25)

Letting Xt= ln(St/S0) and using Ito’s lemma, the log-return commodity prices
over the time interval (0, t), can be written as:

Xt =

(
r − σ2

1

2
− λ̂1ζ̂

)
t+ σ1B̂t +

N̂t∑
i=1

V̂i, X0 = 0, (26)

where B̂t is a standard normal Brownian motion, N̂t is a poison process with in-
tensity λ̂1 and the log jump sizes V̂i which forms a sequence of random variables

with a new double exponential density function ˆf(y) are under the measure Q̂.

More precisely, this function can be written as: ˆf(y) = p̂ η̂1e
−η̂1y1{y≥0} +

q̂ η̂2e
η̂2y1{y<0} where p̂, q̂ ⩾ 0, p̂ + q̂ = 1, λ̂1 > 0, η̂1 > 1, η̂2 > 0 are constants

and ζ̂ := E[υ̂t] − 1 = p̂ η̂1

η̂1−1 + q̂ η̂2

η̂2+1 − 1, is the expected relative jump size in

the double exponential jump diffusion model under Q̂. For simplicity, we omit the
superscript ˆ in the parameters and processes as we focus on option pricing. Here,
it is assumed that the sources of randomness, Nt, Bt and Vt are independent and
identically distributed under Q.
In this paper, we also used the method of Monte Carlo(MC) simulation to ob-

tain an approximate solution to the call option prices. This method is one of the
most popular numerical method for pricing financial options because of the cur-
rent advances in applying the tool [7, 27]. The method is mainly used to find an
approximate solution to a complex financial problem, particularly European-style
and exotic options for which no analytical pricing formula is available [11]. A Monte
Carlo method is a technique that involves using random numbers and probability
to solve problems and simulates paths for asset prices [17]. Since, the dynamic be-
havior of the prices are modeled by double exponential jump diffusion model under
a risk neutral measure, we used this method to find the expectation of the discount
payoff of commodity prices.
We considered call options giving an opportunity for the holder the right to buy
the commodity at a fixed price K and specified time T in the future. If at time
T the commodity price ST exceeds the strike price K , the holder exercises the
option for a profit of (ST − K)+, other wise the option expires worthless. Thus,
the payoff to the option holder at time T is given by (ST −K)+=max (ST −K, 0).
The solution which represents the daily return of the commodity prices as specified
in (25) can be expressed by:

St = S0 exp

[(
r − σ2

2
− λ1ζ

)
t+ σ1Bt +

Nt∑
i=1

Vi

]
, 0 ⩽ t ⩽ T. (27)

It is assumed that S0 is the current price of the commodity at t = 0, the ran-
dom variable Bt =

√
TZ, Z ∼ N(0, 1) and the log jump size Υt having double

exponential distributed. So, the terminal price over the time interval [0, T ] can be



32 T. Berhane et al./ IJM2C, 09 - 01 (2019) 17-37.

represented by:

ST = S0 exp

[(
r − σ2

2
− λ1ζ

)
T + σ1Z

√
T +

NT∑
i=1

Vi

]
. (28)

We considered the first 10, 000 sample paths simulation of the price ST and we
used the following algorithm to estimate the expectation E

[
e−rT

(
ST −K)+

]
:

Take n = 10, 000;
for j = 1, ..., n,
generate Zi and Vi from the respective distribution,

set ST (j)=S0 exp
[(

r − σ2
1

2 − λ1ζ
)
T + σZ(j)

√
T +

∑NT (j)
i=1 Vi

]
,

set C(j)=e−rT max (ST −K, 0) and

set Ĉn=
C1+C2+C3+...+Cn

n .

For n ⩾ 1, the estimator ˆC(n) is unbiased. That is its expectation, E[Ĉn] = C ≡
E
[
e−rT

(
ST −K)+

]
and it is consistent meaning that as n −→ ∞, Ĉn −→ C with

probability 1.
Thus, the call option prices on ULK5 coffee and WWSS3 sesame are computed

at maturity time T = 0.25728, under Merton’s jump diffusion and double ex-
ponential diffusion models with different strike prices K, spot prices 47 and 31
ETB per kg, respectively, risk neutral interest rate r = 0.07 and the corresponding
parameters as shown in figures and tables below.

Figure 13. Call option price of ULK5 coffee using Merton’s model.

8. Comparison of models

We used both Merton’s jump diffusion and double exponential jump diffusion mod-
els for modeling and call option pricing of the commodity prices. These models are
applied to describe the dynamic behaviors of the prices to capture the asymmet-
ric heavy tails and high kurtosis of the prices. However, the double exponential
jump diffusion model is more pronounced to reflect these phenomena than Mer-
ton’s model as shown in Figures 9, 10, 11 and 12. The RMSE and the method of
non-parametric fit are used to test the goodness for fitting to the empirical data.
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Figure 14. Call option price of WWSS3 sesame using Merton’s model.

Figure 15. Call option prices of ULK5 coffee using DEJD model.

The tests indicate that these two models perform well. However, double exponential
jump diffusion model shows good performance than Merton’s model as indicated
in Table 6 and Figures 7 and 8. Moreover, the call option prices under double
exponential jump diffusion model over estimated both in-the money and out-of-
the money when we compared to Merton’s model as shown in Tables 7 and 8 and
Figures 17 and 18. Finally, from the empirical results, we conclude that the double
exponential jump diffusion model is more suitable for modeling and option pricing
of the commodity prices.

9. Results and discussion

In this paper, we used the daily closed ULK5 coffee and WWSS3 sesame prices
recorded from November 8, 2010 to 30 March 2018 and May 31, 2011 to 30 March
2018, respectively obtained at the Ethiopian Commodity Exchange (ECX). The
method of maximum likelihood is being used to estimate the parameters with
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Figure 16. Call option price of WWSS3 sesame using DEJD model.

Figure 17. Call option prices of ULK5 coffee using DEJD and Merton’s models.

Merton’s jump diffusion and double exponential jump diffusion models as shown
in Tables 2, 3, 4 and 5, respectively. These results indicate that the dynamics of the
commodity prices process were influenced by both diffusion and jump components;
however, the prices were dominated by a jump component with large discontinuities
occurring at high intensity. The high volatility of the jump component reflects the
presence of jumps of large magnitude and was in accordance with excess kurtosis
in the empirical distribution of the data.
We used both models to simulate the commodity prices as shown Figures 9,

10, 11 and 12. In order to test the validity of these models, we applied the root
mean square error (RMSE). The values, which are obtained under these models,
are shown in Table 6. Furthermore, the method of non-parametric fit with normal
kernel is used to plot the graphs of the probability density functions of the models
to assess the goodness of fit of distributions of the models to the dynamics behaviors
of the prices as shown in Figures 5 and 6. Analytical and MC simulation methods
under Merton’s model and MC simulation technique with double exponential jump
diffusion model are used to find the call option pricing of the commodity prices as
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Figure 18. Call option prices of WWSS3 sesame using DEJD and Merton’s models.

Table 7. Estimated call option prices on ULK5 coffee using DEJD and Merton’s models.

Merton’s model
K DEJDM with MC simulation Analytical technique MC simulation
41 7.264791662876689 7.232965235570052 7.245094309864723
42 6.291444232548717 6.250814601359072 6.263041028149838
43 5.327862397204506 5.268669863373756 5.281116246684560
44 4.297120412950489 4.286568735586035 4.299868404289132
45 3.338320400778561 3.304800344263846 3.321186541099049
46 2.378471730455367 2.325107171239929 2.351911294765969
47 1.423144228442257 1.353862310655529 1.419274547858670
48 0.553928550857992 0.407059682575624 0.620283677263872
49 0.138984417480561 0.036201384486724 0.183069077997915
50 0.047129599044087 0.010970827175518 0.053087018362515
51 0.014646168941873 0.002555029173606 0.014406482515673

Table 8. Estimated call option prices on WWSS3 sesame using DEJD and Merton’s mod-
els.

Merton’s model
K DEJDM with MC simulation Analytical technique MC simulation
25 7.419546734552747 7.382879414647297 7.404663818978261
26 6.433370561513205 6.400728916712499 6.422512322113714
27 5.464061509417212 5.418584993725071 5.440360825249139
28 4.461329599573344 4.436492384201657 4.458209328384564
29 3.451803285354543 3.454746068178997 3.476057831519984
30 2.484107429428337 2.474653050603823 2.494250169913052
31 1.531357181346600 1.499797614445632 1.517550866500188
32 0.620600729035908 0.537884001637778 0.594420314971845
33 0.145735504412863 0.039078550273871 0.091981135597093
34 0.066423197447607 0.015119962564113 0.014336528629418
35 0.025767345556120 0.005197162389270 0.001978940727499
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indicated in Figures 13, 14, 15, 16, 17 and 18. The estimated values of call option
prices of the commodities are displayed on Tables 7 and 8. Lastly, the comparison
between the graphs of call price functions under Merton’s jump diffusion and the
double exponential jump diffusion models are indicated in Figures 17 and 18.

10. Conclusion

The ULK5 coffee and WWSS3 sesame prices are characterized by large fluctuations
in values. The natures of log-returns of the prices display asymmetric heavy tails
and high kurtosis. We applied both the Merton’s jump diffusion and double expo-
nential jump diffusion models to capture the dynamic behaviors of the commodity
prices. The method of maximum likelihood is used to estimate the parameters un-
der the models. The method of non-parametric fit with normal kernel is used to
approximate the probability density functions of the models to assess the goodness
of fit of distributions of the models to the empirical data. We used the root mean
square error to test the goodness of fit the models to the observed prices. The
results indicate that the models perform well. However, double exponential jump
diffusion model has performed more efficiently than the Merton’s model. We devel-
oped models for modeling and option pricing to reduce the risk associated with the
prices fluctuations. Both analytical and Monte Carlo simulation techniques are ap-
plied to find the call option pricing of the commodity prices with Merton’s model.
Similarly, we used the method of Monte Carlo simulation under double exponential
jump diffusion model to determine the call option prices of the commodity prices.
Finally, we compare the call prices under these models. From the empirical results,
we conclude that double exponential jump diffusion model is better than Merton’s
model for modeling and option pricing of ULK5 coffee and WWSS3 sesame prices.
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