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Abstract. In this paper, a new approach based on weighted sum algorithm is applied to
solve multi-objective optimal programming problems (MOOPP) and multi-objective optimal
control problems (MOOCP). In this approach, first, we change the problem into a new one
whose optimal solution is obtained by solving some single-objective problems simply. Then,
we prove that the optimal solutions of the two problems are equal. Numerical examples are
presented to show the efficiency of the given approach.
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1. Introduction

In many practical or real life problems, we normally need to optimize several ob-
jectives simultaneously which can even be in conflict to each other. Minimizing the
cost while maximizing comfort when buying a car, and maximizing performance
whilst minimizing fuel consumption and emission of pollutants of a vehicle are
examples of multi-objective optimization problems involving two and three objec-
tives, respectively. In these problems, it is difficult to find an optimal solution to
achieve the extreme value of every objective function so that the decision maker is
searching for the compromise solution. Based on this idea, the concepts of Pareto
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optimal solution and weakly Pareto optimal solution are introduced into multi-
objective programming problem [6]. Therefore, different researchers have defined
the term ”solving a multi-objective optimization problem” in various ways [11].
In the area of control engineering, multi-objective optimization has been dis-

cussed used by the control engineers (See e.g. [4]). These objectives often involve
conflict situations such as control energy, tracking performance, robustness, and
etc. A suitable introduction on the concepts of MOOCP may be found in [5]. Also,
one may find an overview on multi-objective optimization applications in control
engineering in [8]. Over the years, some indirect and direct approaches have been
presented to extract analytical and approximate Pareto solutions of MOOCP ’s [2]
and [3]. But, these approaches are facing some difficulties. For instance, convexity
of the objectives is a basic requirement which limits the scope of applications of
such methods [10].
In this paper, we express a simple and efficient method for solving multi-objective

programming problems and multi-objective optimal controls. In this method, we
express a problem equivalent to the multi-objective problem. The solution of this
new problem is obtained by solving some single-objective problems. Finally, we
prove that the solutions obtained this method are optimal.
The paper is organized as follows. In Section 2, the multi-objective problem and

the equivalent problem are formulated and we prove that the optimal solution of
these two problems is equal. In Section 3, some famous test functions are expressed
and we solve these problems to demonstrate the efficiency of the method in the
final section.

2. Problem formulation

In this section, we introduce a multi-objective optimal problem and its equivalent
problem. Then, the necessary theorem is proved.
Multi-objective programming problem is described as follow:

min Z(X) = (Z1(X), Z2(X), ..., Zk(X))

s.t. gj(X) ⩽ (⩾ or =)bj , j = 1, 2, ...,m, (1)

xr ⩾ 0, r = 1, 2, ..., n,

X = (x1, x2, ..., xn).

First, we consider the required concepts.

Definition 2.1 (Dominates). The feasible vector X∗ is said to be a Pareto min-
imum or nondominated solution, if there does not exist feasible vector X such
that

Zi(X) ⩽ Zi(X
∗) for all i = 1, 2, ..., k

Zj(X) < Zj(X
∗) for one j ∈ {1, 2, ..., k}

and denote it as X∗ ⪯ X. On the other hand, X∗ is said to be a weak Pareto
minimum, if there does not exist X such that

Zi(X) < Zi(X
∗) for all i = 1, 2, ..., k

Theorem 2.2 Consider multi-objective programming problem (1), a vector Z
′
=

(z
′

1, z
′

2, ..., z
′

k) is an optimal solution for problem (1) corresponding to X
′
, if and
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only if Z
′
is the optimal solution of the following problem:

min Z(X) = M1(Z1(X)− z∗1)
2 +M2(Z2(X)− z∗2)

2 + ...+Mk(Zk(X)− z∗k)
2

s.t. gj(X) ⩽ (⩾ or =)bj , j = 1, 2, ...,m, (2)

xr ⩾ 0, r = 1, 2, ..., n,

X = (x1, x2, ..., xn),

when z∗1 , ..., z
∗
k is the optimal solution of the following single problems:

min Z(X) = Zi(X)

s.t. gj(X) ⩽ (⩾ or =)bj , j = 1, 2, ...,m, (3)

xr ⩾ 0, r = 1, 2, ..., n,

X = (x1, x2, ..., xn),

and M1, ...,Mk are positive and very large.

Proof Suppose we solve k single-objective problems (3) and get the solutions
z∗1 , ..., z

∗
k.

If Z
′
= (z

′

1, z
′

2, ..., z
′

k) is a nondominated solution for problem (1) corresponding to
X

′
, then,


z

′

1

z
′

2
...
z

′

k

 ⪯


z1
z2
...
zk

 xr ∈ Rn, ∀zj ∈ R

Since X
′
is a feasible solution for problem (1), it is a feasible solution for problem

(2) and also


z

′

1 − z∗1
z

′

2 − z∗2
...

z
′

k − z∗k

 ⪯


z1 − z∗1
z2 − z∗2

...
zk − z∗k


Since z∗i is the optimal solution for single-objective problems (3) and they are the
best possible solutions for these problems, then:

z∗i ⩽ z
′

i ⇒ −z∗i ⩾ −z
′

i

and

z
′

i − z∗i ⩾ z
′

i − z
′

i = 0



216 H. Alimorad/ IJM2C, 12 - 04 (2022) 213-224.

therefore:

M1(z
′

1 − z∗1)
2 ⩽ M1(z1 − z∗1)

2

M2(z
′

2 − z∗2)
2 ⩽ M2(z2 − z∗2)

2

...
Mk(z

′

k − z∗k)
2 ⩽ Mk(zk − z∗k)

2

⇒ M1(z
′

1 − z∗1)
2 + ...+Mk(z

′

k − z∗k)
2 ⩽ M1(z1 − z∗1)

2 + ...+Mk(zk − z∗k)
2

⇒ Z
′ ⪯ Z ∀Z ∈ Rk

that means the nondominated solution of problem (1) is the same nondominated
solution of problem (2).
Contrariwise, suppose that Z

′
= (z

′

1, z
′

2, ..., z
′

k) is a nondominated solution for prob-
lem (2) corresponding to X

′
. As in the previous part, X

′
is the feasible solution of

problem (1). We need to prove that X
′
and the objective vector Z

′
= (z

′

1, z
′

2, ..., z
′

k)
are the optimal solution to problem (1).
Ad absurdum: Suppose that the optimal solution of problem (2) is not the optimal

solution of problem (1), in this case, there exists a vector X̂ and corresponding

objective vector Ẑ = (ẑ1, ẑ2, ..., ẑk) so that:
ẑ1
ẑ2
...
ẑk

 ⪯


z

′

1

z
′

2
...
z

′

k


also 

ẑ1 − z∗1
ẑ2 − z∗2

...
ẑk − z∗k

 ⪯


z

′

1 − z∗1
z

′

2 − z∗2
...

z
′

k − z∗k


In this case, as in the previous part

z∗i ⩽ ẑi ⇒ −z∗i ⩾ −ẑi

and

ẑi − z∗i ⩾ ẑi − ẑi = 0

So

M1(ẑ1 − z∗1)
2 ⩽ M1(z

′

1 − z∗1)
2

M2(ẑ2 − z∗2)
2 ⩽ M2(z

′

2 − z∗2)
2

...
Mk(ẑk − z∗k)

2 ⩽ Mk(z
′

k − z∗k)
2

⇒ M1(ẑ1 − z∗1)
2 + ...+Mk(ẑk − z∗k)

2 ⩽ M1(z
′

1 − z∗1)
2 + ...+Mk(z

′

k − z∗k)
2

⇒ Ẑ ⪯ Z
′

Ẑ ∈ Rk, Z
′ ∈ Rk
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This is a contradiction, so Z
′
= (z

′

1, z
′

2, ..., z
′

k) and X
′
are the optimal solution of

problem (1). ■

Now, consider the following multi-objective optimal control problem:

min {φ1(X(.), U(.), T ), ..., φj(X(.), U(.), T ), ..., φk(X(.), U(.), T )}

s.t. F (t,X(t), ˙X(t), U(t)) = 0, (4)

h(t,X(t), U(t)) ⩾ 0,

r(X(0), X(T )) = 0.

Here, function F represents the model equation with X as model states, U as
control inputs, and T as the final time.
Also, φj denotes the j-th individual objective function as

φj(X(.), U(.), T ) =

∫ T

0
fj(t,X(t), U(t))dt,

with continuous function fj , while h and r are the path constraints and boundary
constraints of the optimal control problem.
We can rewrite the problem using the above-mentioned method in the form of (2)
and solve k + 1 single-objective problems using Pontryagin’s minimum principle
(PMP) method or other methods.
With respect to multi-objective optimal control problems, this issue assumes more
importance because solving single-objective optimal control problems is much sim-
pler and there are famous and efficient methods in this regard.

Theorem 2.3 Consider multi-objective programming problem (4), a vector
Φ

′
= (φ

′

1, φ
′

2, ..., φ
′

k) is an optimal solution for problem (4) corresponding to(
X

′
(t), U

′
(t)

)
, if and only if Φ

′
is the optimal solution of the following problem:

min Φ (X,U, t) = M1(φ1 (X(.), U(.), t)− φ∗
1)

2 + · · ·+Mk(φk (X(.), U(.), t)− φ∗
k)

2

s.t. F (t,X(t), ˙X(t), U(t)) = 0, (5)

h(t,X(t), U(t)) ⩾ 0,

r(X(0), X(T )) = 0,

when φ∗
1, φ

∗
2, ..., φ

∗
k is the optimal solution of the following single problems:

min Φ(X) = φi(X)

s.t. F (t,X(t), ˙X(t), U(t)) = 0, (6)

h(t,X(t), U(t)) ⩾ 0,

r(X(0), X(T )) = 0.

and M1, ...,Mk are positive and very large.

Proof Suppose we solve k single-objective problems (6) and get the solutions
φ∗
1, φ

∗
2, ..., φ

∗
k.

If Φ
′
= (φ

′

1, φ
′

2, ..., φ
′

k) is a nondominated solution for problem (4) corresponding
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to
(
X

′
(t), U

′
(t)

)
, then,

φ
′

1

φ
′

2
...
φ

′

k

 ⪯


φ1

φ2
...
φk

 t ∈ [0, T ] , ∀φj ∈ R.

Since
(
X

′
(t), U

′
(t)

)
is a feasible solution for problem (4), it is a feasible solution

for problem (5) and also 
φ

′

1 − φ∗
1

φ
′

2 − φ∗
2

...
φ

′

k − φ∗
k

 ⪯


φ1 − φ∗

1

φ2 − φ∗
2

...
φk − φ∗

k


Since φ∗

i is the optimal solution for single-objective problems (6) and they are the
best possible solutions for these problems, then:

φ∗
i ⩽ φ

′

i ⇒ −φ∗
i ⩾ −φ

′

i

and

φ
′

i − φ∗
i ⩾ φ

′

i − φ
′

i = 0

therefore:

M1(φ
′

1 − φ∗
1)

2 ⩽ M1(φ1 − φ∗
1)

2

M2(φ
′

2 − φ∗
2)

2 ⩽ M2(φ2 − φ∗
2)

2

...
Mk(φ

′

k − φ∗
k)

2 ⩽ Mk(φk − φ∗
k)

2

⇒ M1(φ
′

1 − φ∗
1)

2 + ...+Mk(φ
′

k − φ∗
k)

2 ⩽ M1(φ1 − φ∗
1)

2 + ...+Mk(φk − φ∗
k)

2

⇒ Φ
′ ⪯ Φ ∀Φ ∈ Rk

that means the nondominated solution of problem (4) is the same nondominated
solution of problem (5).
Contrariwise, suppose that Φ

′
= (φ

′

1, φ
′

2, ..., φ
′

k) is a nondominated solution for
problem (5) corresponding to

(
X

′
(t), U

′
(t)

)
. As in the previous part,

(
X

′
(t), U

′
(t)

)
is the feasible solution of problem (4). We need to prove that

(
X

′
(t), U

′
(t)

)
and

the objective vector Φ
′
= (φ

′

1, φ
′

2, ..., φ
′

k) are the optimal solution to problem (4).
Ad absurdum: Suppose that the optimal solution of problem (5) is not the optimal

solution of problem (4), in this case, there exists a vector
(
X̂, Û

)
and corresponding

objective vector Φ̂ = (φ̂1, φ̂2, ..., φ̂k) so that:
φ̂1

φ̂2
...
φ̂k

 ⪯


φ

′

1

φ
′

2
...
φ

′

k


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also 
φ̂1 − φ∗

1

φ̂2 − φ∗
2

...
φ̂k − φ∗

k

 ⪯


φ

′

1 − φ∗
1

φ
′

2 − φ∗
2

...
φ

′

k − φ∗
k


In this case, as in the previous part

φ∗
i ⩽ φ̂i ⇒ −φ∗

i ⩾ −φ̂i

and

φ̂i − φ∗
i ⩾ φ̂i − φ̂i = 0

So

M1(φ̂1 − φ∗
1)

2 ⩽ M1(φ
′

1 − φ∗
1)

2

M2(φ̂2 − φ∗
2)

2 ⩽ M2(φ
′

2 − φ∗
2)

2

...
Mk(φ̂k − φ∗

k)
2 ⩽ Mk(φ

′

k − φ∗
k)

2

⇒ M1(φ̂1 − φ∗
1)

2 + ...+Mk(φ̂k − φ∗
k)

2 ⩽ M1(φ
′

1 − φ∗
1)

2 + ...+Mk(φ
′

k − φ∗
k)

2

⇒ Φ̂ ⪯ Φ
′

Φ̂ ∈ Rk, Φ
′ ∈ Rk

This is a contradiction, so Φ
′
= (φ

′

1, φ
′

2, ..., φ
′

k) and
(
X

′
(t), U

′
(t)

)
are the optimal

solution of problem (4). ■

Note: In single objective optimization problems, if we want to compute a proven
global optimal solution to an optimization problem with nonlinear conditions, we
have basically two families of methods. Stochastic (also metaheuristic, genetic,
...) methods are easier to apply, quite performant and do not require cost and
constraint functions to have some properties like being twice continuously differ-
entiable or something like that. The drawback is that there is no guarantee that
we converge to the global solution in finite time. Deterministic methods converge
to the solution in finite time. But they heavily depend on the type of nonlinearity:
in case we have continuous variables only (that is, no integer conditions) and con-
vex constraints, then any local optimum is global already. In case we have integer
variables and/or non-convex constraints, we have to use branch-and-bound meth-
ods. Here the original problem is split into a sequence of subproblems, each being
continuous and convex (maybe even linear).

3. Numerical results

Now, to show the efficiency of our method and to explain how it works, we solve
numerical examples with two evolutionary algorithms. It is worth mentioning that
these examples are famous test functions in order for the readers to be able to
compare and contrast the two methods.
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Example 3.1 Consider a bi-objective programming problem (Binh and Korn func-
tion):

min

{
f1(x, y) = 4x2 + 4y2

f2(x, y) = (x− 5)2 + (y − 5)2

s.t.

{
g1(x, y) = (x− 5)2 + y2 ⩽ 25
g2(x, y) = (x− 8)2 + (y + 3)2 ⩾ 7.7

0 ⩽ x ⩽ 5, 0 ⩽ y ⩽ 3.

As mentioned in the previous section, we first solve two single-objective problems
using fmincon Matlab function:

min f1(x, y) = 4x2 + 4y2

s.t.

{
g1(x, y) = (x− 5)2 + y2 ⩽ 25
g2(x, y) = (x− 8)2 + (y + 3)2 ⩾ 7.7

(7)

0 ⩽ x ⩽ 5, 0 ⩽ y ⩽ 3.

Optimal solution of problem (7) is (x∗, y∗) = (0, 0) and f∗
1 = 0.

min f2(x, y) = (x− 5)2 + (y − 5)2

s.t.

{
g1(x, y) = (x− 5)2 + y2 ⩽ 25
g2(x, y) = (x− 8)2 + (y + 3)2 ⩾ 7.7

(8)

0 ⩽ x ⩽ 5, 0 ⩽ y ⩽ 3.

Optimal solution of problem (8) is (x∗, y∗) = (5, 3) and f∗
2 = 4.

Now, we minimize the following objective function with the constraints of the main
problem:

min f = 106((4x2 + 4y2)− 0)2 + 106(((x− 5)2 + (y − 5)2)− 4)2

Optimal solution of this problem is (x∗, y∗) = (1.3655, 1.3655) and f∗
1 =

14.9167, f∗
2 = 26.4192. According to the Pareto solution of this problem shown

in Figure 1, obtain using Genetic algorithm [1], this solution is Pareto and opti-
mal.

Example 3.2 Consider the following problem (Chakong and Haimes function):

min

{
f1(x, y) = 2 + (x− 2)2 + (y − 1)2

f2(x, y) = 9x− (y − 1)2

s.t.

{
g1(x, y) = x2 + y2 ⩽ 225
g2(x, y) = x− 3y + 10 ⩽ 10

− 20 ⩽ x, y ⩽ 20
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Figure 1. The Pareto front of Example 1.

We first solve two single-objective problems using fmincon Matlab function:

min f1(x, y) = 2 + (x− 2)2 + (y − 1)2

s.t.

{
g1(x, y) = x2 + y2 ⩽ 225
g2(x, y) = x− 3y + 10 ⩽ 10

(9)

− 20 ⩽ x, y ⩽ 20

Optimal solution of problem (9) is (x∗, y∗) = (2, 1) and f∗
1 = 2.

min f2(x, y) = 9x− (y − 1)2

s.t.

{
g1(x, y) = x2 + y2 ⩽ 225
g2(x, y) = x− 3y + 10 ⩽ 10

(10)

− 20 ⩽ x, y ⩽ 20

Optimal solution of problem (10) is (x∗, y∗) = (−14.2302,−4.7434) and f∗
2 =

−161.0591.
Now, we minimize the following objective function with the constraints of the main
problem:

min f = 106((2 + (x− 2)2 + (y − 1)2)− 2)2 + 106((9x− (y − 1)2) + 161.0591)2

Optimal solution of this problem is (x∗, y∗) = (−5.5790,−1.8597) and f∗
1 =

67.6191, f∗
2 = −58.3889. According to the Pareto solution of this problem shown

in Figure 2, obtain using genetic algorithm [1], this solution is Pareto and optimal.

Example 3.3 Consider tumour anti-angiogenesis as follow [9]:
State and control variables:
p : primary tumour volume (mm3)
q : carrying capacity, or endothelial support (mm3)
u: anti-angiogenic agent
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Figure 2. The Pareto front of Example 2.



min (p(tf ), p(tf ) + 140y(tf ))

s.t. ṗ = −0.084 p ln
(
p
q

)
, p(0) = 8000,

q̇ = 5.85q2/3 − 0.00873q4/3 − 0.02q − 0.15qu, q(0) = 10000,
ẏ = u, y(0) = 0,
y(tf ) ⩽ 45, 0 ⩽ u(t) ⩽ 15.

Control u appears linearly: bang-bang and singular arcs.
We first solve two single-objective problems:

min p(tf )

s.t. ṗ = −0.084 p ln
(
p
q

)
, p(0) = 8000,

q̇ = 5.85q2/3 − 0.00873q4/3 − 0.02q − 0.15qu, q(0) = 10000,
ẏ = u, y(0) = 0,
y(tf ) ⩽ 45, 0 ⩽ u(t) ⩽ 15.

(11)

Optimal solution of problem (11) is (t∗f , p(tf )
∗) = (8.101, 2856).



min p(tf ) + 140y(tf )

s.t. ṗ = −0.084 p ln
(
p
q

)
, p(0) = 8000,

q̇ = 5.85q2/3 − 0.00873q4/3 − 0.02q − 0.15qu, q(0) = 10000,
ẏ = u, y(0) = 0,
y(tf ) ⩽ 45, 0 ⩽ u(t) ⩽ 15.

(12)

Optimal solution of problem (12) is (t∗f , Z
∗
2 ) = (8.705, 8000).

Now, we minimize the following objective function with the constraints of the main
problem:

min f = 106(p(tf )− 2856)2 + 106((p(tf ) + 140y(tf )− 8000)2

Optimal solution of this problem is (t∗f , z
∗) = (9.378, 1502336) and f∗

1 = 4000, f∗
2 =

7560. According to the Pareto solution of this problem shown in Figure 3, this
solution is Pareto and optimal.



H. Alimorad/ IJM2C, 12 - 04 (2022) 213-224. 223

Figure 3. The Pareto front of Example 3.

Figure 4. The optimal tumor volume p in Example 3.

4. Conclusion

This paper proposed a practical approach based on weighted sum algorithm for
obtaining the solution to general multi-objective optimal programming problems
and multi-objective optimal control problems. Compared with other methods, this
approach is more practical since the results are obtained by solving single-objective
problems. Furthermore, the new problem can be solved easily with the help of
efficients algorithms. It is also especially practical and accurate enough for systems
with nonlinear terms.
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