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Abstract. In this paper we propose a numerical scheme to solve the one dimensional nonlinear
Klein-Gorden equation. We describe the mathematical formulation procedure in details. The
scheme is three level explicit and based on nonstandard finite difference. It has nonlinear
denominator function of the step sizes. Stability analysis of the method has been given and
we prove that the proposed method when applied to one dimensional nonlinear Klein-Gorden
equation, is unconditionally stable. We illustrate the usefulness of the proposed method by
applying it on two examples.
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1. Introduction

Many nonlinear phenomena are modeled by nonlinear Klein-Gorden equation, such
as dislocations, ferroelectric and ferromagnetic domain wall. The numerical treat-
ment of one dimensional Klein-Gorden equation

utt − a2uxx + g(u) = f(x, t) x ∈ (L0, L1) t > t0, (1)
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subject to the initial conditions

u(x, t0) = ϕ(x), ut(x, t0) = ψ(x), x ∈ (L0, L1) (2)

and with the boundary conditions

u(L0, t) = p0(t), u(L1, t) = p1(t), t > t0 (3)

has been considered, where u = u(x, t) represents the wave displacement at po-
sition x and time t,a is an known constant and g(u) is the nonlinear force. The
function ϕ(x) and ψ(x) are wave modes or kinks and velocity,respectively. When
the nonlinear force is given by g(u) = sin(u) then, the equation (1) is known as
Sin-Gorden equation.
The Klein-Gorden equation plays an important role in mathematical physics

[21,4,8]. There are a lot of studies on the numerical solution of initial-boundary
value problem of the linear and nonlinear Klein-Gorden equation. El-Sayed [9]
and Wazwaz et al. [10,22] and Kaya et al. [14] have used Adomian decomposition
method for solving linear and nonlinear Klein-Gorden equation. Parkes et al. [18]
and Fu et al. [11] used the Jacobi elliptic function expansion method to find double
periodic solutions of equation (1). Finite difference methods are known as the first
technique for solving such equation. These methods are very effective for solving
various kinds of partial differential equations, conditionally stability of explicit
finite difference procedures is developed by Dehghan [6]. Jiminez et al. [13] were
discussed fourth order finite difference scheme for approximation the nonlinear
Klein-Gorden equation. Bratsos [3] used a predictor-corrector (P-C) scheme based
on rational approximation of second order three-time level recurrence relations.
Abbasbandy [1] obtained numerical solution of nonlinear Klein-Gorden equation
by variational iteration method. Ismail et al. [12] were consider spline difference
method for solving Klein-Gorden equation.
Yusufoglu [23] presented variational iteration method for studying Klein-Gorden

equation. Dehghan et al. [7] proposed a numerical scheme to solve Klein-Gorden
equation by using the collocation approximation solution based on Thin Plate
Spline (TPS) radial basis functions (RBF). Rashidinia et al. [19] developed a three
time level implicit method by using the non-polynomial cubic tension spline func-
tion for solving Klein-Gorden equation.
The use of the nonstandard finite difference method has increased in recent years.

For example, Areanas et al. [2] constructed nonstandard finite difference schemes to
obtain numerical solutions of the susceptible-infected (SI) and susceptible-infected-
recovered (SIR) fractional-order epidemic models. Also, Memarbashi et al. [15]
developed these method for solving (SEI) Epidemic Model. Dang [5] proposed
nonstandard finite difference schemes for a general predator-prey system. In these
paper, we will discuss nonstandard finite difference for solving Klein-Gorden equa-
tion.
This article organized as following: In section 2, we define nonstandard finite

difference preliminaries. In section 3, we present the subequation method which is
the basic tool in driving the nonstandard finite difference scheme. In this section,
we discuss the application of proposed method to equation (1). In next section,
stability analysis has been carried out. In section 5, we illustrate two examples for
the efficiency of the proposed method and compare it with standard finite difference
schemes. Concluding remarks are given in section 6.
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2. Preliminaries [17]

2.1 Exact finite difference scheme

Consider the following equation

du

dt
= f(u, t, λ), u(t0) = u0, (4)

where λ is a set of parameters and f(u, t, λ) is such that Eq. 4 has a unique solution
over, t0 ⩽ t < T . We denote the solution of (4) by

u(t) = Φ(λ, u0, t0, t), (5)

with u0 = Φ(λ, u0, t0, t0).
The discrete model of Eq. (4) can be written as

uj+1 = g(λ, k, uj , tj), (6)

where k = ∆t and tj = jk.

Definition 2.1 Equation (4) and (6) are said to have the same general solution if
and only if

uj = u(tj), (7)

for arbitrary values of k.

Definition 2.2 An exact finite difference scheme is one for which the solution to
the difference equation has the same general solution as the associated differential
equation.

Theorem 2.1 The Eq. (4) has an exact finite difference scheme given by

uj+1 = Φ[λ, uj , tj , tj+1], (8)

where Φ is given by (5).

Proof [17]. ■

Let u(i)(t); i = 1, 2, ..., N ; be the set of linearly independent functions. It
is possible to construct an N -th order linear difference equation that has the

correspoding discrete functions, u
(i)
j ≡ u(i)(tj) as the solutions for tj = (∆t)j = jk,

the required equation is given by the following determinante [16].

∣∣∣∣∣∣∣∣∣∣
uj u

(1)
j . . . u

(N)
j

uj+1 u
(1)
j+1 . . . u

(N)
j+1

...
...
...

uj+N u
(1)
j+N . . . u

(N)
j+N

∣∣∣∣∣∣∣∣∣∣
= 0. (9)

To illustrate this procedure, consider the following second order ordinary differ-
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ential equation

d2u

dt2
+ au = 0, (10)

where a is a real constant. The two linearly independent solutions are

u(1)(t) = ei
√
at, u(2)(t) = e−i

√
at. (11)

Substitution of these function into Eq. (9) gives

∣∣∣∣∣∣
uj ei

√
akj e−i

√
akj

uj+1 e
i
√
ak(j+1) e−i

√
ak(j+1)

uj+2 e
i
√
ak(j+2) e−i

√
ak(j+2)

∣∣∣∣∣∣ = 0, (12)

therefore,

ei
√
akj .e−i

√
akj

∣∣∣∣∣∣
uj 1 1

uj+1 e
i
√
ak e−i

√
ak

uj+2 e
2i
√
ak e−2i

√
ak

∣∣∣∣∣∣ = 0. (13)

Evaluation of the determinant

uj(e
−i

√
ak − ei

√
ak) + uj+1(−e−2i

√
ak + e2i

√
ak) + uj+2(e

−i
√
ak − ei

√
ak) = 0. (14)

and j → j − 1,we have

uj+1 − [2 cos(k
√
a)]uj + uj−1 = 0. (15)

Using the identity

2 cos(k
√
a) = 2− 4 sin2(

k
√
a

2
),

then Eq. (14) can be written in the form

uj+1 − 2uj + uj−1

( 4a) sin
2(k

√
a

2 )
+ auj = 0. (16)

This is the exact finite difference scheme for the Eq. (10).
Another example is the general Logistic differential equation

du

dt
= λ1u− λ2u

2, u(t0) = u0, (17)

where (λ1, λ2) are positive parameters.
By use of exact solution and Eq. (9), the exact scheme is

uj+1 − uj
ekλ1−1

λ1

= λ1uj − λ2uj+1uj . (18)
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2.2 Nonstandard finite difference scheme

A Nonstandard Finite Difference scheme is a discrete model of a differential equa-
tion that is constructed according to the following rules.
Rule 1. Denominator functions for the discrete derivatives must, in general, be
expressed in term of more complicated function of the step-sizes than those con-

ventionally used.[e.g. ( 4a) sin
2(k

√
a

2 )]
Rule 2. Nonlinear terms should, in general, be replaced by nonlocal discrete rep-
resentations. For example

u2(tj) ≈ uj+1uj , uj
yj+1 + uj−1

2
, uj−1uj+1, (19)

u3(tj) ≈ u2juj+1, uj−1ujuj+1, u
2
j

uj+1 + uj−1

2
. (20)

Rule 3. For differential equation having N(⩾ 3) terms, it is generally useful to
construct finite difference scheme for various sub-equation composed of M terms,
whereM < N , and then combined all the schemes together in an overall consistent
finite difference model.
In general nonstandard schemes are not exact scheme; however, they do offer

the prospect of obtaining finite difference scheme that do not possess the usual
numerical instabilities. The application of nonstandard modeling rules does not
necessarily lead to a unique discrete model for a given differential equation.

3. Implementation of the method

To illustrate the analysis of the previous section, we consider the nonlinear Klein-
Gorden equation [3]

utt − a2uxx + au− bu3 = 0, (21)

where a and b are constant. We approximate solution of Eq. (21) on a spatial
interval [L0, L1], over the time interval [0, T ]. We fix the step size h = L1−L0

n

in x direction and time step size k = T
m , where n and m are integers. Denote

xl = L0 + lh, l = 0(1)n and tj = t0 + jk, j = 0(1)m. The approximate value of u at

the point xl and time tj will be denoted by ujl .
The (standard) finite difference scheme used to approximate the solution of Eq.

(21) is

δ2t u
j
l = λ2a2δ2xu

j
l − ak2ujl − bk2(ujl )

3, (22)

where

δ2t u
j
l = uj+1

l − 2ujl + uj−1
l ,

δ2xu
j
l = ujl+1 − 2ujl + ujl−1,

λ =
k

h
, l = 1(1)n− 1.

In the following, we used the subequation method to obtain a nonstandard fi-
nite difference (NSFD) scheme. A subeqaution is an ordinary differential equation
or partial differential equation obtain by dropping one or more terms appearing
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in the full equation. In contrast the full equation, these subequation have known
exact scheme, therefore, we can construct a NSFD scheme for the original par-
tial differential equation. Thus, we have from Eq. (21) the following two useful
subequations:

utt + au = 0, (23)

−a2uxx + au = 0. (24)

The exact scheme of these equations are:

uj+1 − 2uj + uj−1

φ1
+ auj = 0, φ1(k) =

4

a
sin2(

k

2

√
a), (25)

ul+1 − 2ul + ul−1

φ2
− 1

a
ul = 0, φ2(h) = 4a sinh2(

h

2

√
1

a
). (26)

We will now give a novel scheme that incorporates the exact scheme of the above
two subequations.

uj+1
l − 2ujl + uj−1

l

φ1(k)
− a2

ujl+1 − 2ujl + ujl−1

φ2(h)
+ aujl = 0. (27)

The nonlinear terms in Eq. (21) may be approximate by an expression, which
contains

(ujl )
3 = (ujl )

2
ujl+1 + ujl−1

2
.

Therefore, we have the NSFD scheme of Eq. (21)

uj+1
l − 2ujl + uj−1

l

φ1(k)
− a2

ujl+1 − 2ujl + ujl−1

φ2(h)
+ aujl − b(ujl )

2
ujl+1 + ujl−1

2
= 0,

l = 1(1)n− 1. (28)

The proposed scheme is explicit scheme, to start any computation, it is necessary
to know the solution of u at first time level. We can obtain u−1

l by using Taylor

expansion of u−1
l about u0l and using the differential equation in (2).

By the help of Taylor expansion, a third-order approximation to u at t = −k can
be written as

u−1
l = u0l − k(

∂u

∂t
)0l +

k

2
(
∂2u

∂t2
)0l +O(k3). (29)

Using the Eq. (2), we have

u−1
l = ϕ(lh)− kψ(lh) +

k

2
utt(lh, 0). (30)
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We know utt = a2uxx − au+ bu3, thus,

u−1
l = ϕ(lh)− kψ(lh) +

k

2
[a2ϕxx(lh)− aϕ(lh)

+b(ϕ(lh))2(
ϕ((l + 1)h+ ϕ((l − 1)h)

2
)]. (31)

4. Stability

For stability of scheme (28), we use the Von Neumann’s method [20]. To investigate
the stability analysis, we may rewrite (28) as

Aδ2t u
j
l −Bδ2xu

j
l + aujl − 3b(ujl )

3 = 0, (32)

where

A =
1

φ1(k)
,

B =
1

φ2(h)
,

(ujl )
2
ujl+1 + ujl−1

2
≃ (ujl )

3.

Furthermore, the exact value U j
l = u(xl, tj) satisfies

Aδ2tU
j
l −Bδ2xU

j
l + aU j

l − 3b(U j
l )

3 = 0. (33)

We assume that there exists an error εjl = U j
l −u

j
l at grid point (xl, tj). Subtracting

(33) from (32)

Aδ2t ε
j
l −Bδ2xε

j
l + aεjl − 3b((U j

l )
3 − (ujl )

3) = 0,

where

(U j
l )

3 − (ujl )
3 = (U j

l − ujl )((U
j
l )

2 + (ujl )
2 + U j

l u
j
l ) = εjl (3(ug)

2),

where (ug)
2 is a typical value of ujl ; l = 0, 1, ....N used for the linearization of the

nonlinear term (ujl )
3. We obtain the error equation

Aδ2t ε
j
l −Bδ2xε

j
l + aεjl − 3bεjl (ug)

2 = 0. (34)

To establish stability for the scheme (34), we assume that the solution of (34)

at the grid point (l, j) is of the form εjl = ξjeiθl, where i =
√
−1, θ is real and ξ in

general is complex. Subsituting εjl = ξjeiθl in the error equation and simplifying,
we have the following characteristic equation

ξ2 − 2ξ(1− 2B

A
sin2(

θ

2
) +

3b(ug)
2 − a

2A
) + 1 = 0. (35)

Equation (35) is of the general form pξ2 − 2qξ + p = 0, with p, q ∈ R and p > 0.
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The Von Neumann’s stability criterion for stability | ξ |⩽ 1 will always be satis-
fied, where | q |⩽ p, otherwise

−p ⩽ q ⩽ p (36)

The right hand side of inequality (36), gives

1− 2B

A
sin2(

θ

2
) +

3b(ug)
2 − a

2A
⩽ 1.

After simplifying this criterion, it gives the following restriction for the space step

sinh2(
h

2

√
1

a
) ⩽ a sin2( θ2)

3b(ug)2 − a
. (37)

The left hand side of (36), gives

−1 ⩽ 1− 2B

A
sin2(

θ

2
) +

3b(ug)
2 − a

2A
,

which is satisfied when 2+ 3b(ug)2−a
2A ⩾ 0, otherwise it gives the following restriction

for the time step

sin2(
k

2

√
a) ⩽ a

a− 3b(ug)2
. (38)

We can conclude that the presented method is stable as long as criterion (37) and
(38) is satisfied.

5. Numerical illustrations

In this section we present numerical result for our scheme for nonlinear Klein-
Gorden equation.

Example 5.1 Eq. (21) with the initial data

u(x, 0) =

√
a

b
tanh[

√
a

2(c2 − a2)
x],

ut(x, t) = −c
√
a

b

√
a

2(c2 − a2)
sech2[

√
a

2(c2 − a2)
x], x ∈ [0, 1], (39)

and Eq. (21) has the following Kink-solution

u(x, t) =

√
a

b
tanh[

√
a

2(c2 − a2)
(x− ct)], (40)

where a, b, c2 − a2 > 0.
We consider Eq. (21) along with initial condition (39) and exact solution (40), for
a = 0.01, b = 1, c = 0.3. We solve this problem with different values of h by scheme
(28) and (22). Computed solution is compared with exact solution at grid points.
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Table 1. Maximum absolute error for Example 1.

x scheme (22)
h = 0.05 h = 0.02 h = 0.01

0.2 1.30812(−6) 1.30818(−6) 1.30819(−6)
0.4 3.92575(−6) 3.92606(−6) 3.92611(−6)
0.6 6.47712(−6) 6.47504(−6) 6.47511(−6)
0.8 1.11092(−3) 4.32944(−5) 8.91215(−6)

x scheme (28)

h = 0.05 h = 0.02 h = 0.01
0.2 2.52017(−8) 2.4970(−8) 2.49365(−8)
0.4 5.13999(−8) 5.07277(−8) 5.06304(−8)
0.6 7.66362(−8) 7.55891(−8) 7.54367(−8)
0.8 4.38845(−8) 9.9136(−8) 9.89450(−8)

In Table 1, we take k = 0.01. The absolutely maximum error for different values
of mesh size h = 0.05, 0.02, 0.01 have been calculated. The table show the NSFD
in comparison with standard method are more accurate.

Example 5.2 Eq. (21) with the initial data

u(x, 0) =

√
2a

b
sech[

√
a

(a2 − c2)
x],

ut(x, t) = c

√
2a

b

√
a

(a2 − c2)
sech[

√
a

2(c2 − a2)
x] tanh[

√
a

2(c2 − a2)
x], x ∈ [0, 1],

(41)

and Eq. (21) has the following Soliton-solution

u(x, t) =

√
2a

b
sech[

√
a

(a2 − c2)
(x− ct)]. (42)

We apply NSFD method to Eq. (21) along with initial conditions (41) and exact
solution (42) for values a = 0.003, b = 1, c = 0.25.

Table 2. Maximum absolute error for Example 2.

x t = 1 t = 2
0.1 1.15268(−4) 2.33113(−4)
0.2 2.30721(−4) 4.62646(−4)
0.3 3.46455(−4) 6.94723(−4)
0.4 4.62615(−4) 9.27667(−4)
0.5 5.79352(−4) 1.16179(−3)
0.6 6.96823(−4) 1.39740(−3)
0.7 8.15196(−4) 1.63486(−3)
0.8 9.34648(−4) 1.87452(−3)
0.9 1.05537(−3) 2.11678(−3)
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In Table 2, we take h = k = 0.01. The absolutely maximum error for different
times have been calculated.

6. Conclusion

In this article, we have outlined a new idea for solving Klein-Gorden equation by
using nonstandard finite difference method. The time step restriction of the NSFD
scheme is usually much less restrictive than for standard finite difference schemes.
We know that some numerical method, leads to numerical instabilities, Mickens
suggest what is known as the NSFD method. It has been found that the present
algorithm gives accuracy numerical results and it is more efficient than the standard
method. Our future works will deal with hybrid of some of numerical method
(such as Spline) and NSFD in system of nonlinear partial differential equation.
It is possible to determine the denominator function for the discretizations of the
partial differential equations.
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