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Abstract. In this article we have developed third order exact finite difference method for the
numerical solution of third order boundary value problems. We constructed our numerical
technique without change in structure of the coefficient matrix of the second-order method
in [11]. We have discussed convergence of the proposed method. Numerical experiments on
model test problems approves the simply high accuracy and efficiency of the method.
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1. Introduction

In this article we consider a direct method for the numerical solution of the third
order boundary value problems of the following form

u′′′(x) = f(x, u), a < x < b, (1)
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subject to the boundary conditions

u(a) = α, u′(a) = β, and u′(b) = γ.

where α, β and γ are real constant.

We find the third order system of differential equations/equation in the study
of many subjects in particular fluid dynamics, obstacle problems, moving and free
boundary value problems, etc.. The solution of these problems is important, but
it is not possible to find an analytical solution for these problems for an arbitrary
forcing function f(x, u), so we rely on an approximate solution in study of solution
of these problems.

The existence and uniqueness of the solution to problem (1) are assumed.
However the theory on existence and uniqueness of the solution of higher order
boundary value problems can be found in [1] and for specific problem (1) in
[3, 4, 9] and references there. In recent years, a numerical techniques for solution
of third order boundary value problems were reported in the literature by many
researchers. For instance we refer some literary work in finite difference method
[2], Non polynomial spline method [6], Quintic Splines [8] and references therein.

Recently there appeared a higher order finite difference method for the numerical
solution of third order boundary value problems in the literature [13]. Based on
the idea [11], the purpose of this article is to develop third order finite difference
method to deal with about numerical solution of the mentioned above boundary
value problem which is more accurate, less expensive and simpler in computational
efforts.

In this article, we have organised our work as follows. In the following section we
derived a finite difference method. In Section 3, under proper condition, we have
discussed and analysed the convergence of the proposed method. The computa-
tional accuracy of the proposed method on the model problems and illustrative
results so produced in Section 4. Discussion on computational performance of the
proposed method are presented in Section 5.

2. The difference method

We define N finite numbers of nodal points of the domain [a, b], in which the
solution of the problem (1) is desired, as a ⩽ x0 < x1 < x2 < · · · < xN ⩽ b
using uniform step length h such that xi = a + ih, i = 0, 1, · · · , N . Suppose
that we wish to determine the numerical approximation of the theoretical solution
u(x) of the problem (1) at the nodal point xi, i = 1, 2, · · · , N . We denote the
numerical approximation of u(x) at node x = xi as ui. Let us denote fi as the
approximation of the theoretical value of the source function f(x, u(x)) at node
x = xi, i = 0, 1, · · · , N . Thus the boundary value problem (1) at node x = xi may
be written as

u′′′i = fi, a ⩽ xi ⩽ b, (2)

subject to the boundary conditions

u0 = α, u′0 = β, and u′N = γ.
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Let we define nodes xi± 1

2
= xi ± h

2 , i = 1, 2, ...., N − 1 and denote the solution of

the problem (1) at these nodes as ui± 1

2
. Following the idea in [11] and simplify using

method of undetermined coefficients and Taylor’s series expansion, we descretize
problem (2) at these nodes in [a, b] as follows,

9ui− 1

2
− ui+ 1

2
= 8ui−1 + 3hu′i−1 −

3h3

160
(2fi−1 + 17fi− 1

2
+ fi+ 1

2
) + Ti, i = 1(3)

−15ui− 3

2
+ 10ui− 1

2
− 3ui+ 1

2
= −8ui−2 −

h3

16
(14fi− 3

2
+ 27fi− 1

2
− fi+ 1

2
) + Ti, i = 2

ui− 5

2
− 3ui− 3

2
+ 3ui− 1

2
− ui+ 1

2
= −h3

2
(fi− 3

2
+ fi− 1

2
) + Ti, 3 ⩽ i ⩽ N − 1

ui− 5

2
− 3ui− 3

2
+ 2ui− 1

2
= hu′i +

h3

1920
(31fi− 5

2
− 1062fi− 3

2
− 809fi− 1

2
) + Ti, i = N

where Ti, i = 1, 2, ..., N is truncation error. Also in discretization we have used
boundary conditions in a natural way.

After neglecting the terms Ti in (3), at nodal points xi− 1

2
, i = 1, 2, ...., N , we

will obtain the N linear or nonlinear system of equations in N unknown namely
ui− 1

2
which depends on the source function f(x, u). To obtain an approximate

solution of problem (1) we have to solve a system of equations by an appropriate
method. However we have applied an iterative method either Gauss Seidel or
Newton-Raphson to solve a system of equations respectively for linear and
nonlinear system of equations.

We computed numerical value of ui, i = 1, 2, ...., N using following third order
approximation,

ui =


−3ui−1 + 4ui− 1

2
− hu′i−1, i = 1

1
8(−ui− 3

2
+ 6ui− 1

2
+ 3ui+ 1

2
), i = 2, ..., N − 1

1
8(−ui− 3

2
+ 9ui− 1

2
+ 3hu′i), i = N

(4)

3. Convergence analysis

We will consider following linear test equation for convergence analysis of the pro-
posed method (3).

u′′′(x) = f(x, u), a < x < b. (5)

subject to the boundary conditions

u0 = α, u′0 = β, and u′N = γ.

Let Ui− 1

2
denote the approximation of ui− 1

2
for i = 1, 2, · · · , N . Thus N-dimensional

vector U = (U 1

2
, U 3

2
, · · · , UN− 1

2
) denote approximation of N -dimensional vector

u = (u 1

2
, u 3

2
, · · · , uN− 1

2
). Let us define error there in approximate solution of the
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problem (1),

ϵi− 1

2
= Ui− 1

2
− ui− 1

2
, i = 1, 2, · · · , N.

Thus we can now define N -dimensional error vector E = U − u. Also let
T = (T1, T2, · · · , TN ) be the N -dimensional truncation error that associated with
the proposed difference method (3). We can linearize source function f(x, u) by

application of Taylor series expansion i.e. f(x, u)− f(x,U) = (u−U) ∂f∂U . Thus we
can write the error in proposed method (3) in the matrix form as

JE = T (6)

where J = A+B and matrices A and B are,

A =



9 −1 0
−15 10 −3
1 −3 3 −1

1 −3 3 −1
. . .

. . .
. . .

. . .

1 −3 3 −1
0 1 −3 2


N×N

,

B =
h3

1920



612δ 1

2
36δ 3

2
0

1680δ 1

2
3240δ 3

2
−120δ 5

2

960δ 3

2
960δ 5

2

. . .
. . .

960δN− 5

2
960δN− 3

2

0 −31δN− 5

2
1062δN− 3

2
809δN− 1

2


N×N

,

where δ = ∂f
∂U and

Ti =



h6

640u
(6)

i− 1

2

, i = 1

−h6

28u
(6)

i− 1

2

, i = 2

o(h7), 3 ⩽ i ⩽ N − 1
159h6

11520u
(6)

i− 1

2

, i = N

For any square matrix S such that ||S|| < 1 then matrix (I + S) is invertible
[5, 7, 12], and

||(I+ S)−1|| < 1

1− ||S||

where I is an identity matrix and same order of S. Let us assume

||A−1||||B|| < 1
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Thus from (6), we have

||E|| < 1

1− ||A−1||||B||
||A−1||||T|| (7)

Let

M = max
x∈[a,b]

|u(6)(x)|, D = max
x∈[a,b]

δi− 1

2
, and D > 0.

Also we have ||A−1|| < (b−a)3

12h3 in [11]. Thus from (7) we obtained,

||E|| < 53(b− a)3Mh3

5(9216−D(b− a)3)
(8)

It follows from equation (8) that ||E|| → 0 as h → 0. This establishes that our
proposed method (3) is convergent and the order of convergence of the method is
at least O(h3).

4. Numerical results

To test the computational efficiency and validity of theoretical development of
proposed method, we have considered four model problems. In each model problem,
we took uniform step size h. In Table 1 - Table 6, we have shown MAU the
maximum absolute error in the solution u(x) of the problems (1) for different
values of N. We have used the following formula in computation of MAU ,

MAU = max
1⩽i⩽N

|u(xi)− ui|.

We have used an iterative method to solve system of equations arise from equation
(3). All computations were performed on a Windows 2007 Ultimate operating
system in the GNU FORTRAN environment version 99 compilers (2.95 of gcc) on
Intel Core i3-2330M, 2.20 GHz PC. The solutions are computed on N nodes and
iteration is continued until either the maximum difference between two successive
iterates is less than 10−10 or the number of iterations reached 103.

Problem 1. The model linear problem in [13] and given by

u′′′(x) = f(x), 0 < x < 1

subject to boundary conditions

u(0) = 2, u′(0) = 20π, and u′(1) = exp(1) + 20π + 1,

where f(x) is calculated so that the analytical solution of the problem is
u(x) = exp(x) + 2 sin(10πx)− cos(10πx) + x(x− 1) + 2. The MAU computed by a
method (3) for different values of N are presented in Tables 1-2.

Problem 2. The nonlinear model problem given by

u′′′(x) = u(x)(u(x) + 1.0) + f(x), 0 < x < 1
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subject to boundary conditions

u(0) = 0, u′(0) = 1, and u′(1) = 0,

where f(x) is calculated so that the analytical solution of the problem is
u(x) = x exp(−x). The MAU computed by a method (3) for different values of N
are presented in Table 3.

Problem 3. The nonlinear model problem given by

u′′′(x) = u(x)(x4 − u(x)) + f(x), 0 < x < 1

subject to boundary conditions

u(0) = 0, u′(0) = −1, and u′(1) = sin(1).

The analytical solution of the problem is u(x) = (x − 1) sin(x). The MAU
computed by a method (3) for different values of N are presented in Table 4.

Problem 4. Consider the following third-order obstacle problems [10],

u′′′(x) =


0, 0 ⩽ x ⩽ 1

4

u(x)− 1, 1
4 ⩽ x ⩽ 3

4

0, 3
4 ⩽ x ⩽ 1

subject to boundary conditions

u(0) = 0, u′(0) = 0, and u′(1) = 0.

The analytical solution of the problem is

u(x) =


1
2a1x

2, 0 ⩽ x ⩽ 1
4

1 + a2 exp(x) + exp(−x
2 )(a3 cos(

√
3
2 x) + a4 sin(

√
3
2 x)), 1

4 ⩽ x ⩽ 3
4

1
2a5x(x− 2) + a6,

3
4 ⩽ x ⩽ 1

where the constants ai, i = 1, 2, ..., 6 can be determined by the solving a system
of linear equations which can be obtained by applying the continuity conditions
of u(x), u′(x) and u′′(x) at x = 1

4 and 3
4 . We have computed the numerical

value of MAUI, MAUM and MAUE respectively in interval [0, 14 ], [
1
4 ,

3
4 ] and

[34 , 1] computed by a method (3) for different values of N are presented in Table 5.
We have also presented MAU = max{MAUI,MAUM,MAUE} in Table 5 and
compared with some higher order method reported in literature in Table 6.

Table 1. Maximum absolute error (Problem 1).

Maximum absolute error

N = 80 N = 160 N = 320 N = 640 N = 1280

MAU .10687590(-1) .13031960(-2) .16021729(-3) .20027161(-4) .45299530(-5)
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Table 2. Comparison of maximum absolute error (Problem 1).

Maximum absolute error

N = 80 N = 160 N = 320 N = 640 N = 1280

(3) .1068(-1) .1303(-2) .1602(-3) .2002(-4) .4529(-5)

[13] .1218(1) .1431(0) .1750(-1) .2175(-2) .2714(-3)

Table 3. Maximum absolute error (Problem 2).

Maximum absolute error

N = 64 N = 128 N = 256 N = 512 N = 1024

MAU .94715506(-6) .11874363(-6) .14668331(-6) .89174137(-7) .14551915(-6)

Table 4. Maximum absolute error (Problem 3).

Maximum absolute error

N = 64 N = 128 N = 256 N = 512 N = 1024

MAU .59137983(-6) .89406967(-7) .74505806(-7) .44703484(-7) .74505806(-7)

Table 5. Maximum absolute error (Problem 4).

N

Maximum absolute error

MAUI MAUM MAUE MAU

16 .47538197(-5) .18196437(-4) .18044375(-8) .18196437(-4)

32 .16210543(-5) .32767859(-5) .37252903(-8) .32767859(-5)

64 .35636913(-6) .57252339(-6) .37252903(-8) .57252339(-6)

128.12665623(-7) .82158941(-7) .18198989(-8) .82158941(-7)

256.28580871(-8) .58417232(-7) .18205810(-8) .58417232(-7)

512.78565563(-8) .62699833(-7) .18205810(-8) .62699823(-7)

Table 6. Comparison of maximum absolute error(Problem 4).

Maximum absolute error

N = 16 N = 32 N = 64 N = 128

(3) .181(-4) .327(-5) .572(-6) .821(-7)

[13] .223(-3) .281(-4) .518(-5) .125(-5)

[2] .196(-3) .489(-4) .122(-4) .306(-5)

[6] .712(-3) .405(-3) .222(-3) .115(-3)

[10] .126(-2) .560(-3) .310(-3) .167(-3)

We have tested our numerical method for numerical solution four lin-
ear/nonlinear model problems including an obstacle problem considered. The nu-
merical result for model problems for different values of N are presented in table
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1-6. Observing the numerical result in the tables, we found maximum absolute
error in solution decreases with decrease in step size h. The order of accuracy in
model problem 1 and problem 2 are cubic and in other problems less than three.
From the numerical results in Table 5, it is observed that the maximum absolute
error occurs in interval [14 ,

3
4 ] for different value of N. The comparative numerical

result in Table 2 and Table 6 show that our method outperforms the other existing
methods. On the other hand we can conclude that our method is convergent and
consistent with the theoretical development.

5. Conclusion

We have developed a cubic order novel finite difference method for the numerical
solution of third order boundary value problems. We discretized the problem at
discrete nodal points x = xi− 1

2
, i = 1, 2, · · · , N in the domain of a considered prob-

lem. So we have obtained N ×N a system of algebraic equations (3). The system
of equations (3) is linear if source function f(x, u) is linear otherwise nonlinear.
Our proposed method (3) produced good numerical solution for model problems.
Thus, we arrived at conclusion that our method is computationally efficient and
accurate. The idea presented in this article is simple and leads to the possibility
to develop higher order finite difference methods. Works in these directions are in
progress.
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