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A New Implicit Finite Difference Method for Solving Time
Fractional Diffusion Equation
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Abstract. In this paper, a time fractional diffusion equation on a finite domain is considered.
The time fractional diffusion equation is obtained from the standard diffusion equation by
replacing the first order time derivative by a fractional derivative of order 0 < o < 1 (in the
Riemann-Liovill or Caputo sence). In equation that we consider the time fractional derivative
is in the Caputo sense. We propose a new finite difference method for solving time fractional
diffusion equation. In our method firstly, we transform the Caputo derivative into Riemann-
Liovill derivative. The stability and convergence of this method are investigated by a Fourier
analysis. We show that this method is unconditionally stable and convergent with the con-
vergence order O(72 + h2), where 7 and h are time and space steps respectively. Finally, a
numerical example is given that confirms our theoretical analysis and the behavior of error is
examined to verify the order of convergence.
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1. Introduction

Fractional order partial differential equation models have been proposed in many
research field, such as fluid mechanics, biology, plasma physics, finance and so
on [1, 2]. In general, the analytical solution of many fractional partial differential
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equations is not easy to derive, therefore, the numerical solution of these equations
have been considered by researchers.

In the standard diffusion equation if the first order time derivative is replaced
by a fractional derivative of order 0 < o < 1 (in the Riemann-Liovill or Caputo
sence), time fractional diffusion equation will obtain.

P. Zhung and F. liu, [5] proposed an implicit difference approximation for solv-
ing the time fractional diffusion equation and they showed the implicit difference
approximation is unconditionally stable and convergent with order O(r + h?).

In this paper, the following time-fractional diffusion equation is considered.

0?u(x,t)

‘Difu(z,t) = 92
z

+ f(z,t), 0<z<LO0<t<T, (1)

with initial and boundary conditions

u(z,0)=g(z), 0<z<L, (2)
u(0,t) =u(L,t) =0, 0<t<T. (3)
Where 0 < o < 1.

The fractional derivative “Dg*u(z,t) in (1) is the Caputo fractional derivative of
order «, defined by [3]

¢ Dfu(, t

= <a<l.
LA Ose

1 /tau(l‘,f) d§
o 0§ (t—&*

where I'(.) is the gamma function.

In this paper, a new implicit finite difference method for solving equations (1) — (3)
is proposed. we show this method is unconditionally stable and convergence with
order O(7% + h?), where 7 and h are time and space step size, respectively.

2. The new implicit method

For numerical scheme, define ¢, = k7, £k =0,1,...,N, and z; = ih, 1 =0,1,..., M,
where 7 = % and h = ﬁ are time and space steps, respectively. Let uf be the
numerical estimate of the exact value of u(z,t) at the mesh point (z;, ).

Firstly, we define the Riemann-Liouvill fractional derivative and integral and con-
sider several lemmas.

We show The Riemann-Liouvill fractional derivative and integral of order «, (0 <
a < 1) by oDff and gD, “f, respectively, and defined by [3]

o D2 (1) & Jo Sde, 0<a<1,
oD, “f(t) fo(tgladf’ a>0.
LEMMA 2.1 [7]Let
ple) = (j+ 1)~ —j°, ji=0,1,.. (4)

J

then bga) satisfies
Doy =1, 0 >0, j=0,1,..
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2) b\ >l j=0,1,..

3) there is a positive constant ¢ > 0 such that T < b(a)

LEMMA 2.2 [4]Suppose y(t) € C3[0,T], then

oD “y(tes1) — oDy “y(ty) =

T
L

7-05 (07 « « « 1
NCE] (CL;(C - a;(ﬁ)l)y(tO) + (U§+)1 - Uj( Ny(tr_;) + my(tk—f—l)
j=0
+1y (5)
where
() a 1 a+1 a-+1 —
a; ' =(+1) 7a+1[(9+1) +77, i=0,1, (6)
) =0, (7)
e 1 e « «
() = —lG+1) gt (-1, =12, (8)
(@ _ 1
O T a+1’ (9)
|Ry| < C17% 2. (10)

The Caputo fractional derivative “Df*u and the Riemann-Liovill fractional deriva-
tive o Df'u are connected with each other by the following relation [3]

u(zx,0)

(“Dfu)(x,t) = (oDfu)(z,t) — T(l—a)

t7Y O0<ac<l,

by substituting above equation into (1), we have

u\xr 2U X
PP ~ gt = T w0,

therefore

0?u(z,t) n u(zx,0)

(OD?U)(x?t): Ox2 F(l_ )

£+ flx, ). (11)

By integrating both side of above equation with respect t from t; to tx+1 we have

tit1 62 iat
(0D )i tr) — D)) = [ A
tr T
U(l‘i,to) —a o tri1
11— a)l(l—a) (it —t) +/t (i, t)dt. (12)

t’”“ %dt can be approximated by the trapezoidal rule. For approximating

the second-order space derive, we use of the following symmetric second difference
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quotient.

0?u(xi, ty) B 82u(wi, ty)

8:132 - h2 +O(h2)) (13)

where
S2u(xi, ty) = w(wir, ty) — 2u(xi, tr) + u(zioq, ),

and (oD u) (@, tey1) — (0DF 'u)(zi, 1) can be approximated by (5). Thus, we
have

T [ e ey 0 Ny e (e ke 1L n
T —a) (% e ) +]Z:;(Uj+1 IR vy L
T u?

_ 2 k+1 2 k 1— 1— k+1
T 2h2 (69*““1' + 6"”%) + (1—-a)l(1—-a) (s =07 + BT

where Fik'H = tt:ﬂ flag, t)dt.
By noticing (1—a)['(1—a) =T'(2—«) and ti;ﬁ‘—ti_a =77 ((k+ 1)t — k17),
we have

T (1—a) _ (1=a)y 0 - (1-a)  (1-a)\ k—j 1 kil
r2-a) (@, = agpy Jui + ?:O:(Ujﬂ -y T+ T2—a)
= L (52’1,Ll-§+1 =+ 52uk) + uoi ((k + 1)1*04 o kl*a) + F-k+1
2p2 \7T z T2-a) i

i=1,2,..,M—1, k=0,1,..,N—1.

Let s1 = ng;) and s3 = 555, then we have
2, k+1 S1 k1 _
1— 1— — (1- 1—a)\ k—j
s1 (agC @) _ al({Ha))u? + Z(vj(-ﬂa) — vj( O())ui T — sp02uk

j=0
—siud (k+ 1) =k —Ffi=1,2,.,M -1, k=0,1,..,N—L
The initial and boundary conditions can be discretized by

O—g;, i=1,2,...,M—1, (15)
F=uk, =0, k=1,2,..,N. (16)

3. Stability analysis

Firstly, the following lemma is considered

LEMMA 3.1 [4]
1) For j = 0,1, ..., the coefficients ag»l*a) defined by (6) are positive and ag«lfa) >
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(1-a)
@51
2) For j = 0,1,..., the coefficients vj(-l_a) defined by (8) and (9) are positive, and

. (1-a) (1-a)
forj=1,2,.., v; >0

Now, the stability of the numerical method (14) — (16) is investigated by using
Fourier analysis.
Suppose uf be the approximation solution of the implicit method and define

then the following roundoff error equations can be obtained.

825§p§+1_28—71a ?+1: (17)

—1
51 <<a§j-a> —al TN+ S () - vﬁéahpﬁf—m) — 5202t

—sy ((k+ D=k Y, =12, M -1, k=0,1,.,N—1.
ph=pk, =0, k=1,2,..,N. (18)

Now, we define the grid functions

k ,0? when xj—%<
p 0 when Ogacé%orL

p*(z) can be expanded in Fourier series as
+oo '
Py = > dp)e®™/t k=1,2,.,N,
l=—00

where

I :
dp(l) = L/o PP (x)e 2™ Ly = /<1,

Let pF = [p’f, pg, e p’f\/[_l], and introduce the following norm

1/2

m—1 L
FB= S| = [ / \W)Pdﬂ
i=1

1/2

Based on the Parseval equality

L oo
/O @) Pdr = 3 diD)I2,

l=—0
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Thus

+o00

1*15 =D k(@) (20)

l=-0

Now, with using above analysis,we assume that the solution of equations (17) and
(18) have the following form

k iojh
p] :dke J ’

where o = %ﬂ Substituting into (17), we have

ijoh 51 ijoh _

2
sodp+105€ dpt1€

2 —«

k-1
s1 <(a§€1_a) - ag__la))doeij"h + Z (’US;?) - v,(%a))dkmeij"h>

m=0

—sod0ae 7" — s1doe T ((k 4+ 1)1 — k')

j=1,..M—-1 k=0,...,N —1,

therefore

h
di+1 <—432 sin? % S > =

2 —«
k—1
1— 1— l-o —«
N (mg D oo+ Y 0l — ol >>dk_m)
m=0

h
+459d), sin’ % — s1dp ((k: + 1)t — kl_a) , k=0,.,N—1.

Let p = 4s9sin? %h, then we have

o1 (@0 = a0y + A 0015 — o))
dpy1 = 5
THT g
dy, — s1dp ((k + D)1= — =@
| pelk — 1o (( +s)1 ), k=0,1,..,N — 1.
BT 3,
By noticing (4) we have
s (o™ = af 5o + S0 0 — o™i ) + gy — sadob! ™
dp+1 = 51
“HT s
k=0,1,...,N —1. (21)

PROPOSITION 3.2 Suppose that di11 k = 0,...,N — 1 is the solution of (21) and
22- L 3, then

iy 1| < |dol,
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Proof We proof this proposition by using mathematical induction.
For k = 0 we have

dl - i = 1 dOv
—H QS—a —H 25—a

noticing that ¢ > 0 an ,we have

_ + S1

|di| = |/H_sl|d0| < H|d0| = |dol.
2—a 2—

Now, suppose that

|dp| < |do|l, n=1,2,.. k. (22)

Using (21), (23) and lemmas (2.1) and (3.1), we have

1-a) (1-« -«
P ((af 5 = af!=)ldol + S5 2o = 0™ Dldi-rm)
k+1] X ,U,+ 2_@
n N’dk‘ + Sl’do’b](cl_a)
w5
11—« (1- 11—« (1-« e

<31<(a,(€_1)—ak )—l—z |7(nJrl —vm )|)+u+slb,(€ )|d|
S /.L+ 27& 0

51 (ag__la) — ag_a) + v(()l_a) — v,(gl_a)> +u+ S1b,(€1_a) o
< 3 0

,LL—|— 2—1a

S1 ( (()1_&) — bg a)> +u+ 81[)](: @)

- S1 |d0| = |d0|
,LL+ 2—a

THEOREM 3.3 The new implicit finite difference method (13) — (16) is uncondi-
tionally stable.

Proof Apply proposition (3.2) and noticing (20), we have
H k+1||2 ||p ||27 kzoala“'aN_la

which implies that the new implicit scheme (14) — (16) is unconditionally stable.

4. Convergence analysis

Let u(z;,t;) be the exact solution of equation (1). By integration both sides of
(11), with respect t, from t; to tx11, we have

tkt1 92 .
(0D~ u) (i, tegr) — (0Df ) (w4, ty) = / ! 1;3(;2“75) dt
tr

u(x;,t o Y tra
(1_;)“10)_ oy (thet — 1 )+/tk f (i tydt.
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By using (13) and lemma (2.2) and using the trapezoidal rule for approximation

thy1 O%u(xi,t)
ftk Tdt’ we have

e [ e 00 N -0) _ (-a)
11—« 11—« 11— 1—a
T o 2 u(zi, to) Lo a i1
= —_— 79 [x) 2 _ F ,
i 2h? (zu(wi, th1) + g, ti) + 2R2) + Ry + 1-a)l(-a) (tkﬂ t, )+ F
where FFH! = tikﬂ (w3, t)dt.
Therefore
,7_1 o ( ) ( ) k—1 ( ) ( )
11—« 11—« 11— 1—a
— T (52,”(1.1, tk+1) + 52U(£L‘i tk)+) + u(wz‘,to) (tl_a . tl_a)
2h2 x 9 x ) (1 _ a)F(l . a) k+1 k

+FFTL 4 REFL (23)

where Rf“ =Ry + 7Ry + R3.

For approximation fi“l %dt,we use the trapezoidal rule,therefore we have

R3 = o(73), thus exist the positive constant C3 such that |R3| < C373, now by
using lemma (2.1),we have

|Rs| < C47' b, 72, (24)
therefore, by using (24) and lemma (2.2), we have
[REHY < Cyr=eb ™ 4 Cyrh? + Chrt o~ 72,
by using Lemma (2.1), we can obtain

[REFY < Oprtmon ™) o oppl Tl on? 4 Olrten T

= 71 (O + Cyh? + Cyr?)

< Oyt op T (72 4 2), (25)

where Cy = Max{C) + C§, C}}.
Define ef = u(z;, t) —uf, 1=1,2,...,M—1, k=1,...,N. For boundary and initial
conditions, we have
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By subtracting (14) from (23), and noticing that eg-) =0, we have
20k+1 _ 51 kt1 _ k—m 2 k k+1
$20€; 3 g% =5 Z ) e ej " — sa0ze] + R; (26)

j=1,.,M—1, k:O,...,N—l,

2.k _ k o k k
where 5xej =€ 26]- +el g
And for k = 0, we have

R A R e

Now, by using a Fourier analysis, we analyze the convergence of new implicit
method.
Firstly,we define grid functions

ek(fn)— ef when x]—%<x< —1—%]21,2...,M—1,
0 when O<x<gorL }2‘<x<L
and
k h
Rk(:n): R when z;—-5<z<wzj+3j=12,.,M-1,
0 when 0<x<%0L % r < L,

Therefore e¥(x) and R¥(x) can be expanded in following Fourier series

+00
= > &Pt k=12, N,

l=—00

+oo
Ri(x)= ) m(e™™/t k=12,N,

l=—o00

where
1 [ ,
&)= [ e
0
and
1 [t ,
nk(l) _ L/ Rk(x)e—z%rlx/Ldl,’ ]
0
Let

k_ [k ok kT 1. _
e’ =lef,es,....e5, 4", k=0,1,...,N,

RF =R RE, ... Rk, |7, k=0,1,..,N.
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We introduce the following norms

1/2 12

m—1 L
lebla = [ 3 nleky? :[/0 ]ek(a:)|2d:c} k=01, .
j=1

and

1/2

m—1 L 1/2
IRM = | Yo nREP) = [ |RM@)Pde| L k=0,1,..,N.
/ 0
j=1

By using Parseval’s equality, we have

L +oo
/0 F@)dr= 3 GME k=0, N,

l=-0

L 00
| IR @Pdr = 3 Im@P, k=0, N,

0 =8
Thus

400
13 = 3" &P, k=0,1,...N,

l=—00

400
IR¥3 = 3 (P, k=0,1,..,N.

l=—00
Now, from above analysis,we can suppose that

k iojh
ej :gke J )

k iojh
Rj = TNke J ’

where o = %ﬂ By substituting (34) and (35) in (26) and (25) , we have

Uh : s S1 ioih
—482 k+1 Sin2 7620'711 - k 1610-] =
€kt 2 5 ookt
k—1 oh
1— 1— iojh s 2 iojh iojh
51 (Um-ﬁ—o?l —Um oz) gkfmewj + 459}, sin 7610] + T]k+1€w]

m=0
j=1,..M -1, k=1,..,N —1,

and for £ =0

.o 0h . . s
—489&7 sin® ?ew]h 5

71616””% = et j=1,..,M-1
@

(28)

(30)
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above equation can be rewritten as follow

sty (Uﬁnljr?) - ’U%_a)) Ek—m + 1&g R T (36)

gk—‘rl = S1 S1
—H =54 S

and

S1 )

—H 2—«

where p = 4s9 sin® %h > 0.

PROPOSITION 4.1 Let &, (k=1,...,N) be the solution of equations (36) and (37).
If 2272 < 3 and p + 52~ > 1, then there is a positive constant C, such that

&1l < Clk+Dlmle k=0,..,N — 1.

Proof The series in the right hand side of (4.11) is convergence, therefore, a positive
constant C}, exist, such that

Ikl = [me(D)] < Cklml|, k=1,..,N,
therefore
Ikl < Clml, k=1,..,N, (38)
where

C = Mazx{Cy}, 1<k

N

N.

Now, we can complete the proof using mathematical induction.
For k = 0, we have

m
Rl =

&=

We know p + 52 > 1, thus according to (38) we have

2—a
&) < Im| < Clml
Now, suppose that
1€n] < Cnlm|, n=1,2,..k, (39)

by noticing ¢ > 0, 0 < o < 1 and p+ 52~ > 1 and using (38), (39) and lemma

2—a
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(3.1), from (36), we have

s1 R i) — ol e ml+ G Il

|€k41] <
pt a2y N‘Fzs—la
1 —
< #1 5o Clopst) = vin |0k = m)lm| + pCln| Ol
h nt oY nt ¥
S1(vg —vg) + 1
< ( 81) Pi+ s | Clml|
M+2fa M+2fa

s1vg + 1
g 100 Sl”k—i_ 5 C|771|
bty bt g

S1
1
< | =k Clml
<u+251a et ;1&)

< O(k+ 1)

THEOREM 4.2 If2°7°S% and p+ 5% > 1, then the new implicit method (14)— (16)

is convergence with order O(1? + h?).

Proof Using (25) and (29), we can obtain

(1-a)
IRHl2 < Car' =% 4+ WE = €72 (k1) i (72 4 12),
bhyr” (k+2) = (k+ 1)l
lim —**  — lim
k—+o0 (k + 1)_04 k—+o0 (k + 1)_0‘
11—«
(k + 1)@ [(1 +e) - 1}
=i (k+ 1)@
1 11—«

Therefore, there is a constant C”, so that
IR |2 < C"7((k + 1)m)~%(r* + h?),
because (k + 1)7 < T is finite, we have
IR||2 < 7C(r% + 1?), (40)

where C' = C"T~.
Using (32), (33), (40) and proposition (4.1), we have

le" |2 < Ok + D[ Rilla < C(k + 1)7C(r* + h?)
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because (k + 1)7 < T is finite, we have
le" 2 < C(72 + h?)
where C = CCT.

Comment. For analyses of stability and convergence of our method, we
suppose 227 < 3, in order to keep the monotonicity of vi*a, (k=0,1,...). When
22— > 3. we can not prove the stability and convergence of the method. However,
numerous numerical experiment demonstrate that are no symptoms of numerical

instability.
5. Numerical example
In this section we consider a numerical example that confirms our theoretical anal-

ysis.
consider the following problem

0u(xz,t)  d*u(x,t)

5.9 92 + f(x,t), 0<zx<1 (41)
subject to
u(z,0) =0, 0<z<1, (42)
u(0,t) =u(L,t) =0, 0<t<1, (43)
where
2 2-a 2,2
flz,t) = t*"*sin(2nx) 4+ 47t sin(2mx).

'3 —a)

The exact of the problem is u(z,t) = t?sin(27x).
We define the maximum absolute error

E = Maz gcicprlul — u(zi, 1)),

Figure 1 shows numerical and exact solution of (41) — (43) when a = 0.8 and t = 1.
The following table shows the maximum absolute error between the exact solution
and numerical solution for different 7 = h when a = 0.3, 0.6, 0.8 and ¢ = 1.

and the following table shows the convergence order for different 7 = h when
a=0.3,0.6,08and t=1.

6. Conclusion

In this paper a new implicit finite difference method for solving time fractional
diffusion equation was considered. The stability and convergency of this method
were investigated and was shown that the method is unconditionally stable and
convergence with order O(72 + h?).
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Table 1. The maximum absolute error between the exact solution and numerical solution
for different 7 = h when o = 0.3, 0.6, 0.8 and ¢t = 1.

2.2305E-1  2.1737E-1 2.1268E-1
5.0620E-2  4.8870E-2 4.7944E-2
1.2228E-2  1.1793E-2 1.1707E-2
2.9892F —3 2.9283E-3 2.9118E-3
7.3834F —4 T7.3113E-4 7.2703E-4

Rl

Table 2. The convergence order for different 7 = A when o = 0.3, 0.6, 0.8 and ¢t = 1.

T=~h a=20.3 a=0.6 a=0..8
1 - — -

g 4.4064 4.4479 4.4360
%6 4.1397 4.1439 4.0953
% 4.0907 4.0273 4.0205
7] 4.0485 4.0052 4.0051

« numerical solution
— exact solution

0.5

0.5

0 0.2 0.4 0.6 0.8 1

Figure 1. numerical and exact solution of (41) — (43) when o = 0.8 and t = 1.
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