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Abstract. In this paper, we present a new method for solving Reproducing Kernel Space
(RKS) theory, and iterative algorithm for solving Generalized Burgers Equation (GBE) is
presented. The analytical solution is shown in a series in a RKS, and the approximate solution
u(z,t) is constructed by truncating the series. The convergence of u(z,t) to the analytical
solution is also proved.
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1. Introduction

The reproducing kernel was first used in the early 20th century in Zaremba research
on boundary value problems for harmonic functions and two harmonic moduli. In
1907, he was the first person to introduce the corresponding kernel to a class of
functions and express the reproducing property. After along interruption, the idea
of the reproducing kernel was restored in the thesis of three German mathemati-
cians called Zigo(1921), Bergman(1922) and Bacchner(1922). The theory of the
reproducing kernels was arranged by Aarozan in 1948. Bergman and schiffer, with
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the development of the basic idea of Zaremba, in solving the boundary value prob-
lems, using their reproducing kernels introduced them as a powerful tool for solving
elliptic boundary value problems. RKS-based methods include symbolic methods
and numerical methods. In symbolic methods, RKS first appears on the basis of
derivative and the boundary conditions governing the problem are obtained. Then,
the reproducing space function is obtained as a multiplicative function with sym-
bolic operation. RKS-based method for solving singular two-point boundary value
problems[4], nonlinear numerical analysis in RKS [1], Solving singular nonlinear
second-order periodic boundary value problems in the reproducing kernel space [6]
and Etc, has been successful. In this paper, we use the RKS method to solve the
generalized Burgers equation. Then, we analysis the convergence of the method,
and finally calculate the exact answer and error in the last example.
We consider the GBE

v v v
E -I-v% = ”(t)@ + At)v(x, t) + f(z,t); 0<zx<1l,0<t<l1, (1)

with the conditions

{v(z,0) = N(z),0 <z <1, v(0,t) =v(1,t),0 <t <1, vy(1,¢) =0,0 < ¢t < 1}
2)
The direct problem for equation (1) is to find a function u(z,t) satisfying equa-
tion (1) with given N(x),u(t) and f(z,t) and the conditions (2). u(zx,t), A(t) are
unknown functions to be determined. It is required the additional condition

1
/ o(z, t)de = B(L), (3)
0
Where E(t) is the function given.

2. Solution method

We integrate equation (1) with respect to z on [0, 1]. We get

1 02 02 v . 1 .
9 /0 et B0 PO _ 01D 200, /0 ol 1)+ /O Fat)d.

Hence, with the conditions (2), (3), A(t) to get the following

E'(t) + p(t) (8”(52’”) — Ji f(z,t)dz

A(t) =

Let u(z,t) = v(z,t) — N(z), equation (1) can be transformation into following
equivalent form

ou  otu B0+ ut) (M0 4 N©) ~ fy fle,t)de
o Mg ()

U= F(x7t>u7uiﬂ)7 (5)

with the conditions
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Where

p E'(t) + p(t) (2498 4 N(0)) — [} f(x,t)dx
F(a:,t,u, um) = —M(t)N (.%') + N(m-) ( 9 E(t) ) 0

—uty — uN (z) — N(2)uy — N(z)N' () + f(z,1).
Definition 2.1 The RKS W3[0,1] is defined by W3 = {u € W3 | u(0) =
u(1),u (1) = 0, are absolutely continuous real valued functions in [0,1], u® €

120, 1]}.

[1] With the inner product and norm in W3[0, 1]
’ ’ " " 1
(u, v)ws = u(0)v(0) +u (0)v (0) +u (0)v (0) —I—/ wd(x)v3 () de,
0

u(x),v(z) € W3[0,1], llullws = v/ {u, u)ps.
The reproducing kernel function Ry(x) in [0, 1]

6

6
Ry(z)={d clyaha<y D diya' iy <a}
=0

=0

There for R, (z) is the solution of the following generalized differential equations
Ry(0) = Ry(1) = 0,

R,(1) =0,

R (1) =0,

R, (0) — S50 4 Tl = 0,

3Ry:l§0) 4 34§;4(0) 0,

82352(0) n 83?;’3(0) _o0,

25}1%5((23) : Zo%?(i‘)) io_71 1m0 L2SA

ox® oxr®
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The reproducing kernel functions R, (z)andR,(y) in w3[0, 1]

_ 1 17 2 11 .53 17 5.4 7 .55
Ry(z) ={1+ 120‘” 1131% oy + 2262$ Y"+ a7 Yt gty 169657 Y

3

2 7 4.3 14
~3016% Yy + 452433 Y~ + 13577

1357295 y* + 271445’3 y® — 113195 Y
2 62 .33 7 .34, 11 .3.5 120 2.2 62
+d1508$ Y 339395 V' + 35Tyt GreeTY 3779” y + 150817 Y 11319” Y’
g2yt + e r?y® + a TYy° — TY° + a7
1524 y* 2262 1°Y 377y — 377 Y 1131 y° 1131 y*

17 .
1131xy ) T <Y,

_ 1 11 7 5.5
Re(y) =1+ my 113135?/ + 2262$ y> + 6786x Y+ 27144$ Y ~ 16965° Y

3 4 7 23 4 17 5.4
3016"’59 + 452433 Yy + 1357235 y* 1357295 Y+ ori® 1131xy
62 3 7 43, 11 .53 14,2, 120 .2 2 62

+d1508$ Y’ - 339395 Y+ 35mT Y T eme T YT T 3ty + 58Ty — 113155 Y’

5,2 9 14 .2 17
+4524x 24 226295 t 377 TY — 3777y — 1131‘75 Sy + 11315” Y- 113155 Y,y <z

Definition 2.2 From refer.[1], The RKS W'[0,1] = {u(t) | u(t),u (t) are abso-
lutely continuous, u" (t) € L?[0,1],u(0) = 0}.

the inner product and norm are defined by

’

’ 1 " 1
(u, v)wr = u(0)v(0) +u (0)v (0) —i—/o u (t)v (t)dt,
ullws =/ (u, wyw.

The reproducing kernel functions 7s(t)and r4(s) in [0, 1]

1 1
ro(t) = {st + §st2 — 6t3;t < sh,

1 1
ri(s) = {st + 5t32 — 633;3 < t}.

The equation (5) in space L : W23 (Q) — WD (Q),Q = [0,1] x [0, 1], we have
the following

Lu = F(z,t,u,uy), (6)
With The conditions

u(z,0) =0, 0<x<l,

u(0,t) = u(l,t), 0<t<1,
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uzr(1,6) =0, 0<t<1,

oo ou o E@+u0) (PHEENO) - o fede
ere u-a—u()w— B0 u, an

from refer. [3], it is explain that L is a bounded linear operator.
Now, assume that o;(7,t) = K4, 4,)(7,t), {(z;,t:) }72,]s dense in region
Let

Yi(z,t) = L*pi(z,t),

Where L* adjoint operator L, and 1); Gram-schmith orthonormal sequence.
From the property of the reproducing kernel, we have

Wiz, ), (2, 1) wes = (L pi(x,1),¥5(z, 1)) wes

= <(pi($7t)aL¢i(x¢t)>W(2=l) = ij(.%',t),

And also

(u(z, t), iz, t))wes = (u(x,t), Lxg;) e
= (Lu(z,t), pi(x, 1)) wen = Lu(z,t;) = F(z, b, u(z, ), Opu(zs, t;)).

3. Convergence of method
Suppose u(x,t) € Q:[0,1] x [0,1] and also it is a RKS
K(y,s)(2:t) = By (2)rs(t),

Where R, (z),rs(t)are the reproducing kernels of W®3)[0,1] and WD, respec-
tively. If u(z,t) € Qwe have

u(m, t) = (u(y, S), K(:E,t) (y7 s))wes,
SO
e, £)] = [y, ). Koy (3 oo < [y )llwess 1B (9 9w
The exist ¢; > 0 so that

u(z, )] < eilluly, s)wes,

similarly,

0K 0K
[ua (@, )] = [uly, s), 5~ (4 s)lwes < luly, s)llwes |-, s)llwes,
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Then there exists co > 0, c3 > 0 such that

|uz (2, 1) < e2f|uly, s)l[wes,

lug(z,1)] < cslluly, s)|lwes.
Theorem 3.1 If w,(x,t) — u*(xz,t), when the n — oo,and (x,,t,) —

(z,t),n — oo, then|u,(x,t)|yesis bounded ,also , if F(x,t, u,u,) the continu-
ous, we have

F(xp,tn, un—1,0zupn—1) — F(z,t,u*, 0zu”), whenthen — oo
Proof.
[un—1(Tn, tn) — u*(x,t)| = |un—1(Tn,tn) — up—1(x,t) + up—1(x,t) — u*(x,t)]
< |Un71(33n7 tn) - Un,1($, t)| + |un71($7 t) - U*(:L‘a t)|
< |Optn—1(Zn, to)l|Tn — t| + [Optn—1(Tn, tn)|[tn — t| + lun—1(z,t) — u*(2,1)],

similarly,

|0ptn—1 (X, tn)—0xu™ (2, t)] = |Optn_1(Tn, tn)—O0ptin_1(x,t)+0ptn_1(x,t)—0u*(x,t)]

< |8xxun—1($natn)”xn - t| + |8xtun—1(xn7tn)|‘tn - t)’ + ’aa:un—l(xat) - 8xU*(x7t)|
The continuous F(z,t,u, u,) we have
F(ﬂjna tn, unfl(ajna tn)a axunfl(xna tn) — F(-T’ t, ’LL*, 896U*)7

when the n — oco.OJ

Theorem 3.2 If {(z;,t;)}:2, is dense € then the analytic solution (6) as the
following them

oo 1
Z lk‘F $17t27un($la 1)yax1un($utl))¢:(l'at)a

=1 k=1

where ;5 are orthogonal coefficients, and ¢} (z,t) = 22:1 Bikr(z,t).
Proof. consider that {1} (z,t)}2, on W23)[0,1] is complete. we have

[e.e]

un(,) = ) (un(,t), 95 (2, 1)) wes ¥ (2, 1)

=1

=D Bulun(@, 1), vx(, ) wes 5 (2, 1)

=1 k=1
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= Z ﬁ2k<’u,n($,t),L*QOk(.T,t»W(z3)’(/J,Zk(l‘,t)

The consider GBE

up — e (=3 = 3%+t 4+ Bugr — ANO)u = —uuy + f(2,1)
With The conditions

u(x,0) =0,
u(0,t) = u(1,1),

uz(1,t) = 0.
Where
f(x,t) = —2rt*sin(2rx) — wt2sin(4rz) + dn’te (=t — 3t? + t + 3)cos(27x),

and

the exact solution

u(z,t) = t(1 + cos(2mz)).

We have the method an approximation solution in the following
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Table 1. Approximation solutions.
(x,t) Exact solution Approximation solution Error
(0.1,0.1) 0.19999398715 0.19999457764 0.00000059049
(0.16,0.16) 0.31997537177 0.31997478296 0.00000058881
(0.22,0.22) 0.43993597767 0.43993584567 0.000000132
(0.28,0.28) 0.55986801504 0.55986802467 0.00000000963
(0.34,0.34) 0.67976369609 0.67976368561 0.00000001048
(0.4,0.4) 0.79961523566 0.79961524749 0.00000001183
(0.46,0.46) 0.91936287521 0.91936286936 0.00000000585
(0.52,0.52) 1.03915476627 1.03915478851 0.00000002224
(0.58,0.58) 1.15882720517 1.15882720895 0.00000000378
(0.64,0.64) 1.27842439946 1.27842439752 0.00000000194
(0.7,0.7) 1.39793858551 1.39793858577 2.6F — 10
(0.76,0.76) 1.51736200571 1.51736200423 0.00000000148
(0.82,0.82) 1.63668690899 1.63668690752 0.00000000147
(0.88,0.88) 1.75590555138 1.75590555278 0.0000000014
(0.94,0.94) 1.87446578395 1.87446578682 0.00000000287
5. Conclusion

In this paper we proposed a numerical method, based on the RKS method for
solving the generalized Burgers equation. The RKS method for solving the GBE is
a suitable method that shows the high accuracy as in the example, our proposed
method the error gets smaller.
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