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Abstract. In the present paper, Radial Basis Function interpolations are applied to

approximate a fuzzy function f̃ : R → F(R), on a discrete point set X = {x1, x2, . . . , xn},
by a fuzzy-valued function S̃. RBFs are based on linear combinations of terms which
include a single univariate function. Applying RBF to approximate a fuzzy function, a linear
system will be obtained which by defining coefficient vector, target function will be ap-
proximated. Finally for showing the efficiency of the method we give some numerical examples.
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1. Introduction

Among variety of the numerical methods, Radial Basis Function (RBF) method
appears to be one of the best one in literature. RBF approximations are usually
finite linear combinations of the translation of a radially symmetric basis function,
ϕ(‖ . ‖) where (‖ . ‖) is the Euclidean norm. The set of RBFs, {φi}m1 is as follows:

φi : Rd → R, φi(x) = φ(‖ x− xi ‖)
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where ‖ . ‖ denote the Euclidean norm and xi is the center of RBF. Gaussian (GA)
φ(r) = exp(−σr2), multiquadric (MQ) φ(r) =

√
r2 + σ2 are some well-known func-

tions that generate RBF. More functions are shown in Table 1 in which r = ‖x−xi‖.
The mentioned functions due to having the parameter ci have exponentially con-
vergence [6].

Table 1. Well-known functions that generate RBF.

Name of function Definition
Gaussian (GA) φ(r) = exp(−σr2)

Multiquadric (MQ) φ(r) = (r2 + σ2)
1

2

Inverse multiquadric (IMQ) φ(r) = (r2 + σ2)−
1

2

Inverse multiquadric (IQ) φ(r) = (r2 + σ2)−1

RBFs are computationally means to approximate functions which are compli-
cated or have many variables, by other simpler functions which are easier to un-
derstand and readily evaluated. One of the outstanding advantages of interpolation
by RBF, unlike multivariable polynomial interpolation or splines [10], is applica-
bility in scattered data aspect of existence and uniqueness results since there is
little restrictions on dimension and also high accuracy or fast convergence to the
target function. As another advantage of RBF there are not required to triangu-
lations of the data points, while other numerical methods such as finite elements
or multivariate spline methods need triangulations [9, 10]. This requirement cost
computationally especially in more than two dimensions. In this paper we consider
RBF to approximate the solution of the problem as meshfree approximations. In
this study, we consider to approximate fuzzy function by Redial Basis functions.

To approximate the target function y(x) , we employ RBF interpolation in dis-
tinct grids from a definite domain. To this purpose, a linear component is considered
as follows:

y(x) ≈
n∑
i=0

ciφi(x), (1)

where φi(x) can be chosen from one of the basis functions which is mentioned in
Table 1, according to type of the target function which is desired to approximate.

In this paper we consider RBF to approximate the fuzzy function and for this
purpose we consider Gaussian function, then we would have:

φi(x) = e−‖x−xi‖2 . (2)

2. Materials and definitions

In this section, some definitions and features of fuzzy numbers and fuzzy differential
equations which will be used throughout the paper, will reviewed.

Definition 2.1 ([12]). A fuzzy number ũ is completely determined by an ordered
pair of functions ũ = [u(r), u(r)], 0 6 r 6 1, satisfy the following requirements:
1. u(r) is a bounded, monotonic, increasing (non decreasing) left-continuous
function for all r ∈ (0, 1] and right-continuous for r = 0.
2. u(r) is a bounded, monotonic, decreasing (non increasing) left-continuous
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function for all r ∈ (0, 1] and right-continuous for r = 0.
3. For all r ∈ (0, 1] we have u(r) 6 u(r).

For every ũ = [u(r), u(r)], ṽ = [v(r), v(r)] and k > 0 addition and multiplication
have the following properties:

ũ⊕ ṽ = [u(r) + v(r), u(r) + v(r)] (3)

ũ	 ṽ = [u(r)− v(r), u(r)− v(r)] (4)

kũ =

{
[ku(r), ku(r)] , k > 0,
[ku(r), ku(r)] , k < 0,

(5)

Definition 2.2 The collection of all fuzzy numbers with addition and multipli-
cation as defined by Eqs. (1) − (3) is denoted by E1. For 0 < r 6 1 we define
the r-cuts of fuzzy number ũ with [ũ]r = {x ∈ R | µũ(x) > r} and support of ũ is

defined as [ũ]0 = {x ∈ R | µũ(x) > 0}.

Definition 2.3 Let ũ = (m,n, α, β)LR, (α < m 6 n < β), where m,n are two
centers (defuzzifiers) and α > 0, β > 0 are left and right spreads, respectively.

L(
m− x
α

) and R(
x− n
β

) are non-increasing functions with L(0) = 1 and R(0) = 1

respectively. ũ is a L-R fuzzy number if its membership function be as the following
form:

µũ(x) =


L(
m− x
α

) −∞ < x < m,

1 m 6 x 6 n,

R(
x− n
β

) n < x <∞,

0 otherwise.

This definition is very general and covers quite different type of information. For

example, fuzzy number ũ is trapezoidal fuzzy number when m < n and L(
m− x
α

),

R(
x− n
β

) be linear functions or when m = n and L(
m− x
α

), R(
x− n
β

) are linear

functions, ũ denotes triangular fuzzy number and we write ũ = (m,α, β).

Definition 2.4 The Hausdorff distance D : E1 × E1 → R+ ∪ {0} between fuzzy
numbers is given by:

D(ũ, ṽ) = sup
r∈[0,1]

{‖ [ũ	H ṽ]r ‖∗ } ,

where, for an interval [a, b], the norm is

‖ [a, b] ‖∗= max {| a |, | b |} .
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and [ũ	H ṽ]r = [u(r)− v(r), u(r) + v(r)].

It is easy to see that D is a metric in E1 and has the following properties ( [10]).

Lemma 2.5 For u, v, w, e ∈ E1 and k ∈ R, we have the following results
(1) D(u⊕ w, v ⊕ w) = D(u, v),
(2) D(k � u, k � v) = | k | D(u, v),
(3) D(u⊕ v, w ⊕ e) 6 D(u,w) +D(v, e).

Definition 2.6 ([3]) Let x, y ∈ E1. If there exists z ∈ E1 such that x+y = z, then
z is called the H−difference of x, y and it is denoted by x	 y.

3. Description of the method

The method applied in n dimensional Euclidean space. To this purpose, consider
n distinct points as {x1, x2, . . . , xn} ⊂ R, in this space at which the function to be
approximated is known and real scalers {ỹ1, ỹ2, . . . , ỹn} ∈ F(R) which are given
values at the points. We desire to construct a continuous function S̃ : R → F(R)
so that S̃(xj) = ỹj for j = 1, 2, . . . , n. Radial basis function method is based on

continuous function such as φ : R+ → R+ and a norm ‖ . ‖ in Rn, then S̃ can be
as the following form:

S̃(x) =
n∑
j=1

c̃jφ(‖ x− xj ‖) (6)

where c̃j are scalar parameters which should be chosen so that s approximates ỹ
in point xj for j = 1, 2 . . . , n. Then funtions γ → φ(‖ γ − xj ‖) translates s into a
vector space. According to interpolation conditions a linear system will be defined
as ΨC̃ = Ỹ , where Ψ ∈ Rn×n is called a distance matrix or interpolation matrix,
and given by

Ψij = φ(‖ xi − xj ‖) (7)

and also C̃ = (c̃1, . . . , c̃n)T and Ỹ = (ỹ1, . . . , ỹn)T

The interpolation matrix is non-singular since it is a positive definite matrix, so
we have the unique existence of the coefficients c̃j .

4. Fuzzy interpolation

In this section we used RBF functions for fuzzy interpolation. We proof that this
method is better than when we used polynomial function of degree at most n.
A fuzzy interpolation is a function S̃ from R to F(R) such that S̃(x) =∑n

i=0 ãiφi(x). Denote by
∏̃φ

the set of all fuzzy function S̃(x) =
∑n

i=0 ãiφi(X)
on F(R). A fuzzy interpolation function on F(R) can be put in the following para-
metric form:

S̃(x) = (Sx(r), Sx(r)) (8)
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where 

Sx(r) =∑
φi(x)>0

ai(r)φi(x) +
∑

φi(x)<0

ai(r)φi(x)

Sx(r) =∑
φi(x)>0

ai(r)φi(x) +
∑

φi(x)<0

ai(r)φi(x)

(9)

for 0 6 r 6 0.
But we know φi(x) > 0 for all x ∈ R. So we have

Sx(r) =
∑n

i=1 ai(r)φi(x)

Sx(r) =
∑n

i=1 ai(r)φi(x)
(10)

for 0 6 r 6 1.

Let X = {x1, x2, . . . , xn} and 0 6 r 6 1 for (10) so we have(
vx1

(r), . . . , vxn
(r), vx1

(r), . . . , vxn
(r)
)T

=



φ1(x1) . . . φn(x1) 0 . . . 0
φ1(x2) . . . φn(x2) 0 . . . 0

...
. . .

...
...

. . .
...

φ1(xn) . . . φn(xn) 0 . . . 0
0 . . . 0 φ1(x1) . . . φn(x1)
0 . . . 0 φ1(x2) . . . φn(x2)
...

. . .
...

...
. . .

...
0 . . . 0 φ1(xn) . . . φn(xn)


(11)

×

(
a1(r), . . . , an(r), a1(r), . . . , an(r)

)T
Therefore we have two systems of equations ΨC = Y and ΨC = Y , where

Ψ =


φ1(x1) φ2(x1) . . . φn(x1)
φ1(x2) φ2(x2) . . . φn(x2)

...
...

. . .
...

φ1(xn) φ2(xn) . . . φn(xn)

 (12)

is a nonsingular matrix. So instead of solving a system of 2n × 2n we solve two
systems equations of n× n with the same matrix coefficients.
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5. Numerical examples

In this section we present some numerical examples.

Example 5.1 Consider the following tabular function with n = 3 points:

x f̃(x)
3 (r + 2, 4− r)
1 (r, 2− r)
2 (r + 1, 3− r)

Figure 1 shows the value of the fuzzy function number in x1 and its RBF approxi-
mation. Figure 2 shows the errors of this approximation in x1. Figure 3 shows RBF
approximation over an interval x ∈ [0, 6] and r ∈ [0, 1].

Figure 1. Fuzzy number for x1 in tabular function and RBF approximation.

Figure 2. Under and over error of Fuzzy number for x1 in tabular function and RBF
approximation.

Figure 3. RBF approximation for interval of x and r ∈ [0, 1].
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Example 5.2 Consider the following tabular function with n = 6 points:

x f̃(x)
0 (1 + r, 3− r)
1 (2 + r, 4− r)
2 (r, 2− r)
3 (3 + r, 5− r)
4 (4 + r, 6− r)
5 (3 + r, 5− r)

Figure 4 shows the value of the fuzzy function number in x3 and its RBF approxi-
mation. Figure 5 shows the errors of this approximation in x3. Figure 6 shows RBF
approximation over an interval x ∈ [0, 6] and r ∈ [0, 1].

Figure 4. Fuzzy number for x3 in tabular function and RBF approximation.

Figure 5. Under and over error of Fuzzy number for x3 in tabular function and RBF
approximation.

Figure 6. RBF approximation for interval of x and r ∈ [0, 1].

Example 5.3 In this example we consider n = 10 points and used continuous
fuzzy function k̃ sin(x) in interval [0, π5 ]. There k̃ = (r, 2 − r) and xi = i × π

5n for
i = 1, 2, . . . , n.
Figure 7 shows the fuzzy number for x3 = π

25 in tabular function and RBF ap-
proximation of x3. Figure 8 shows the error of fuzzy number for x3 = π

25 and RBF
approximation for interval of x fuzzy function by r ∈ [0, 1]. Figure 9 shows the
error fuzzy number for x = π

20 that isn’t in tabular function points and 3D error
for x ∈ [0, π5 ] and r ∈ [0, 1].
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Figure 7. Fuzzy number for x3 = π
25 in tabular function and RBF approximation.

Figure 8. Error of fuzzy number for x3 = π
25 and RBF approximation for interval of x

and r ∈ [0, 1].

Figure 9. Error fuzzy number for x = π
20 that isn’t in tabular function points and 3D

error for x ∈ [0, π5 ] and r ∈ [0, 1].

Example 5.4 In this example we let n = 10 points and used continuous fuzzy
function k̃ exp(x) in interval [0, 0.1]. There k̃ = (r, 2 − r) and xi = i × 0.1

n for
i = 1, 2, . . . , n.
Figure 10 shows the fuzzy number for x5 = 0.04 in tabular function and RBF
approximation of x5. Figure 11 shows the error of fuzzy number for x5 = 0.04 and
RBF approximation for interval of x fuzzy function by r ∈ [0, 1]. Figure 12 shows
the error fuzzy number for x = 0.055 that isn’t in tabular function points and 3D
error for x ∈ [0, π5 ] and r ∈ [0, 1].

Finally we show the maximum errors of examples in Table 2.

Table 2. Maximum errors of examples.

Example Maximum error in Maximum error in
table points interval approximation

Example 1 8.88178× 10−16 —–
Example 2 4.44089× 10−16 —–
Example 3 0.292323 0.549779
Example 4 0.0471799 0.183151
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Figure 10. Fuzzy number for x5 = 0.04 in tabular function and RBF approximation.

Figure 11. Error of fuzzy number for x5 = 0.01 and RBF approximation for interval of x
and r ∈ [0, 1].

Figure 12. Error fuzzy number for x = 0.055 that isn’t in tabular function points and 3D
error for x ∈ [0, π5 ] and r ∈ [0, 1].

6. Conclusion

In this paper we presented a method to approximate a fuzzy function by using
Radial Basis Functions interpolation. The results obtained from this method seems
to be acceptable and useful for fuzzy applications.
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