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Abstract. This paper presents the transient solution of a variant working vacation queue
with balking. Customers arrive according to a Poisson process and decide to join the queue
with probability b or balk with b̄ = 1 − b. As soon as the system becomes empty, the server
takes working vacation. The service times during regular busy period and working vacation
period, and vacation times are assumed to be exponentially distributed and are mutually
independent. We have obtained the transient-state probabilities in terms of modified Bessel
function of the first kind by employing probability generating function, continued fractions
and Laplace transform. In addition, we have also obtained some other performance measures.
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1. Introduction

Queueing systems with server vacations have been investigated extensively due to
their wide applications in several areas including computer communication systems,
manufacturing and production systems. Vacation models are useful in systems
where the server wants to utilize the idle time for different purposes. For more detail
on this topic the reader may refer to the surveys of Doshi [3], Takagi [18] and Tian
and Zhang [20]. In classical vacation queues, the server completely stops service
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during the vacation period. However, there are numerous situations where the
server remains active during the vacation period which is called working vacation
(WV ). Servi and Finn [15] introduced this class of semi-vacation policy. They
studied an M/M/1 queue with multiple working vacations (MWV s). Liu et al.
[10] derived the stochastic decomposition results in an M/M/1 queue with WV .
The concept of variant multiple vacation policy is relatively a new one where

the server is allowed to take a certain fixed number of consecutive vacations, if the
system remains empty at the end of a vacation. This kind of vacation schedule is
investigated by Zhang and Tian [26] for the Geo/G/1 queue with multiple adap-
tive vacations. Banik [2] studied the infinite-buffer single server queue with variant
of multiple vacation policy and batch Markovian arrival process by using matrix
analytic method. The literature related to this kind of vacation can be identified
in papers by Ke et al. [7] and Wang et al. [22]. Yue et al. [25] analyzed the M/M/1
queueing system with impatient customers and the variant of multiple vacation
policy. In case of WV , Zhang and Hou [27] analyzed a steady state renewal input
GI/M/1/N queue with a variant of multiple working vacation by using matrix an-
alytic method. A finite buffer M/M/1 queue with VWV and balking and reneging
has been analyzed by Vijaya Laxmi and Jyothsna [21] wherein they obtained the
steady state probabilities using matrix form solutions.
In the above literature, we have considered the steady state analysis of differ-

ent continuous and discrete-time VWV queue models. However, there are areas in
computer and communication systems which require time dependent analysis. For
example, adaptive routing and load balancing in computer networks and commu-
nication systems require transient measures, such as transient queue length distri-
bution. For such systems, one needs to know the transient behavior of the system.
There are many systems which are operated only for a specified period of time
t. Thus the investigation of the transient behavior of the queueing system is very
important, not only from a theoretical point of view but also from its tremendous
use in engineering applications.
Parthasarathy and Lenin [11, 12] used continued fractions to analyze the

transient behavior of birth-death processes. Krishna Kumar and Arivudainambi
[8] studied the transient behavior of an M/M/1 queue with catastrophes.
Parthasarathy and Selvaraju [13] analyzed the transient behavior of an M/M/1
queue in which potential customers are discouraged by the queue length. Tarabia
and El-Baz [19] have studied the exact transient solutions to non-empty Marko-
vian queues by using the power series technique. Griffiths et al. [4] have studied
the transient behavior in terms of modified Bessel function of the second kind.
Parthasarathy and Sudhesh [14] have obtained the transient solution of M/M/c
queue with N -policy with the help of modified Bessel function of the second kind.
Leonenko [9] studied a new approach for the transient solution of the M/Ek/1
queue. Sudhesh [16] has examined the transient behavior of a single server queue
with catastrophes and customer impatience. Kalidass and Ramanath [5] have stud-
ied the time dependent analysis of a Markovian queue with server vacations and
a waiting server. Kalidass et al. [6] have discussed the transient behavior of an
M/M/1 multiple vacation queue and the possibilities of catastrophes. Sudhesh
and Francis Raj [17] have obtained the time dependent system size probabilities of
a M/M/1 queue with working vacation. Recently, Ammar [1] has investigated the
transient solution of a M/M/1 multiple vacations queue and impatient customers.
In this paper, we consider an M/M/1 queue with variant working vacations and

balking. On arrival, customers arrive according to a Poisson process and decide to
join the queue with probability b or balk with b̄ = 1 − b. If there is no customer
at the instant of a service completion, the server begins a WV of random length.
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During the vacation period, the arriving customers are served generally at a lower
rate. When a WV ends, the server inspects the system and switches to normal
busy period, if there are customers in the queue; otherwise, takes another WV
and continues so till K consecutive vacations have been taken. This policy refers
to the phenomena of variant working vacations and one may note that this VWV
generates MWV when K → ∞ and single working vacation (SWV ) when K is
equal to 1. After the end of the Kth vacation, the server switches to normal busy
period and stays idle or busy depending on the availability of the customers in
the system. Further, we have obtained the explicit expressions for the transient-
state probabilities in terms of modified Bessel function of the first kind by using
probability generating function, continued fractions and Laplace transform when
the server is in different states. We have derived closed-form expressions for some
other performance measures.
The rest of the paper is organized as follows. Model description is presented in

Section 2. In Section 3, we have obtained the explicit expressions for the transient
state probabilities in terms of modified Bessel function of the first kind by using
generating function, continued fractions and Laplace transform. The closed-form
expressions of the performance measures are presented in Section 4. Finally, Section
5 concludes the paper.

2. Description of the model

We consider an M/M/1 queueing system with variant working vacations and balk-
ing. Customers arrive according to a Poisson process with rate λ, and the service is
provided by a single server with exponential service rate µ. On arrival, customers
decide to join the queue with probability b or balk with probability b̄ = 1−b. At the
end of a service, if there is no customer in the system, the server begins a WV of
random length which is exponentially distributed with rate ϕ. During WV , service
is provided to the customers according to a Poisson process with rate η (< µ). If
the server finds customer at a WV completion instant, it returns to regular busy
period; otherwise, the server takes WV s sequentially until ‘K’ consecutive WV s
are complete; after which the server switches to normal busy period staying idle or
busy. The customers are served according to FCFS queue discipline. In addition,
we assume that inter-arrival times, service times during vacations and normal busy
period, and vacation times are mutually independent.

3. Analysis of the model

In this section, we derive the transient solutions for the model under consideration
by employing generating functions, Laplace transforms, continued fractions and
modified Bessel function.
Let L(t) be the number of customers in the system at time t, and J(t) denote

the state of the server at time t, which is defined as follows:

J(t) =

 j, the server is on (j + 1)th working vacation at time t
for j = 0, 1, . . . ,K − 1,

K, the server is idle or busy at time t,
The pro-

cess {(L(t), J(t)) , t ≥ 0} defines a continuous-time Markov process
with state space Ω = {(n, j) : n ≥ 0, j = 0, 1, . . . ,K} . Let Pn,j(t) =
Prob. {L(t) = n, J(t) = j} , n ≥ 0, j = 0, 1, . . . ,K denote the transient
state probabilities. These probabilities satisfy the following forward Kolmogorov



20 V. L. Pikkala & R. Pilla/ IJM2C, 08 - 01 (2018) 17-27.

differential difference equations:

P ′
0,0(t) = −(λ+ ϕ)P0,0(t) + ηP1,0(t) + µP1,K(t), (1)

P ′
1,0(t) = −(λb+ ϕ+ η)P1,0(t) + λP0,0(t) + ηP2,0(t), (2)

P ′
n,0(t) = −(λb+ ϕ+ η)Pn,0(t) + λbPn−1,0(t) + ηPn+1,0(t), n ≥ 2, (3)

P ′
0,j(t) = −(λ+ ϕ)P0,j(t) + ηP1,j(t) + ϕP0,j−1(t), 1 ≤ j ≤ K − 1, (4)

P ′
1,j(t) = −(λb+ ϕ+ η)P1,j(t) + λP0,j(t) + ηP2,j(t), 1 ≤ j ≤ K − 1, (5)

P ′
n,j(t) = −(λb+ ϕ+ η)Pn,j(t) + λbPn−1,j(t) + ηPn+1,j(t),

1 ≤ j ≤ K − 1, n ≥ 2, (6)

P ′
0,K(t) = −λP0,K(t) + ϕP0,K−1(t), (7)

P ′
1,K(t) = −(λb+ µ)P1,K(t) + λP0,K(t) + µP2,K(t) + ϕ

K−1∑
j=0

P1,j(t), (8)

P ′
n,K(t) = −(λb+ µ)Pn,K(t) + λbPn−1,K(t) + µPn+1,K(t) + ϕ

K−1∑
j=0

Pn,j(t),

n ≥ 2. (9)

Let us suppose that initially there is no customer in the system, i.e., P0,0(0) = 1
and Pn,j(0) = 0, n ≥ 1, 0 ≤ j ≤ K. Let the probability generating function be

GK(t, z) =
∞∑
n=0

Pn,K(t)zn, |z| ≤ 1, (10)

with an initial condition GK(0, z) = 0. Now, multiplying equations (7), (8) and (9)
by zn, and summing over all possible values of n and rearranging the terms, we get

∂GK(t, z)

∂t
=
[
(λbz +

µ

z
)− (λb+ µ)

]
GK(t, z) + (λb̄− µ

z
)(1− z)P0,K(t)

− µP1,K(t) + ϕ

K−1∑
j=0

∞∑
m=0

Pm,j(t)z
m −

K−1∑
j=1

P0,j−1(t)

 .

(11)

Equation (11) is a first order linear differential equation in GK(t, z) for fixed z.
Using the initial condition its solution can be given as below:

GK(t, z) =(λb̄− µ

z
)(1− z)

∫ t

0
P0,K(u)eA(t−u)du− µ

∫ t

0
P1,K(u)eA(t−u)du

+ ϕ
K−1∑
j=0

∫ t

0

∞∑
m=0

Pm,j(u)z
meA(t−u)du− ϕ

K−1∑
j=1

∫ t

0
P0,j−1(u, )e

A(t−u)du,

(12)

where A = (λbz+ µ
z )− (λb+µ). It is well known that if α = 2

√
λbµ and β =

√
λb
µ ,
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then

exp
[
(λbz +

µ

z
)t
]
=

∞∑
n=−∞

(βz)nIn(αt),

where In(αt) is the modified Bessel function of the first kind. Comparing the coef-
ficients of zn on both sides of equation (12) for n = 1, 2, 3, . . ., we get

Pn,K(t) =λb̄

∫ t

0
P0,K(u)βn

[
In(α(t− u))− β−1In−1(α(t− u))

]
e−(λb+µ)(t−u)du

+ µ

∫ t

0
P0,K(u)βn

[
In(α(t− u))− βIn+1(α(t− u))

]
e−(λb+µ)(t−u)du

− µ

∫ t

0
P1,K(u)βnIn(α(t− u))e−(λb+µ)(t−u)du

+ ϕ

K−1∑
j=0

∫ t

0

∞∑
m=0

Pm,j(u)β
n−mIn−m(α(t− u))e−(λb+µ)(t−u)du

− ϕ
K−1∑
j=1

∫ t

0
P0,j−1(u)β

nIn(α(t− u))e−(λb+µ)(t−u)du.

(13)

Equation (12) holds for n = −1,−2,−3, . . ., with left hand side replaced by zero.
Using I−n(x) = In(x) for n = 1, 2, 3, . . ., we get

0 = λb̄

∫ t

0
P0,K(u)β−n

[
In(α(t− u))− β−1In+1(α(t− u))

]
E du

+µ

∫ t

0
P0,K(u)β−n [In(α(t− u))− βIn−1(α(t− u))]E du

−µ

∫ t

0
P1,K(u)β−nIn(α(t− u))E du (14)

+ϕ
K−1∑
j=0

∫ t

0

∞∑
m=0

Pm,j(u)β
−n−mIn+m(α(t− u))E du

−ϕ
K−1∑
j=1

∫ t

0
P0,j−1(u)β

−nIn(α(t− u))E du,

where E = e−(λb+µ)(t−u). From equations (13) and (14), for n = 1, 2, 3, . . .,

Pn,K(t) =
(
µβn+1 − λb̄βn−1

) ∫ t

0
P0,K(u)

[
In−1(α(t− u))− In+1(α(t− u))

]
E du

+ ϕ
K−1∑
j=0

∫ t

0

∞∑
m=1

Pm,j(u)β
n−m

[
In−m(α(t− u))− In+m(α(t− u))

]
E du.

(15)
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From equation (7), we get

P0,K(t) = ϕ

∫ t

0
P0,K−1(u)e

−λ(t−u)du. (16)

Equations (15) and (16) show the transient state probabilities of the system during
busy period and probability of idle server during busy state, respectively.
Now, we evaluate Pn,j(t) for j = 0, 1, 2, . . . ,K − 1, which represent the transient

state probabilities during WV . Let P̃n,j(s) be the Laplace transform of Pn,j(t) for
j = 0, 1, . . . ,K − 1. On taking the Laplace transform of equation (1), we get

P̃0,0(s) =
1

(s+ λ+ ϕ)− η P̃1,0(s)

P̃0,0(s)
− µ P̃1,K(s)

P̃0,0(s)

, (17)

and from equations (2) and (3) we get the expression

P̃n,0(s)

P̃n−1,0(s)
=

λ

(s+ λb+ ϕ+ η)− η P̃n+1,0(s)

P̃n,0(s)

, for n = 1, 2, 3, . . . . (18)

We observe that equation (18) represents a continued fraction which takes the
following form:

P̃n,0(s) = Ṽn(s) P̃0,0(s), for n = 1, 2, 3, . . . . (19)

where

Ṽn(s) =
1

b

(√
λb

η

)n
d1 −

√
d1

2 − (2
√
ηλb)2

2
√
ηλb

n

, d1 = (s+ λb+ ϕ+ η).

By taking inverse Laplace transform of equation (19), we get transient state prob-
abilities for j = 0 as

Pn,0(t) = Vn(t) ∗ P0,0(t), for n = 1, 2, 3, . . . , (20)

where ∗ denotes convolution and Vn(t) is the inverse Laplace transform of Ṽn(s)
which is given by

Vn(t) =
n

b t

(√
λb

η

)n

e−(λb+ϕ+η)tIn((2
√

ηλb)t). (21)

Similarly, for 1 ≤ j ≤ K − 1, from equation (4), we get

(s+ λ+ ϕ)P̃0,j(s)− ηP̃1,j(s) = ϕP̃0,j−1(s), (22)

and from equations (5) and (6), we obtain

P̃n,j(s) = Ṽn(s) P̃0,j(s), for n ≥ 1, 1 ≤ j ≤ K − 1. (23)
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For n = 1, equations (22) and (23) give

P̃0,j(s) = (ϕB(s))jP̃0,0(s), 1 ≤ j ≤ K − 1. (24)

where

B(s) =

∞∑
i=0

ηi

(s+ λ+ ϕ)(i+1)
(Ṽ1(s))

i. (25)

Substituting equation (24) in equation (23) and taking inverse Laplace transform,
we get

Pn,j(t) = Vn(t) ∗ (ϕj ILT [(B(s))j ]) ∗ P0,0(t), n ≥ 1, 1 ≤ j ≤ K − 1, (26)

where

ILT [(B(s))j ] =

∞∑
i=0

(
−j
i

)
(−1)ie−(λ+ϕ)t ηiti+j−1

(i+ j − 1)!
∗ [V1(t)]

∗i. (27)

Since the transient state probabilities duringWV , Pn,j(t) for n ≥ 1, 0 ≤ j ≤ K−1,
are dependent on P0,0(t), next we evaluate P0,0(t) as follows:
With n = 1, equations (15), (17) and (19) give

P1,K(t) =
(
µβ2 − λb̄

) ∫ t

0
P0,K(u)

[
I0(α(t− u))

− I2(α(t− u))
]
e−(λb+µ)(t−u)du

+ ϕ

K−1∑
j=0

∫ t

0

∞∑
m=1

Pm,j(u)β
1−m

[
I1−m(α(t− u))

− I1+m(α(t− u))
]
e−(λb+µ)(t−u)du.

(28)

Using equation (24), the Laplace transform of equation (16) is obtained as

P̃0,K(s) =
ϕK(B(s))K−1

(s+ λ)
P̃0,0(s). (29)

Taking Laplace transform on equations (28) and using equation (29), and equation
(19) together with (17), after some mathematical manipulations, we obtain

P̃0,0(s) =
∞∑
l=0

l∑
r=0

r∑
i=0

1

(s+ λ+ ϕ)l+1

(
l
r

)(
r
i

)
(ηṼ1(s))

i

×

[
µλ(b− b̄)

ϕKB(s)K−1

s+ λ
LI

]r−i

×

ϕµK−1∑
j=0

(ϕB(s))j

l−r [ ∞∑
m=1

Ṽm(s)β1−mLIm

]l−r

,

(30)
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where LI is Laplace transform of the expression [I0(αt)− I2(αt)] e
−(λb+µ)t and LIm

is the Laplace transform of the expression [I1−m(αt)− I1+m(αt)] e−(λb+µ)t.
Taking the inverse Laplace transform of equation (30), we get

P0,0(t) =

∞∑
l=0

l∑
r=0

r∑
i=0

(
l
r

)(
r
i

)
e−(λ+ϕ)t t

l

l!
∗ ηi[V1(t)]

∗i

∗ (ILT [B(s)K−1])∗(r−i) ∗
[
e−(λb+µ)t (I0(αt)− I2(αt))

]∗(r−i)

∗ [µλ(b− b̄)ϕK ]r−ie−λt tr−i−1

(r − i− 1)!
∗ [µϕ]l−r

K−1∑
j=0

ϕjILT [B(s)j ]

∗(l−r)

∗

[ ∞∑
m=1

Vm(t) ∗ β1−m (Im−1(αt)− Im+1(αt)) e
−(λb+µ)t

]∗(l−r)

.

(31)

where ∗ denotes the convolution, while “ ∗ q” stands for q-fold convolution. In
equation (31), the functions Vm(t), ILT [B(s)j ] and ILT [B(s)K−1] are calculated
by using the equations (21) and (27).

4. Performance measures

In this section, we consider the time dependent performance measures of the tran-
sient system.

i. The probability that the server is idle during busy period is obtained from equa-
tion (29) by taking inverse Laplace transform as

P0,K(t) = ϕKe−λt ∗
( ∞∑

i=0

(
1−K

i

)
(−1)ie−(λ+ϕ)t ηiti+K−2

(i+K − 2)!

∗[V1(t)]
∗i
)
∗ P0,0(t), for K > 1, (32)

where V1(t) =
1
b t

(√
λb
η

)
I1((2

√
ηλb)t)e−(λb+ϕ+η)t.

Remark 1 From equation (29), for K = 1 (SWV ), we get P0,1(t) = ϕe−λt ∗
P0,0(t).

ii. The probability that the system is empty during WV is obtained from equation
(24) by taking inverse Laplace transform as

K−1∑
j=0

P0,j(t) =
K−1∑
j=1

ϕj

( ∞∑
i=0

(
−j
i

)
(−1)ie−(λ+ϕ)t ηiti+j−1

(i+ j − 1)!

∗[V1(t)]
∗i
)
∗ P0,0(t) + P0,0(t). (33)

iii. Let PWV be the probability that the server is on WV . From equation (26), we
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obtain

PWV =
K−1∑
j=0

∞∑
n=1

Pn,j(t)

=

∞∑
n=1

(Vn(t) ∗ P0,0(t))

+

K−1∑
j=1

∞∑
n=1

(
Vn(t) ∗ (ϕj ILT [B(s)j ]) ∗ P0,0(t)

)
,

(34)

where ILT [B(s)j ] are calculated by using equation (27).
iv. The probability that the server is busy is given by

Pb =

∞∑
n=1

Pn,K(t)

=

∞∑
n=1

((
µβn+1 − λb̄βn−1

)
P0,K(t) ∗

[
In−1(α(t))

− In+1(α(t))
]
e−(λb+µ)(t)

+ ϕ
K−1∑
j=0

[ ∞∑
m=1

Pm,j(t) ∗ βn−m
[
In−m(α(t))

− In+m(α(t))
]
e−(λb+µ)(t)

])
.

(35)

v. Let L(t) be the number of customers in the system at time t. Then, the average
number of customers in the system at time t is given by

E[L(t)] =

∞∑
n=1

n

K−1∑
j=0

Pn,j(t) + Pn,K(t)

. (36)

From (36), we get

E[L′(t)] =

∞∑
n=1

n

K−1∑
j=0

P ′
n,j(t) + P ′

n,K(t)

.

From equations (2), (3), (5), (6), (8) and (9), after considerable mathematical
manipulations, the above equation will lead to the following differential equation

dE[L(t)]

dt
=λb− λb̄

K=1∑
j=0

P0,j(t) + P0,K(t)

− η
∞∑
n=1

K=1∑
j=0

Pn,j(t)

− µ
∞∑
n=1

Pn,K(t).
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Therefore, integration of the above equation yields

E[L(t)] =λbt− λb̄

K=1∑
j=0

∫ t

0
P0,j(u)du+

∫ t

0
P0,K(u)du


− η

∞∑
n=1

K=1∑
j=0

∫ t

0
Pn,j(u)du

− µ

∞∑
n=1

∫ t

0
Pn,K(u)du.

(37)

vi. The variance of the number of the customers in the system at time t is given by

V ar[L(t)] = E[L2(t)]− E[L(t)]2, (38)

where

E[L2(t)] =

∞∑
n=1

n2

K−1∑
j=0

Pn,j(t) + Pn,K(t)

 and E[L2(0)] = 0.

We have E′[L2(t)] =
∑∞

n=1 n
2
(∑K−1

j=0 P ′
n,j(t) + P ′

n,K(t)
)

and from equations

(2),(3), (5), (6), (8) and (9), after considerable mathematical manipulations, the
above equation will lead to the following differential equation

dE[L2(t)]

dt
=λb− λb̄

K∑
j=0

P0,j(t) + 2λbE[L(t)]

− η
∞∑
n=1

(2n− 1)
K=1∑
j=0

Pn,j(t)− µ
∞∑
n=1

(2n− 1)Pn,K(t).

On integration, we have

E[L2(t)] = λbt− λb̄

K∑
j=0

∫ t

0
P0,j(u)du+ 2λb

∫ t

0
E[L(u)]du

−η
∞∑
n=1

(2n− 1)

K=1∑
j=0

∫ t

0
Pn,j(u)du

 (39)

−µ
∞∑
n=1

(2n− 1)

∫ t

0
Pn,K(u)du.

5. Conclusions

In this paper, we have studied the transient solutions of an M/M/1 queueing
system with variant WV s and balking. We have obtained the explicit analytical
expressions for the transient state system size probabilities in terms of modified
Bessel function of the first kind by using probability generating function, continued
fractions and Laplace transform. We have also derived the closed-form expressions
for some performance measures. The numerical results for this model are left for
further investigation.
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