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Abstract. Onchocerciasis, usually referred to as river blindness, a skin and eye parasitic
infestation is caused by the filarial nematode Onchocerca volvulus. Current control and erad-
ication efforts are being frustrated by the continued existence and thriving of blackflies which
are the disease transmitting vectors that breed along the banks of fast flowing and highly
oxygenated rivers and streams. This study aims at assessing the effect of using vector traps
on the transmission and control of onchocerciasis. A host-vector deterministic model which
incorporates vector trapping by use of a system of ordinary differential equations is developed.
The model is analysed for steady states and the basic reproduction number is obtained using
the next generation method. It is found that the disease free steady state is stable if the basic
reproduction number R0 < 1. There exists a unique endemic equilibrium which is locally
and globally asymptotically stable if R0 > 1. Numerical simulations show that trapping the
blackfly vectors has an effect on the spread and control of the disease. However, it is discov-
ered that using traps alone is not a sufficient strategy and needs to be combined with other
methods if the disease is to be completely wiped out of the population.
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1. Introduction

Onchocerciasis, usually referred to as river blindness, is a skin and eye parasitic
infestation caused by the filarial nematode Onchocerca volvulus [5] that is carried
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on to humans by the bites of infected blackflies which are of the genus Simulium
[8, 37]. John O’Neil, an Irish surgeon, first observed the microfilariae of Onchocerca
volvulus in 1874 [18]. These blackflies breed around fast-flowing and highly oxy-
genated rivers and streams [36] hence the name river blindness [34]. The eggs are
laid in the rivers because the larva and pupa stages of the blackflies are aquatic [30].
This leads to a high prevalence of the disease in areas located along rivers where
the breeding of the blackflies take place [37]. Regardless of the various strategies
that have been used by different national and international organisations to eradi-
cate the disease, recent examination data from the World Health Programme and
Onchocerciasis Control Programme (OCP) indicate that more than 17.7 million
people are infected globally [29]. Of these, 500, 000 are visually impaired and 270,
000 are blind [29]. About 99% of the infected persons are in Africa [37]. The symp-
toms of the disease may not manifest in the infected individual at the onset of
infection and this is based on the ability of the larvae to migrate through the hu-
man body without triggering a response from the immune system. However, most
of the symptoms are as a result of the body’s inflammatory response to dead or
dying larvae [29]. Symptoms of onchocerciasis include pruritis, papular dermatitis,
lymphadenopathy, severe skin atrophy, leopard skin and papular onchodermatitis
[15]. The effect of the inflammation caused by dead microfilariae in the eye is that
there are initial reversible lesions on the cornea which when not treated, advance
to permanent clouding of the cornea thereby leading to blindness [8].
Since ivermectin does not kill adult O. volvulus, the current treatment strategies

include annual (or biannual) mass ivermectin distribution to keep the microfilarial
densities low in high transmission settings [13, 21, 23] and introduce a number
of alternative strategies, including other microfilaricidal therapies (such as mox-
idectin), macrofilaricidal (anti-wolbachial) treatments or drug combinations with a
higher effect on Onchocerca volvulus than ivermectin [24], focal vector control [4].
In many areas of Africa that are endemic for eyeworm or with high densities of vec-
tor blackfly, ivermectin mass drug administration needs additional interventions to
acheieve disease eliminate [6, 20, 26]. The process of collecting adult female black
flies using different types of traps and baits which attract vectors and remove them
from the population is referred to as trapping [27]. The Esperanza Window trap
(EWT) is a simple trap originally developed to replace human landing collections
for entomological surveillance of O. volvulus transmission [26]. It is useful in the
vector control as it reduces human landing rates which approximate the biting
rate of the blackflies [19, 32]. The impact of trapping and killing the blackflies is
therefore of much importance in the transmission and control of onchocerciasis.
Mathematical models have been developed over the years to provide an insight

into the dynamics of onchocerciasis transmission and control in a bid to eradicat the
disease. Saporu [33] developed a model that described the interaction of the human
and blackfly populations where the probability that all blackflies were infected was
obtained and proved that it was clearly independent of the initial number of infected
blackflies. Results showed that the death rate of the blackflies less than one was
unlikely to produce the proportion of blackflies ultimately infected and that even
when birth was allowed in the blackfly vector population, the proportion dying
before becoming infected tended to increase with increasing birth rate.
Alley et al. [2] used a microsimulation mathematical model of the dynamics of

onchocerciasis transmission to explore the potential of a hypothetical macrofila-
ricidal drug for the elimination of onchocerciasis under different epidemiological
conditions as characterised by previous intervention strategies, that is, vectorial
capacity and levels of coverage. Results showed that with a high vector biting
rate and poor coverage, a very effective macrofilaricide would appear to have a
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substantially higher potential for achieving elimination of the parasite than does
ivermectin. Basáñez et al. [3] formulated a mathematical model of transmission
intensity and the pattern of Onchocerca volvulus infection in human communities.
Their focus was on possible constraints upon Onchocerca volvulus establishment
in humans in relation to exposure rates to infective larvae as measured by the
annual transmission potential (ATP). They discovered that relationships between
microfilarial prevalence and both microfilariae and transmission intensity were non-
linear. This similarity extended to the relationship between microfilarial intensity
and ATP. Filipe et al. [17] developed a model that described the human infection
patterns and heterogeneous exposure in river blindness and it was shown that par-
asite establishment in humans is determined by exposure to infective stages and
host immunological responsiveness to parasites. Omondi et al. [30] presented an
onchocerciasis transmission model with treatment that involved the application of
optimal control. The model was found to exhibit a backward bifurcation implying
that R0 < 1 was not sufficient to eliminate the disease from the population and the
need was to lower R0 below a certain threshold, Rc

0 for effective disease control.
Oguntolu et al. [29] formulated a mathematical model that was used to study the
dynamics of onchocerciasis. Their study showed that the disease free equilibrium
point was locally asymptotically stable if the effective reproduction number R0 < 1
and unstable if R0 > 1.
Hassan and Shaban [22] used a deterministic model to study the effects of mass

treatment using ivermectin drugs, public health education and vector control of on-
chocerciasis disease dynamics. They implemented larviciding and trapping strate-
gies in the vector population with the aim of controlling population growth of
blackflies. Their study revealed that the dynamics of onchocerciasis and growth of
blackfly vector population are best controlled when all the control strategies are
implemented simultaneously.
In this paper, the effects of trapping the blackflies on the transmission and control

dynamics in an onchocerciasis transmission and control model are investigated.
The exposed class in the blackfly population is neglected. The rest of this paper
is organised as follows: In Section 2, the model description and formulation are
presented. In Section 3, model analysis is carried out. Numerical simulation of the
model is illustrated in Section 4. The paper is concluded with discussion of results
and conclusion in Section 5.

2. Model description and formulation

A host-vector model is formulated for the transmission and control of onchocerciasis
using a system of ordinary differential equations. The total human population at
time t denoted by NH(t) is divided into four epidemiological classes: Susceptible
humans, SH(t), referring to individuals that are not infected with onchocerciasis
but are at risk of infection at time t, infected-acute humans, IA(t), referring to
individuals that have been exposed to the disease through blackfly bites and have
microfilariae in their bodies at time t, infected-chronic humans, IC(t), referring
to individuals infested with Onchocerca volvulus worms at time t and recovered
humans, RH(t), referring to individuals that have recovered from the disease and
gain temporary immunity at time t. Thus the total human host population at time
t denoted by N(t) is given by: NH(t) = SH(t) + IA(t) + IC(t) +RH(t). Individuals
are recruited into the susceptible class through a constant birth rate ΛH . It is
assumed that there is no vertical transmission and therefore all newborns in the
human population are susceptible. Humans in all the four classes die due to natural
causes at a constant rate µH . When treatment is administered to humans in the
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infected-acute class, some respond to treatment and recover at a rate ν while others
progress to the infected-chronic class at a rate ρ. In this stage, they either die a
natural death or due to the disease at a rate ϵ. The model assumes that there is
no permanent immunity and therefore, the recovered humans lose their immunity
at a rate ψ.
The total blackfly population at time t, denoted by NV (t) is divided into the

susceptible blackfly population, SV (t), referring to blackflies that are at risk of
being infected upon biting an infected human at time t and the infected blackfly
vectors, IV (t), referring to blackflies that are infected with the disease and are
capable of transmitting it to humans at time t. The total blackfly vector population
at time t is given by: NV (t) = SV (t) + IV (t). There is no recovered class for the
blackflies because they do not live long enough to recover from onchocerciasis. It
is also assumed that the blackflies do not die from onchocerciasis. The susceptible
blackflies become infected after interacting with infected humans at a biting rate α.
The model assumes that blackflies in both classes die either naturally at a rate µV or
are trapped and killed at a rate θ. The proportion of trapped susceptible blackflies
is represented by a whereas that of trapped infected blackflies is represented by b.
It is assumed that all variables represented in each compartment are differentiable
with respect to time and all parameters are non negative.

2.1 Equations of the model

The human and blackfly populations are governed by the following system of or-
dinary differential equations:

dSH
dt

= ΛH − αβH
SHIV
NH

+ ψRH − µHSH ,

dIA
dt

= αβH
SHIV
NH

− (µH + ρ+ ν)IA,

dIC
dt

= ρIA − µHIC − ϵIC ,

dRH

dt
= νIA − ψRH − µHRH , (1)

dSV
dt

= ΛV − αβV
(IA + IC)SV

NH
− (µV + θa)SV ,

dIV
dt

= αβV
(IA + IC)SV

NH
− (µV + θb)IV ,

together with

NH(t) = SH(t) + IA(t) + IC(t) +RH(t), (2)

and

NV (t) = SV (t) + IV (t). (3)

2.2 Basic properties of the model

In this subsection, the basic properties of the model are studied. The non-negativity
of solutions of system (1) are described as follows:
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2.2.1 Positivity and boundedness of the solutions

Theorem 2.1 Consider system (1) with initial conditions
{(SH0

, IA0
, IC0

, RH0
, SV0

, IV0
) ⩾ 0} ∈ R6

+. Then the solution set
{(SH(t), IA(t), IC(t), RH(t), SV (t), IV (t)} of system (1) is non-negative for
all t > 0.

Proof From the first equation of system (1),

dSH
dt

= ΛH − αβH
SHIV
NH

+ ψRH − µHSH ⩾ −
(
αβH

IV
NH

+ µH

)
SH .

That is,

dSH
dt

⩾ −
(
αβH

IV
NH

+ µH

)
SH . (4)

By separating variables, equation (8) is integrated with initial conditions S(0) = S0
as follows: ∫

dSH
SH

⩾ −
∫ (

αβH
IV
NH

+ µH

)
dt,

which yields

SH(t) ⩾ S0e
−

∫
(αβH

IV
NH

+µH)dt
> 0.

In a similar way, it is shown that the remaining equations of system (1) are also
positive for all t > 0. Thus, the solutions of the model are non-negative for all
values of t > 0. ■

2.2.2 Invariant region

Theorem 2.2 The region D = {(SH , IA, IC , RH) ∈ R4
+ : 0 ⩽ NH ⩽ Λ

µH
, (SV , IV ) ∈

R2
+ : 0 ⩽ NV ⩽ ΛV −θaSV

µV
} is positively invariant and attracting with respect to the

model.

Proof Let {(SH(t), IA(t), IC(t), RH(t), SV (t), IV (t)} be any solution of system (1)
with non-negative initial conditions given by {(SH0

, IA0
, IC0

, RH0
, SV0

, IV0
). We ob-

tain the region the total human population of susystem (1) is bounded by differ-
entiating equation (2) to obtain

dNH

dt
= ΛH − µHNH − ϵIC . (5)

It is noted that in the absence of infected humans, that is, when IC = 0, then

dNH

dt
⩽ Λ− µHNH . (6)

Solving equation (6) gives



316 R. Muhumuza and J. Tumwiine/ IJM2C, 10 - 04 (2020) 311-332.

NH(t) ⩽ Λ

µH
+

(
NH(0)− Λ

µH

)
exp(−µHt).

Evaluating as t → ∞, shows that NH(t) → Λ
µH

. Therefore the to-

tal human population is bounded by Λ
µH

, and the solution is bounded in

DH = {(SH , IA, IC , RH) ∈ R4
+ : 0 ⩽ NH ⩽ Λ

µH
}.

Similarly, for the blackfly vector population, differentiating equation (3) and
substituting for dSV

dt and dIV
dt from system (1) gives

dNV

dt
= ΛV − [µVNV + θaSV + θbIV ]. (7)

It is noted that in the absence of infected blackflies, that is, when IV = 0, then

dNV

dt
⩽ ΛV − µVNV − θaSV . (8)

Solving equation (8) gives

NV (t) =
ΛV − θaSV

µV
+
θa

µV
exp(−µV t)

∫
exp(µV t)

dSV
dt

dt.

As t → ∞, NV (t) → ΛV −θaSV

µV
and thus, the total blackfly population is bounded

by ΛV −θaSV

µV
, and the solution is bounded in DV = {(SV , IV ) ∈ R2

+ : 0 ⩽
NV ⩽ ΛV −θaSV

µV
}. Therefore, the solution set of system (1) is bounded in D =

{(SH , IA, IC , RH) ∈ R4
+ : 0 ⩽ NH ⩽ Λ

µH
, (SV , IV ) ∈ R2

+ : 0 ⩽ NV ⩽ ΛV −θaSV

µV
}. The

model is thus epidemiologically and mathematically well posed. ■

3. Model analysis

3.1 Equilibria of the model

It is easier to analyse system (1) in terms of proportions of quantities instead
of actual population sizes. This is done by having the ratio of the population of
each subgroup to the total species population. Let sh=

SH

NH
, ia=

IA
NH

, ic=
IC
NH

, rh=
RH

NH
,

sv=
SV

NV
and iv=

IV
NV

be the proportions of the subgroups SH , IA, IC , RH , SV and IV
respectively. Note that the ratio of the total vector population to the total human
population is denoted as m = NV

NH
. The ratio m is taken as a constant because

it is well known that a vector takes a fixed number of blood meals per unit time
independent of the population density of the host [35]. Therefore, by differentiating
with respect to time t, it is clear that sh, ia, ic, rh, sv and iv satisfy the following
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system of differential equations:

dsh
dt

=
ΛH

NH
(1− sh)− αβHshivm+ ψrh + ϵicsh,

dia
dt

=αβHshivm− ia

(ΛH

NH
− ϵic + ν + ρ

)
,

dic
dt

=ρia − ϵic − ic
ΛH

NH
+ ϵi2c ,

drh
dt

=νia − ψrh −
ΛH

NH
rh + ϵicrh, (9)

dsv
dt

=, θas2v − sv

(
θa+ αβV (ia + ic)− θbiv +

ΛV

NV

)
+

ΛV

NV
,

div
dt

=αβV (ia + ic)sv −
(ΛV

NV
+ θb− θasv

)
iv + θbi2v

where sh + ia + ic + rh = 1 and sv + iv = 1. And

dNH

dt
=

(ΛH

NH
− µH − ϵic

)
NH . (10)

Consider the equation (10). At equilibrium, dNH

dt = 0 and since NH ̸= 0, then this

implies that ΛH

NH
= µH + ϵic.

Also, from equation dNV

dt =
(
ΛV

NV
− µV − θasv − θbiv

)
NV ,

dNV

dt = 0 at equilibrium

and since NV ̸= 0, then this implies ΛV

NV
= µv + θasv + ivθb. Substituting for ΛH

NH
,

ΛV

NV
and the proportion rh = 1 − (sh + ia + ic) in system (9) above to reduce the

dimension of the system gives

dsh
dt

=µH + ϵic + ψ(1− ia − ic)− sh(µH + ψ + αβHivm),

dia
dt

=αβHshivm− (µH + ρ+ ν)ia,

dic
dt

=ρia − ic(ϵ+ µH), (11)

dsv
dt

=(µv + θb)− sv

(
αβV (ia + ic) + µV + θb

)
,

div
dt

=αβV (ia + ic)− iv

(
αβV (ia + ic) + µV + θb)

)
.

Theorem 3.1 System (11) has two equilibrium points. The unique disease free
equilibrium E0(sh, ia, ic, sv, iv) = [1, 0, 0, 1, 0] and the endemic equilibrium

E1(sh, ia, ic, sv, iv) =

[
µH + ϵic + ψ(1− ia − ic)

µH + ψ + αβHm
(

αβV (ia+ic)
µV +θb+αβV (ia+ic)

) , αβHmgf

µH + ρ+ ν
,

ρia
(ϵ+ µH)

,

µV + θb

µV + θb+ αβV (ia + ic)
,

αβV (ia + ic)

µV + θb+ αβV (ia + ic)

]
,

where f = sh and g = iv.
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Proof Setting the right hand sides of equations in system (11) equal to zero for all
infected variables set to zero, namely ia = ic = iv = 0 gives sh = sv = 1. Therefore,
there exists a disease free equilibrium point E0(sh, ia, ic, sv, iv) = [1, 0, 0, 1, 0]. For
ia ̸= 0 and ic ̸= 0, we determine the endemic equilibrium point by expressing
each of sh, sv and iv in terms of ia and/or ic. Therefore, there exists an endemic
equilibrium point

E1(sh, ia, ic, sv, iv) =

[
µH + ϵic + ψ(1− ia − ic)

µH + ψ + αβHm
(

αβV (ia+ic)
µV +θb+αβV (ia+ic)

) , αβHmgf

µH + ρ+ ν
,

ρia
(ϵ+ µH)

,

µV + θb

µV + θb+ αβV (ia + ic)
,

αβV (ia + ic)

µV + θb+ αβV (ia + ic)

]
,

where f = sh and g = iv. ■

3.2 Basic reproduction number

According to Diekmann et al. [14], the basic reproduction number, R0 is the
expected number of secondary cases produced by a typically infected individual
during its entire period of infectiousness in a completely susceptible population.
The basic reproduction number is obtained using the next generation matrix
method as described in Diekmann et al. [14].
Let

dxi
dt

= Xi(x1 . . . xn), i = 1, . . . , n (12)

be a system of differential equations governing the spread of an epidemic and
suppose that

dxj
dt

= Xj(x1 . . . xn), j = 1, . . . ,m

is the infected subsystem of system (12).
In order to compute R0, it is important to distinguish new infections that enter
the population from others in the population. Consider Fj to be a vector of new
infections and Vj to be a vector formed by other transfers. Fj and Vj are assumed
to be continuously differentiable. The basic reproduction number is the spectral
radius of the next generation matrix FV −1, where F = ∂Fj and V = ∂Vj computed
at the disease free equilibrium point of system (9).

R0 = σ(FV −1).

Consider the infected subsystem of system (11) below

dia
dt

= αβHshivm− (µH + ρ+ ν)ia,

dic
dt

= ρia − ic(ϵ+ µH),

div
dt

= αβV (ia + ic)sv − (µV + θb)iv.
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The vector of new infections F and the vector formed by other transfers V are
given by

F =

 αβHshivm
0

αβV (ia + ic)sv

 and V =

 (µH + ρ+ ν)ia
−ρia + (ϵ+ µH)ic

(µV + θb)iv

 .
For the disease free equilibrium point E0, matrices F0 and V0 are computed as
follows:

F0 =

 0 0 αβHm
0 0 0

αβV αβV 0

 and V0 =

ρ+ ν + µH 0 0
−ρ (µH + ϵ) 0
0 0 µV + θb

 .
Using row operations, the inverse of matrix V0 is obtained from V0I = IV −

0 , where
I is the identity matrix.

V −1
0 =


1

µH+ρ+ν 0 0
ρ

(ϵ+µH)(µH+ν+ρ)
1

µH+ϵ 0

0 0 1
µV +θb

 .
Thus, the next generation matrix is given by

F0V
−1
0 =

 0 0 αβHm
µV +θb

0 0 0
αβV (µH+ρ+ϵ)

(µH+ϵ)(µH+ρ+ν)
αβV

µH+ϵ 0

 .

The eigenvalues of F0V
−1
0 are

0,−

√
α2βHβVm(µH + ϵ+ ρ)

(µV + θb)(µH + ϵ)(µH + ρ+ ν)
and

√
α2βHβVm(µH + ϵ+ ρ)

(µV + θb)(µH + ϵ)(µH + ρ+ ν)
.

Therefore, the basic reproduction number R0 is given by

R0 =

√
α2βHβVm(µH + ϵ+ ρ)

(µV + θb)(µH + ϵ)(µH + ρ+ ν)
.

3.3 Sensitivity analysis

Onchocerciasis control and eradication strategies should target important param-
eters which have a high impact on the basic reproduction number. A sensitivity
analysis of R0 to each of the 8 different parameters is derived and presented in
Table 1 below. The basic reproduction number is explicitly determined by the
parameters α, βH , βV , µH , ϵ, ρ, ν and µV . The sensitivity index of R0 to each of



320 R. Muhumuza and J. Tumwiine/ IJM2C, 10 - 04 (2020) 311-332.

the parameters is computed using the approach by Chitnis et al. [10].

Definition 3.2 The sensitivity index of a variable u, that depends continuously
on a parameter p is defined as

⋎u
p =

∂u

∂p
.
p

u
,

where u is a differentiable function of p.

Thus by the definiton above, the formula used to derive an expression for the
sensitivity of R0 to a parameter p is

⋎R0
p =

∂R0

∂p
.
p

R0
.

The sensitivity indices of βH and βV are given by

⋎R0

βH
=
∂R0

∂βH
.
βH
R0

=
∂R0

∂βV
.
βV
R0

= 0.5.

The same approach is used to obtain the indices of other parameters, that is, α,

Table 1. Numerical values of sensitivity indices of R0.

Parameter symbol Sensitivity index
βH 0.5
βV 0.5
ϵ −0.12354
ρ 0.41437
ν −0.42037
µH −0.36909
µV −0.09615
α 1

µH , ν, ϵ, ρ and µV . The parameter values used are α = 0.0855, µH = 1/23178,
ν = 1/45, ϵ = 0.00001438, ρ = 1/240 and µV = 1/21.
Table 1 shows the sensitivity indices of R0 to the parameters. A positive value

in the sensitivity index shows that if the parameter is increased when all other
parameters are kept constant, then the value of R0 increases, while for a negative
sensitivity index, when the parameter value is increased with all other parameters
kept constant, the value of R0 decreases.

3.4 Local stability of the disease free equilibrium

To determine the local stability of the disease free equilibrium point E0, the Ja-
cobian matrix for system (11) evaluated at the disease free equilibrium point E0

given by E0(sh, ia, ic, sv, iv) = [1, 0, 0, 1, 0] to obtain the Jacobian matrix JE0
given
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below. The local stability of the disease free equilibrium using the Jacobian matrix

JE0
=



−(µH + ψ) −ψ −ψ + ϵ 0 −αβHm

0 −(µH + ρ+ ν) 0 0 αβHm

0 ρ −(µH + ϵ) 0 0

0 −αβV −αβV −(µV + θb) 0

0 αβV αβV 0 −(µV + θb)


.

is done as follows:
The eigenvalues of JE0

are−(µH+ψ),−µV and the eigenvalues of the polynomial;

λ3 + a1λ
2 + a2λ+ a3 = 0 (13)

in which λ is the eigenvalue, where

a1 = 2µH + µV + ϵ+ ρ+ ν + θb, (14)

a2 = (µH + ρ+ ν)(µH + µV + θb+ ϵ) + (µH + ϵ)(µV + θb)− α2βHβVm, (15)

and

a3 = (µV + θb)(µH + ρ+ ν)(µH + ϵ)− α2βHβVm(ρ+ µH + ϵ). (16)

By the Routh-Hurwitz criteria for a polynomial of degree 3 , the eigenvalues of the
characteristic equation (13) have negative real parts if and only if the following
conditions a1 > 0, a2 > 0, a3 > 0 and a1a2 > a3 hold for the coefficients of the
characteristic equation (13). From equation (14), it is clear that a1 > 0. From
equation (15), a2 > 0 if

(µH + ρ+ ν)(µH + µV + θb+ ϵ) + (µH + ϵ)(µV + θb) > α2βHβVm.

From equation (16), a3 > 0 if

(µV + θb)(µH + ρ+ ν)(µH + ϵ) > α2βHβVm(ρ+ µH + ϵ).

This gives the expression

(µV + θb)(µH + ρ+ ν)(µH + ϵ)

α2βHβVm(ρ+ µH + ϵ)
> 1

⇒ 1

R2
0

> 1

⇒ R0 < 1

where R0 =
√

α2βHβV m(µH+ϵ+ρ)
(µV +θb)(µH+ϵ)(µH+ρ+ν) .
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This implies that a3 > 0 if R0 < 1. The condition a1a2 − a3 > 0 is also checked
to verify whether it holds since a1 > 0, a2 > 0 and a3 > 0 are true.

a1a2−a3 = (2µH+µV +ϵ+ρ+ν+θb)×
(
(µH+ρ+ν)(µH+µV +θb+ϵ)+(µH+ϵ)(µV +

θb)−α2βHβVm
)
−
(
(µV + θb)(µH + ρ+ ν)(µH + ϵ)−α2βHβVm(ρ+µH + ϵ)

)
> 0.

Since a1 > 0, a2 > 0, a3 > 0 and a1a2 − a3 > 0, then the characteristic polynomial
above has negative real parts. Hence, the disease free equilibrium point E0 is locally
asymptotically stable when R0 < 1. Thus, E0 is locally asymptotically stable if and
only if R0 < 1, and thus the following theorem has been established:

Theorem 3.3 The disease-free equilibrium E0 is locally stable if R0 < 1 and
unstable if R0 > 1.

3.5 Global stability of the disease free equilibrium

The global stability of the disease free equilibrium is investigated using a theorem
by Castillo-Chavez and Song [7] . System (11) can be re-written as

dX

dt
= F (X,Z), (17)

dZ

dt
= G(X,Z), G(X, 0) = 0,

where X ∈ ℜm denotes the number of uninfected individuals and Z ∈ ℜn denotes
the number of infected individuals. The disease free equilibrium of the model is
denoted by U = (X∗, 0). For the point U = (X∗, 0) to be globally asymptotically
stable, the following conditions (H1) and (H2) must be satisfied provided R0 < 1.

(H1) For
dX
dt = F (X, 0), X∗

(H2) G(X,Z) =MZ − Ĝ(X,Z), Ĝ(X,Z) ⩾ 0 for (X,Z) ∈ Ω,
where M = DZG(X

∗, 0) is an M-matrix and Ω is the region where the model
makes biological sense. If system (11) satisfy the above two conditions, then the
following theorem holds.

Theorem 3.4 The point U = (X∗, 0) is globally asymptotically stable equilibrium
provided that R0 < 1 and the conditions (H1) and (H2) are satisfied.

Proof From system (11),

F (X,Z) =

[
µH + ϵic + ψ(1− ia − ic)− sh(µH + ψ + αβHivm)

(µV + θb)− sv(µV + θb+ αβV (ia + ic))

]
and

G(X,Z) =

 αβHshivm− ia(µH + ρ+ ν)
ρia − ic(ϵ+ µH)

αβV (ia + ic)− iv(µV + θb+ αβV (ia + ic))

 .
To investigate condition (H1),

F (X, 0) =

[
(1− sh)(µH + ψ)
(1− sv)(µV + θb)

]
.
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Since sh ⩽ 1 and sv ⩽ 1, then F (X, 0) ⩾ 0 and therefore, there is convergence in
Ω. Therefore, X∗ is globally asymptotically stable.
To investigate condition (H2) for the disease free equilibrium point E0,

M =

−(µH + ρ+ ν) 0 αβHm
ρ −(µH + ϵ) 0

αβV αβV −(µV + θb)

 ,

Ĝ(X,Z) =

 αβHivm(1− sh)
0

αβV (ia + ic)(1− sv)

 .
Since sh ⩽ 1 and sv ⩽ 1, then Ĝ(X,Z) ⩾ 0 and thus equilibrium E0 is globally
asymptotically stable. ■

3.6 Local stability of the endemic equilibrium

Theorem 3.5 For non-negative initial conditions and R0 > 1, the endemic equi-
librium E1 of system (11) is locally asymptotically stable whenever it exists.

Proof The Jacobian matrix of system (11) evaluated at the endemic equilibrium
point E1 is

JE1
=



−a11 −a12 a13 0 −a15

a21 −a22 0 0 a25

0 a32 −a33 0 0

0 −a42 −a43 −a44 0

0 a52 a53 0 −a55


,

where a11 = (µH + αβHi
∗
vm + ψ), a12 = ψ, a13 = −ψ + ϵ, a15 = αβHshm,

a21 = αβHivm, a22 = µH + ρ + ν, a25 = αβHshm, a32 = ρ, a33 = (µH + ϵ),
a42 = αβV sv, a43 = αβV sv, a44 = αβV (ia + ic) + (µV + θb), a52 = αβV sv,
a53 = αβV sv, a55 = (µV + θb) + αβV (ia + ic).

The characteristic equation of the Jacobian matrix JE1
is given by

Z5 + a1Z4 + a2Z3 + a3Z2 + a4Z + a5 = 0, (18)

where

a1 = a11 + a22 + a33 + a44 + a55,

a2 = a11a22 + a12a21 + a11a33 + a11a44 + a22a33 + a11a55 + a22a44

− a25a52 + a22a55 + a33a44 + a33a55 + a44a55,
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a3 = a11a22a33 − a13a21a32 + a12a21a33 + a11a22a44 + a12a21a44 − a11a25a52

+ a15a21a51 + a11a22a55 + a11a33a44 + a12a21a55 + a11a33a55 + a22a33a44

− a25a32a53 + a11a44a55 − a25a33a52 + a22a33a55 + a25a42a54 − a25a44a52

+ a22a44a55 + a33a44a55,

a4 = a15a21a32a53 − a11a25a32a53 − a11a25a33a52 − a13a21a32a55 + a15a21a33a52

+ a11a22a33a55 + a12a21a33a55 + a11a25a42a54 − a11a25a44a52 − a15a21a42a54

+ a15a21a42a52 + a11a22a44a55 + a12a21a44a55 + a11a33a44a55 + a25a32a43a54

− a25a32a44a53 + a25a33a42a54 − a25a33a44a52 + a22a33a44a55 − a13a21a32a44

+ a11a22a33a44 + a12a21a33a44,

a5 = a11a25a32a43a54 − a11a25a32a44a53 − a15a21a32a43a54 + a15a21a32a44a52

+ a11a25a33a42a54 − a11a25a33a44a52 − a13a21a32a44a55 − a15a21a33a42a54

+ a15a21a33a44a52 + a11a22a33a44a55 + a12a21a33a44a55.

The characteristic equation (18) has eigenvalues with negative real parts provided
the coefficients satisfy the following Routh-Hurwitz criteria a1 > 0, a2 > 0, a3 >
0, a4 > 0, a5 > 0, a1a2a3 > a23 + a21a4 and (a1a4 − a5)(a1a2a3 − a23 − a21a4) >
a5(a1a2 − a3)

2 + a1a
2
5.

If the above Routh-Hurwitz criteria are satisfied, then the endemic equilibrium E1

is locally asymptotically stable whenever it exists. ■

3.7 Global stability of the endemic equilibrium

Theorem 3.6 The endemic equilibrium point E1 for the system (11) is globally
asymptotically stable in D if R0 > 1.

Proof Consider a Lyapunov function of the form

L(t) =

(
sh − s∗h − s∗hln(

sh
s∗h

)

)
+

(
ia − i∗a − i∗aln(

ia
i∗a
)

)
+

(
ic − i∗c − i∗c ln(

ic
i∗c
)

)
+

(
sv − s∗v − s∗vln(

sv
s∗v

)

)
+

(
iv − i∗v − i∗vln(

iv
i∗v
)

)
.

Differentiating L(t) with respect to time t gives

dL

dt
=

(
sh − s∗h
sh

)
dsh
dt

+

(
ia − i∗a
ia

)
dia
dt

+

(
ic − i∗c
ic

)
dic
dt

+

(
sv − s∗v
sv

)
dsv
dt

+

(
iv − i∗v
iv

)
div
dt
.
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dL

dt
=

(
sh − s∗h
sh

)
[µH + ϵic + ψ(1− ia − ic)− sh(µH + ψ + αβHivm)]

+

(
ia − i∗a
ia

)
[αβHshivm− (µH + ρ+ ν)ia]

+

(
ic − i∗c
ic

)
[ρia − ic(ϵ+ µH)]

+

(
sv − s∗v
sv

)
[(µV + θb)− sv((µV + θb) + αβV (ia + ic))]

+

(
iv − i∗v
iv

)
[αβV (ia + ic)− iv((µV + θb) + αβV (ia + ic))] .

dL

dt
=

(
sh − s∗h
sh

)
[µH + ϵ(ic − i∗c) + ψ(1− (ia − i∗a)− (ic − i∗c))

− (sh − s∗h)(µH + ψ + αβH(iv − i∗v)m)]

+

(
ia − i∗a
ia

)
[αβH(sh − s∗h)(iv − i∗v)m− (µH + ρ+ ν)(ia − i∗a)]

+

(
ic − i∗c
ic

)
[ρ(ia − i∗a)− (ic − i∗c)(ϵ+ µH)]

+

(
sv − s∗v
sv

)
[(µV + θb)− (sv − s∗v)((µV + θb) + αβV ((ia − i∗a) + (ic − i∗c)))]

+

(
iv − i∗v
iv

)
[αβV ((ia − i∗a) + (ic − i∗c))− (iv − i∗v)((µV + θb)

+ αβV ((ia − i∗a) + (ic − i∗c)))].

dL

dt
=
µH(sh − s∗h)

sh
+
ϵic(sh − s∗h)

sh
−
ϵi∗c(sh − s∗h)

sh
+
ψ(sh − s∗h)

sh
−
ψia(sh − s∗h)

sh

+
ψi∗a(sh − s∗h)

sh
− ψic(sh − sh∗)

sh
+
ψi∗c(sh − sh∗)

sh
−
µH(sh − s∗h)

2

sh

−
ψ(sh − s∗h)

2

sh
−
αβHmiv(sh − s∗h)

2

sh
+
αβHmi

∗
v(sh − s∗h)

2

sh

+
αβHmshiv(ia − i∗a)

ia
− αβHmshi

∗
v(ia − i∗a)

ia
−
αβHms

∗
hiv(ia − i∗a)

ia

+
αβHms

∗
hi

∗
v(ia − i∗a)

ia
− µH(ia − i∗a)

2

ia
− ρ(ia − i∗a)

2

ia
− ν(ia − i∗a)

2

ia
+
ρia(ic − i∗c)

ic

− ρi∗a(ic − i∗c)

ic
− (ϵ+ µH)(ic − i∗c)

2

ic
+

(µV + θb)(sv − s∗v)

sv
− (µV + θb)(sv − s∗v)

2

sv

− αβV ia(sv − s∗v)
2

sv
+
αβV i

∗
a(sv − s∗v)

2

sv
− αβV ic(sv − s∗v)

2

sv
+
αβV i

∗
c(sv − s∗v)

2

sv
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+
αβV ia(iv − i∗v)

iv
− αβV i

∗
a(iv − i∗v)

iv
+
αβV ic(iv − i∗v)

iv
− αβV i

∗
c(iv − i∗v)

iv

− (µV + θb)(iv − i∗v)
2

iv
− αβV ia(iv − i∗v)

2

iv
+
αβV i

∗
a(iv − i∗v)

2

iv
− αβV ic(iv − i∗v)

2

iv

+
αβV i

∗
c(iv − i∗v)

2

iv

Collecting positive terms together and negative parts together gives

dL

dt
= A−B,

where

A =
µH(sh − s∗h)

sh
+
ϵic(sh − s∗h)

sh
+
ψ(sh − s∗h)

sh
+
ψi∗a(sh − s∗h)

sh
+
ψi∗c(sh − sh∗)

sh

+
αβHmi

∗
v(sh − s∗h)

2

sh
+
αβHmshiv(ia − i∗a)

ia
+
αβHms

∗
hi

∗
v(ia − i∗a)

ia
+
ρia(ic − i∗c)

ic

+
(µV + θb)(sv − s∗v)

sv
+
αβV i

∗
a(sv − s∗v)

2

sv
+
αβV i

∗
c(sv − s∗v)

2

sv
+
αβV ia(iv − i∗v)

iv

+
αβV ic(iv − i∗v)

iv
+
αβV i

∗
a(iv − i∗v)

2

iv
+
αβV i

∗
c(iv − i∗v)

2

iv
.

and

B =
ϵi∗c(sh − s∗h)

sh
+
ψia(sh − s∗h)

sh
+
ψic(sh − sh∗)

sh
+
µH(sh − s∗h)

2

sh
+
ψ(sh − s∗h)

2

sh

+
αβHmiv(sh − s∗h)

2

sh
+
αβHmshi

∗
v(ia − i∗a)

ia
+
αβHms

∗
hiv(ia − i∗a)

ia

+
µH(ia − i∗a)

2

ia
+
ρ(ia − i∗a)

2

ia
+
ν(ia − i∗a)

2

ia
+
ρi∗a(ic − i∗c)

ic
+

(ϵ+ µH)(ic − i∗c)
2)

ic

+
(µV + θb)(sv − s∗v)

∗

sv
+
αβV ia(sv − s∗v)

2

sv
+
αβV ic(sv − s∗v)

2

sv
+
αβV i

∗
a(iv − i∗v)

iv

+
αβV i

∗
c(iv − i∗v)

iv
+

(µV + θb)(iv − i∗v)
2

iv
− αβV ia(iv − i∗v)

2

iv
+
αβV ic(iv − i∗v)

2

iv
.

Hence if A < B, then dL
dt ⩽ 0. Note that dL

dt = 0 if and only if sh = s∗h, ia = i∗a, ic =
i∗c , sv = s∗v, iv = i∗v and thus the largest compact invariant set in [(s∗h, i

∗
a, i

∗
c , s

∗
h, i

∗
v) ∈

D : dL
dt = 0] is the singleton set E1. By Lasalle’s invariant principles [25], this implies

that E1 is globally asymptotically stable in D if A < B. ■

In the next section, the numerical solutions of system (11) for the parameter val-
ues given in Table 2 together with initial conditions are carried out. The parameter
values are gleaned from literature within realistic ranges for a typical scenario in
a rural community for the purpose of illustration. Where applicable, the unit of
measure is day−1.
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4. Numerical simulations

To explore the dynamical behaviour of the onchocerciasis model in the human and
blackfly populations and illustrate the analytical results, numerical simulations
to system (11) are obtained using MATLAB computer software program given
in the Appendex. Numerical simulations are performed using parameter values
indicated in Table 2 together with the initial conditions in terms of proportions:
sh(0) = 0.5, ia(0) = 0.1, ic(0) = 0.1, sv(0) = 0.75 and iv(0) = 0.25 corresponding
to SH(0) = 500, IA(0) = 100, IC(0) = 100, SV (0) = 150 and IV (0) = 50.

Table 2. Parameters values.

Parameter Symbol Value Reference
Recruitment rate of humans ΛH 0.031 [31]
Recruitment rate of blackflies ΛV 0.73 [16]
Natural death rate of humans µH 1/23178 [31]
Natural death rate of blackflies µV 1/21 [9]
Trapping rate of blackflies θ 0− 0.9 [28]
Biting rate of blackflies α 0.0855 [4]
Rate of loss of immunity ψ 1/105 [12]
Probability that a blackfly becomes
infective after biting an infected human host βV 0.80 [4]
Proportion of infective bites on a human host βH 0.073 [4]
Recovery rate of infected acute humans ν 1/45 [38]
Progression rate to the infected chronic class ρ 1/240 [1]
Disease induced death rate ϵ 0.00001438 [11]

Figure 1 shows the numerical simulations of the model without blackfly trapping.
It is observed that from Figures 1(a) and 1 (b), the endemic equilibrium point is
stable in both the human and blackfly populations. This shows that the endemic
equilibrium is locally stable. In Figure 1(a), the infected chronic human population
is seen to increase as the infected acute human population falls. The fall in the
infected acute human population is due to recovery, natural death and progression
to the infected chronic human population. It is observed that the decrease in the
infected acute human population is largely due to the progression to the infected
chronic human population.

Figure 1(b) shows that in the initial stages of the disease, the infectious
blackflies increase rapidly as the susceptible blackflies decrease. This is shown
by a sharp rise in the curve for the infectious blackflies within the first 50 days.
The infection in the blackfly vector population reaches its peak, then falls and
later gains stability. This shows that transmission of onchocerciasis is more rapid
during the early days of the outbreak.

Figure 2 shows the effect of trapping blackflies on the disease transmission dy-
namics. Figure 2(a) shows the effect of trapping blackflies on the infected acute
human population and Figure 2(b) shows the effect of trapping blackflies on the
infected chronic human population. It is observed that the infection in the infected
acute human population is highest at the lowest value of θ (θ = 0) and lowest at
the highest value of θ (θ = 0.4). This shows that trapping of blackflies reduces the
infected acute human population with time. Similarly, it is observed in 2(b) that
the infected chronic human population is highest at the lowest value of θ (θ = 0)
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(a) (b)

Figure 1. Simulation results showing change in population with time in the
absence of trapping interventions (a) Human population, and Blackfly popula-
tion.

(a) (b)

Figure 2. Simulation results showing the effect of variation of trapping on (a)
infected acute human population, and (b) infected chronic human population.

and lowest at the highest value of θ (θ = 0.4). This shows that trapping black-
flies decreases the infected chronic human population with time. The change in
the infected chronic human population is observed to begin after about 35 days.
This is because the infected acute humans who were infected before trapping still
progress to the infected chronic human class at the same rate within the first days
of trapping.
A greater fall is observed in the infected chronic human population as compared

to the fall in the infected acute human population due to blackfly trapping, espe-
cially for θ = 0.2. This shows that trapping blackflies affects the infected chronic
human population more than the infected acute human population after a long
time. This is because of the possibility of super infections caused by bites of in-
fected blackflies on the infected acute human population. However, with trapping
of the disease transmitting blackflies, this possibility is mitigated as the blackflies
are stopped from biting the humans.

5. Discussion and conclusion

In this paper, an onchocerciasis transmission and control model with blackfly trap-
ping is formulated. The model is firstly shown to be mathematically and epidemi-
ologically well posed followed by the investigation of its equilibria. Analysis of the
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model shows the existence of two equilibria with one being the disease free equilib-
rium E0 and the other being the endemic equilibrium E1. The basic reproduction
number R0 of the model is determined and its value is seen to be dependent on
the interaction coefficient between the human host and blackfly vector populations.
Sensitivity analysis of the parameters highlights the biting rate of the blackflies as
the most sensitive parameter. Interventions should therefore be focussed on reduc-
ing the contact rate between the humans and the blackflies which in turn reduces
the blackfly biting rate α and consequently also reduces the value of R0 which is
a necessary condition for mitigating the disease. It is shown that the disease free
equilibrium point is locally asymptotically stable if R0 < 1 and unstable if R0 > 1.
This means that if an infected individual is introduced to the system, the disease
wanes if R0 < 1 otherwise it spreads. The disease free equilibrium E0 is also shown
to be globally asymptotically stable if R0 < 1. There exists a unique endemic
equilibrium if R0 > 1. The necessary and sufficient conditions for endemic local
stability provided by Routh-Hurwitz criteria confirm that E1 is locally asymptot-
ically stable. A Lyapunov function is used to investigate global stability of the
endemic equilibrium E1. It is therefore established that the endemic equilibrium
E1 is locally and globally asymptotically stable when R0 > 1 implying that the
disease persists in the population as long as R0 > 1. Thus, it is important to keep
the basic reproduction number below unity.
Numerical simulations show that the disease persists in the community with

continued existence of the blackflies. This is shown by a fall in the infected acute
human population with a consequent rise in the infected chronic human population
as the infected blackfly population also increases as shown in Figure 1. This can
be explained to be as a result of super infections brought about by blackfly bites
which increase the microfilariae densities in the infected acute human population
thereby leading to a rapid progression to the infected chronic human population
class. With trapping of the disease transmitting blackflies, numerical simulations
show a decrease in the infected acute and infected chronic human populations
with increase in the trapping rate θ as shown in Figure 2. However, it is observed
that there is a slight decrease in the infected acute and infected chronic human
populations with increasing trapping rate. This therefore suggests that using traps
alone may not be a sufficient strategy in eradicating the disease.
In conclusion, the significance of trapping the blackflies needs to be recognised in

the spread and control dynamics of onchocerciasis. However, it should be combined
with other strategies to ensure that the disease is reduced and eventually eradicated
from the population. In this study, we assumed the use of a microfilaricide as the
mode of treatment. However, in future studies, the model can be extended to
investigate the effect of using both a micofilaricide and a macrofilaricide as the
mode of treatment. The model can also be extended to investigate the effect of
using an onchocerciasis vaccine in a bid to eradicate the disease.
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[3] M. G. Basáñez, R. C. Collins, C. H. Porter, M. P. Little and D. Brandling-Bennett, Transmission
intensity and the patterns of Onchocerca volvulus infection in human communities, The American
Journal of Tropical Medicine and Hygiene, 67 (6) (2002) 669–679.
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Appendix

Matlab codes used in the numerical simulation of the model equations
For the change in human populations with time shown in Figure 1(a)

function FV = funtraped(t,x);
Lambda_H=0.03;
Lambda_V=0.73;
beta_H=0.073;
beta_V=0.80;
mu_H=1/(63.5*365);
phi=1/(105);
rho=1/240;
nu=1/45;
mu_V=1/21;
epsilon=1/69534;
alpha=0.0855;
m=0.25;
FV(1,1)=(1-x(1))*Lambda_H/x(7)-alpha*beta_H*x(1)*x(6)*m+phi*x(4)+epsilon*x(3)*x(1);
FV(2,1)= alpha*beta_H*x(1)*x(6)*m-((Lambda_H/x(7))+nu+rho-epsilon*x(3))*x(2);
FV(3,1)=rho*x(2)-((Lambda_H/x(7))+epsilon-epsilon*x(3))*x(3);
FV(4,1)=nu*x(2)-((Lambda_H/x(7))+phi-epsilon*x(3))*x(4);
FV(5,1)=(1-x(5))*Lambda_V/x(8)-alpha*beta_V*(x(2)+x(3))*x(5);
FV(6,1)=alpha*beta_V*(x(2)+x(3))*x(5)-Lambda_V*x(6)/x(8);
FV(7,1)=((Lambda_H/x(7))-mu_H-epsilon*x(3))*x(7);
FV(8,1)=((Lambda_V/x(8))-mu_V)*x(8);

>> [t,xV] = ode23(’funtraped’,[0 400],[0.5,0.2,0.1,0.1,0.75,0.25,1000,250]);
>> plot(t,xV(:,1),t,xV(:,2),t,xV(:,3),’Linewidth’,2)
>> legend(’susceptibles’,’infected acute’,’infected chronic’)
>> xlabel(’Time in days’),ylabel(’Human population’)
>> title(’Human population change against time’)

For the change in the blackfly populations with time shown in Figure 1(b)

function FV = funtraped(t,x);
Lambda_H=0.03;
Lambda_V=0.73;
beta_H=0.073;
beta_V=0.80;
mu_H=1/(63.5*365);
phi=1/(105);
rho=1/240;
nu=1/45;
mu_V=1/21;
epsilon=1/69534;
alpha=0.0855;
m=0.25;
FV(1,1)=(1-x(1))*Lambda_H/x(7)-alpha*beta_H*x(1)*x(6)*m+phi*x(4)+epsilon*x(3)*x(1);
FV(2,1)= alpha*beta_H*x(1)*x(6)*m-((Lambda_H/x(7))+nu+rho-epsilon*x(3))*x(2);
FV(3,1)=rho*x(2)-((Lambda_H/x(7))+epsilon-epsilon*x(3))*x(3);
FV(4,1)=nu*x(2)-((Lambda_H/x(7))+phi-epsilon*x(3))*x(4);
FV(5,1)=(1-x(5))*Lambda_V/x(8)-alpha*beta_V*(x(2)+x(3))*x(5);
FV(6,1)=alpha*beta_V*(x(2)+x(3))*x(5)-Lambda_V*x(6)/x(8);
FV(7,1)=((Lambda_H/x(7))-mu_H-epsilon*x(3))*x(7);
FV(8,1)=((Lambda_V/x(8))-mu_V)*x(8);

>> [t,xV] = ode23(’funtraped’,[0 400],[0.5,0.2,0.1,0.1,0.75,0.25,1000,250]);
>> plot(t,xV(:,5),t,xV(:,6),’Linewidth’,2)
>> legend(’susceptible vectors’,’infectious vectors’)
>> xlabel(’Time in days’),ylabel(’Vector population’)
>> title(’Vector population change with time’)
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For the change in the infected acute human population with blackfly trapping
against time shown in Figure 2(a)

function FV = funtraped2(t,x);
Lambda_H=0.03;
Lambda_V=0.73;
beta_H=0.073;
beta_V=0.8;
mu_H=1/(63.5*365);
phi=1/(105);
rho=1/240;
nu=1/45;
epsilon=1/69534;
alpha=0.0855;
m=0.25;
for mu_V = [0.05,0.07,0.09];
FV(1,1)=(1-x(1))*Lambda_H/x(7)-alpha*beta_H*x(1)*x(6)*m+phi*x(4)+epsilon*x(3)*x(1);
FV(2,1)= alpha*beta_H*x(1)*x(6)*m-((Lambda_H/x(7))+nu+rho-epsilon*x(3))*x(2);
FV(3,1)=rho*x(2)-((Lambda_H/x(7))+epsilon-epsilon*x(3))*x(3);
FV(4,1)=nu*x(2)-((Lambda_H/x(7))+phi-epsilon*x(3))*x(4);
FV(5,1)=(1-x(5))*Lambda_V/x(8)-alpha*beta_V*(x(2)+x(3))*x(5);
FV(6,1)=alpha*beta_V*(x(2)+x(3))*x(5)-Lambda_V*x(6)/x(8);
FV(7,1)=((Lambda_H/x(7))-mu_H-epsilon*x(3))*x(7);
FV(8,1)=((Lambda_V/x(8))-mu_V)*x(8);
end

>> [t,xV] = ode23(’funtraped2’,[0 400],[0.5,0.2,0.1,0.1,0.75,0.25,
1000,250,0.5,0.2,0.1,0.1,0.75,0.25,1000,250,0.5,0.2,0.1,0.1,0.75,0.25,1000,250]);
>> plot(t,xV(:,2),t,xV(:,10),t,xV(:,18),’Linewidth’,2)
>> legend(’theta=0’,’theta=0.2’,’theta=0.4’)
>> xlabel(’Time in days’),ylabel(’Infected acute human population’)
>> title(’Infected acute human population change with trapping vectors against time’)

For the change in the infected chronic human population with blackfly trapping
against time shown in Figure 2(b)

function FV = funtraped2(t,x);
Lambda_H=0.03;
Lambda_V=0.73;
beta_H=0.073;
beta_V=0.8;
mu_H=1/(63.5*365);
phi=1/(105);
rho=1/240;
nu=1/45;
epsilon=1/69534;
alpha=0.0855;
m=0.25;
for mu_V = [0.05,0.07,0.09];
FV(1,1)=(1-x(1))*Lambda_H/x(7)-alpha*beta_H*x(1)*x(6)*m+phi*x(4)+epsilon*x(3)*x(1);
FV(2,1)= alpha*beta_H*x(1)*x(6)*m-((Lambda_H/x(7))+nu+rho-epsilon*x(3))*x(2);
FV(3,1)=rho*x(2)-((Lambda_H/x(7))+epsilon-epsilon*x(3))*x(3);
FV(4,1)=nu*x(2)-((Lambda_H/x(7))+phi-epsilon*x(3))*x(4);
FV(5,1)=(1-x(5))*Lambda_V/x(8)-alpha*beta_V*(x(2)+x(3))*x(5);
FV(6,1)=alpha*beta_V*(x(2)+x(3))*x(5)-Lambda_V*x(6)/x(8);
FV(7,1)=((Lambda_H/x(7))-mu_H-epsilon*x(3))*x(7);
FV(8,1)=((Lambda_V/x(8))-mu_V)*x(8);
end

>> [t,xV] = ode23(’funtraped2’,[0 400],[0.5,0.2,0.1,0.1,0.75,0.25,
1000,250,0.5,0.2,0.1,0.1,0.75,0.25,1000,250,0.5,0.2,0.1,0.1,0.75,0.25,1000,250]);
>> plot(t,xV(:,3),t,xV(:,11),t,xV(:,19),’Linewidth’,2)
>> legend(theta=0’,’theta=0.2’,’theta=0.4’)
>> xlabel(’Time in days’),ylabel(’Infected chronic human population’)
>> title(’Infected chronic human population change with trapping vectors against time’)


