
International Journal of

Mathematical Modelling & Computations

Vol. 08, No. 01, Winter 2018, 29- 38

An Optimal G2-Hermite Interpolation by Rational Cubic Bézier
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Abstract. In this paper, we study a geometric G2 Hermite interpolation by planar rational
cubic Bézier curves. Two data points, two tangent vectors and two signed curvatures interpo-
lated per each rational segment. We give the necessary and the sufficient intrinsic geometric
conditions for two C2 parametric curves to be connected with G2 continuity. Locally, the
free parameters within a rational cubic Bézier curve should be determined by minimizing a
maximum error. We finish by proving and justifying the efficiently of the approaching method
with some comparative numerical and graphical examples.
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1. Introduction

Geometric interpolation by parametric curves based on the interpolation data such
as points, first derivatives and signed curvatures, is an important problem in Com-
puter Aided Geometric Design (CAGD). A lot of work have been given in the
literature to deal with the problem of G1 or G2 Hermite interpolation. In [2],
G2 Hermite interpolation scheme which provides a sixth-order approximation to
smooth curves with non-vanishing curvatures while the approximation can be at
most fourth-order accurate near the point with zero curvature was proposed. How-
ever the above-mentioned method can be applied only if the distance between
the knots is small and even in this case the interpolant need not be unique. The
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problem of quintic G2 Hermite interpolation by minimizing the approximate strain
energy was presented in [7]. However, the aforementioned method use a lowest de-
gree polynomial curves interpolation. In [10], the author propose method based on
geometric Hermite interpolation by a family of intrinsically defined planar curves
using interpolation of curvature values with Bézier-curves.
In this paper, we propose a method of interpolation and approximation planar
curves based on the G2 Hermite interpolation by rational cubic Bézier curves and
on the minimization of the maximum errors formulated in infinite norm using the
magnitude tangent vectors. To show the efficiency of our technique, we give a
comparison of examples related to the research domain in CAD-Applications: ap-
proximation of logarithmic spirals and blending curves.
The present paper is organized as follows. First, we recall some basic facts about
the G2 continuity between tow curves on class C2 and some properties of plane
rational cubic Bézier curves. In Section 3, we propose a solution of the G2 Hermite
interpolation problem. We also describe the algorithm allowing to construct the
G2 interpolant curves. In Section 4, as an application of this work, we give some
comparative numerical and graphical examples. Finally, on Section 5, we present
our conclusions.

2. Preliminary results

2.1 Rational Bézier curve

The parametric form of planar Rational Bézier curves is given by

C(t) =

3∑
i=0

Bi
3(t)wiPi

3∑
i=0

Bi
3(t)wi

=
A(t)

B(t)
, t ∈ [0, 1] (1)

where Pi ∈ R2 are control points, 0 < wi ∈ R are weights, and Bi
n(t) = (ni )t

i(1 −
t)n−i are the Bernstein polynomials of degree n, 0 ⩽ i ⩽ n. It follows that

C(0) = P0 and C(1) = P3. (2)

The first derivative C ′(t) of the curve C(t) is defined by

C ′(t) =
A′(t)−B′(t)C(t)

B(t)
(3)

where

A′(t) = 3
2∑

i=0

Bi
2(t)(wi+1Pi+1 − wiPi) and B′(t) = 3

2∑
i=0

Bi
2(t)(wi+1 − wi).

Then,

C ′(0) =
3w1

w0
(P1 − P0) and C ′(1) =

3w2

w3
(P3 − P2). (4)
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The signed curvature of C(t) is defined by

k(t) =
det(C ′(t), C ′′(t))

∥C ′(t)∥3
,

if C(t) is regular, i.e. ∥C ′(t)∥ ̸= 0. The curvature is positive if the center of the
osculating circle is on the left when a curve is traversed in the direction of increasing
parameter; otherwise, it is negative.
It follows that

k(0) =
2w0w2

3w2
1

det(P1 − P0, P2 − P1)

∥P1 − P0∥3
(5)

and

k(1) =
2w1w3

3w2
2

det(P2 − P1, P3 − P2)

∥P3 − P2∥3
. (6)

2.2 G2 continuity of planar parametric curves

Definition 2.1 (See [1]) Let C1(t) and C2(t) (0 ⩽ t ⩽ 1) be two parametric
curves of class C2 in R2 such that C1(0) = C2(1) and C ′

1(0) ̸= 0. Then, C1(t) and
C2(t) are G2 continuously connected at C2(1) = C1(0) if and only if there exist real
numbers α and β such that{

C ′
2(1) = αC ′

1(0),
C

′′

2 (1) = α2C
′′

1 (0) + βC ′
1(0).

(7)

Theorem 2.2 Let C1(t) and C2(t) (0 ⩽ t ⩽ 1) be two parametric curves of class
C2 in R2 such that C1(0) = C2(1) = Q and C ′

1(0) ̸= 0. C1 and C2 meet with
G2 continuity at the point Q if and only if they have a common unit tangent and
curvature.

Proof Assume that C1 and C2 meet with G2 continuity at the point Q. According
to Definition 2.1, there exist two reals α and β such that C ′

2(1) = αC ′
1(0), α > 0,

and

C
′′

2 (1) = α2C
′′

1 (0) + βC ′
1(0).

Thus, the curvature of the curve C2 at the point Q is given by

det(C ′
2(1), C

′′

2 (1))

∥C ′
2(1)∥3

=
det(αC ′

1(0)), α
2C

′′

1 (0) + βC ′
1(0))

∥αC ′
1(0)∥3

,

then

det(C ′
2(1), C

′′

2 (1))

∥C ′
2(1)∥3

=
det(C ′

1(0), C
′′

1 (0))

∥C ′
1(0)∥3

.

This prove the necessary condition.
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For the sufficient condition, if

det(C ′
1(0), C

′′

1 (0))

∥C ′
1(0)∥3

=
det(C ′

2(1), C
′′

2 (1))

∥C ′
2(1)∥3

and C ′
2(1) = αC ′

1(0) such that α > 0,
then

det(C ′
1(0), α

2C
′′

1 (0)− C
′′

2 (1)) = 0,

thus, there exists β ∈ R such that

C
′′

2 (1) = α2C
′′

1 (0) + βC ′
1(0).

■

3. G2 Hermite interpolation by rational cubic Bézier curves

3.1 Osculatory interpolation

Let Q1 and Q2 be two points in R2, v1, v2 be two unit tangent vectors, α, β be tow
non negatives real numbers and k1, k2 be two signed non-null curvatures . We seek
a parametric rational cubic Bézier curve C(α,β) which interpolates the above data,
i.e

C(α,β)(0) = Q1, C ′
(α,β)(0) ∈ R+∗v1, k(0) = k1. (8)

C(α,β)(1) = Q2, C ′
(α,β)(1) ∈ R+∗v2, k(1) = k2, (9)

where k is the curvature function. To do this, we choose the parameters of the
curve C(α,β) as follows:

w0 = 1, w1 = 1, P0 = Q1, P3 = Q2, P1 = P0 +
α

3
v1 and P2 = P3 −

β

3
v2.(10)

As in [3], the parameters w1 and w2 are calculated as follows

w1 =
2

3
(
d21d0
k21k0

)
1

3 and w2 =
2

3
(
d20d1
k20k1

)
1

3 , (11)

where

d0 =
det(P1 − P0, P2 − P1)

∥P1 − P0∥3
and d1 =

det(P2 − P1, P3 − P2)

∥P3 − P2∥3
. (12)

Remark 1 The data of the interpolation problem must be homogeneous, i.e.
diki > 0 for i = 0, 1.

Algorithm 1 (Construction of the interpolant)

(1) Input data Q1, Q2, v1, v2, k1, k2, α, β.
(2) Compute the rational Bézier control points P0, P1, P2 and P3 from Equation

(10).
(3) Compute d0 and d1 values from Equation (12).
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Figure 1. Two examples of the construction of the interpolant. (a) C-sharp forms. (b) S-sharp forms.

(4) if (diki < 0) then ki ← (−ki) for i = 0, 1.
(5) Compute w1 and w2 values from Equation (11).
(6) Return the curve C

To illustrate the result given in the above Algorithm, we plot two curves C1 and
C2 (see Figure 1) with different forms.

3.2 Interpolation Problem

The problem is as follow. Suppose that a sequence of data points

Pi ∈ R2, i = 0, 1, . . . , n Pi ̸= Pi+1,

associated respectively with a sequence of data unit tangents vi and curvatures ki
are given. Our goal is to find a rational cubic G2 spline curve

C(t) : [0, 1]→ R2

composed of rational cubic Bézier curve between two adjacent points Pi−1 and Pi

(see Figure 2).

Ci(t) : [0, 1]→ R2,

such that

• Ci(0) = Pi−1, Ci(1) = Pi;

• C ′
i(0) = αi−1vi−1, C ′

i(1) = βi−1vi;

• k(0) = ki−1, k(1) = ki,

where αi−1 > 0 and βi−1 > 0, for i = 1, 2, . . . , n. The rational curve Ci is the
interpolant constructed using Algorithm 1. From Theorem 2.1, it is easy to prove
the following result.

Theorem 3.1 For i = 1, 2, . . . , n − 1, the both curves Ci and Ci+1 are connected
with G2 continuity at the point Pi. Consequently, C is G2 continuous.
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Figure 2. Construction of two curves Ci and Ci+1 with their control points, connected with G2 continuity
at the point Pi.
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Figure 3. (a) Interpolation of C1G2 pentagon curves. (b) Interpolation with the same data as (a) except
for αi = −1 and βi = 1.

To illustrate the result given in the above Theorem, we use the following data
given in [2]( see Figure 3).

Pi = (cos(4iπ/5), sin(4iπ/5)),

vi = (−sin(4iπ/5), cos(4iπ/5)),

ki = 2, i = 0, 1, . . . , 5,

4. Applications

In this section, some examples are given to illustrate the effectiveness of the pro-
posed method of planar G2 Hermite interpolation. Comparison with other existing
methods are also presented.

4.1 Approximation

Let C(t) (0 ⩽ t ⩽ 1) be a planar parametric curves of class C2. By using Algorithm
1, we approximate locally the original curve C by a piecewiseG2 interpolating curve
C̃ with a good optimization, i.e. we look locally for two positive parameters α̂ and
β̂ (see (10)) so that the error functional is minimal

e(α, β) = ∥C − C̃(α, β)∥∞ = max(∥Cx − C̃x(α, β)∥∞, ∥Cy − C̃y(α, β)∥∞), (13)
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where

∥Cx − C̃x(α, β)∥∞ = sup
t∈[0,1]

∥Cx(t)− C̃x(α, β)(t)∥∞ (14)

and

∥Cy − C̃y(α, β)∥∞ = sup
t∈[0,1]

∥Cy(t)− C̃y(α, β)(t)∥∞. (15)

To better characterize the performance of this approximation method, we compute
the relative error between the total length of the original curve and that of the
reconstructed curve, i.e.

eL =
|Lorg − Lrec|

Lorg
.100% (16)

where

Lrec =

∫ 1

0
∥C ′(u)∥du and Lorg =

∫ 1

0
∥C̃ ′(u)∥du.

To evaluate the tow integrals Lorg and Lrec, we use the classical method Composite
Simpson’s rule.

4.1.1 Numerical and graphical example

We present some examples showing the efficiency of our method and we also
compare it with those introduced in [9, 10].
Example 1( logarithmic spiral) A logarithmic spiral C in R2 can be defined by
Cartesian coordinates as

C(t) =

(
x(t)
y(t)

)
= r0e

θt

(
sin(t)
cos(t)

)
∈ R2, r0 ∈ R+, θ ∈ R. (17)

The spiral curve is rotating around the pole O (origin) of the spiral.
Referring to the article [9], an original logarithmic spiral is defined by

C(t) = 0, 1 exp(0, 72πt)

(
sin(t)
cos(t)

)
, 0 ⩽ t ⩽ 1.

We approximate the spiral by constructing 20 rational Bézier arcs that interpolate
the boundary data C(i ∗ 0, 05), i = 0, 1, · · · , 20 of the original spiral. Figure 4
illustrates the original spiral and the interpolating rational arc that consists of 20
arcs. The errors of the local interpolants are given in Table 1. The relative error
associated with the curve C is

eL = 3.6E−5.100%

By comparing the proposed rational cubic Bézier curve with the method cited
in [9] via Example 1, it is clear that our method produces better results, i.e. the
approximative curve is G2 continuous and has maximum approximation error equal
to 2.7E−2 (see Figure 4 and Table 2). On the other hand, the constructed curve
by the method in question can interpolate selected points, tangents at the points
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Table 1. Optimal Approximation errors for 20 rational arc Bézier curves of the curve C.

Arc(i) (α̂, β̂) Error
Arc(0) (0.0320 , 0.0360) 2.8E−4

Arc(1) (0.0388 , 0.0487) 1.4E−3

Arc(2) (0.0427 , 0.0500) 8.1E−4

Arc(3) (0.0461 , 0.0521) 2.0E−4

Arc(4) (0.0640 , 0.0790) 6.4E−4

Arc(5) (0.0578 , 0.0650) 2.8E−4

Arc(6) (0.0848 , 0.0676) 2.3E−3

Arc(7) (0.0748 , 0.0876) 1.2E−3

Arc(8) (0.0810 , 0.0920) 5.2E−4

Arc(9) (0.1151 , 0.1411) 8.3E−3

Arc(i) (α̂, β̂) Error
Arc(10) (0.1000, 0.1130) 2.0E−4

Arc(11) 0.1200 , 0.1510) 4.4E−3

Arc(12) (0.1323 , 0.1556) 2.4E−4

Arc(13) (0.1430 , 0.1610) 6.7E−4

Arc(14) (0.2000 , 0.2500) 1.9E−2

Arc(15) (0.2000 , 0.2000) 1.2E−2

Arc(16) (0.2100 ,0.2628) 7.1E−3

Arc(17) (0.2000 , 0.3000) 1.5E−2

Arc(18) (0.2900 , 0.2900) 2.5E−3

Arc(19) (0.4001 , 0.4194) 2.7E−2
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Figure 4. (a) The origin spiral C; (b) The approximate spiral C̃.

with G1 continuity. It is noticed that the maximum approximation error is 5.1E−2.
Example 2 Let C be the original curve, introduced in [10], and defined by

C(t) =

{
x(t) = 0.1 cos(2t) + cos(t) + cos(3t) + 0.1 cos(4t),
y(t) = 0.6 sin(t) + sin(3t),

t ∈ [0, 1]. (18)

We approximate C by constructing 20 rational Bézier arcs that interpolate the
boundary data C(i∗0, 05), i = 0, 1, · · · , 20 of the original spiral. Figure 5 illustrates
the original spiral and the interpolating rational arc that consists of 20 arcs in
Table 2. The relative error associated with the curve C is

eL = 2.7E−6.100%

By comparing the proposed rational cubic Bézier curves with the method
introduced in [10] via Example 2, it is clear that our method produces better
results i.e., the approximative curve is G2 continuous and has maximum ap-
proximation errors equal to 9.3E−5 (see Figure 5 and Table 3). On the other
hand, the constructed curve by the method in question can interpolate selected
points, tangents and sometimes curvatures at the points, but approximate the rest
parts of the curve. It is noticed that the maximum approximation error is 1.18E−4.
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Table 2. Optimal Approximation errors for 20 rational arc Bézier curves of the curve C.

Arc(i) (α̂, β̂) Error
Arc(0) (0.3862 , 0.4279) 3.4E−5

Arc(1) (0.4169 , 0.4277) 5.1E−5

Arc(2) (0.4185 , 0.3242) 7.9E−5

Arc(3) (0.3246 , 0.2672) 4.9E−5

Arc(4) (0.2168 , 0.2143) 5.0E−5

Arc(5) (0.2153 , 0.2481) 9.3E−5

Arc(6) (0.2477 , 0.3290) 2.4E−5

Arc(7) (0.3289 , 0.3264) 2.4E−5

Arc(8) (0.3268 , 0.3467) 3.3E−5

Arc(9) (0.34531, 0.3847) 3.6E−5

Arc(i) (α̂, β̂) Error
Arc(10) (0.3847 , 0.3453) 4.9E−5

Arc(11) (0.3467 , 0.3268) 4.0E−5

Arc(12) (0.3264 ,0.3289) 2.4E−5

Arc(13) (0.3295 ,0.2477) 5.1E−5

Arc(14) (0.2482 , 0.2153) 6.7E−5

Arc(15) (0.2144 , 0.2668) 4.9E−5

Arc(16) (0.2672 , 0.3246) 4.9E−5

Arc(17) (0.3242 , 0.4185) 7.9E−5

Arc(18) (0.4269 , 0.4770) 2.3E−5

Arc(19) (0.4079 , 0.3862 3.0E−5
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Figure 5. (a) The origin curve C; (b) The approximate curve C̃.

4.2 Blending curves with minimal strain energy

Let C1(t) and C2(t) (0 ⩽ t ⩽ 1) be two parametric curves of class C2. Our aim is
to find a blend C(t), 0 ⩽ t ⩽ 1), (see [8]) rational cubic Bézier curve such that

• C(t) and C1 are connected with G2 continuity at the point A = C1(1),

• C(t) and C2 are connected with G2 continuity at the point B = C2(0).

From 3.1, the interpolant C(α,β)(t) satisfies the two last conditions.
For fixed data, this problem presents several solutions based on α and β parameters.
Therefore, we seek an optimal solution by minimizing the energy operator

E(α, β) =

∫ 1

0
(k(t))2dt (19)

where k(t) is the curvature of C(α,β) at point t.

4.2.1 Numerical and graphical example

Given both cubic Bézier curves C1(t) and C2(t) with control points:
P0 = (0, 3), P1 = (3, 2), P2 = (2, 1.5), P3 = (3, 2) and Q0 =
(4.5, 3), Q1 = (5.5, 3), Q2 = (6, 5.2), Q3 = (7.5, 4) respectively. From the
both curves C1 and C2, we first construct the blending curve C(α,β) with differ-
ent values of α and β (see Figure 6 (a)). Then, we construct the blending curves
C(0.4,0.6) which presents the minimal strain energy (see Figure 6 (b)).
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Figure 6. (a) Construction of the curves C(α,β) with different values of α and β; (b) Construction of the

optimal solution curve, (α = 0.4 and β = 0.6).

5. Conclusion

In this paper, we have proposed a method of interpolation and approximation
planar curves based on theG2 Hermite interpolation by rational cubic Bézier curves
and on the minimization of the maximum errors formulated in infinite norm using
the magnitude tangent vectors. The proposed method can be used to construct
interpolating spiral with minimal maximum-errors and blending curves with the
minimal strain energy.
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