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Abstract. In this work, we consider the nonlinear first-order evolution equations: ut =
f(x, t, u, ux, uxx) for 0 < t < ∞, subject to initial condition u(x, 0) = g(x), where u is a
function of x and t and f is a known analytic function. The purpose of this paper is to
introduce the method of RBF to existing method in solving nonlinear first-order evolution
equations and also the method is implemented in four numerical examples. The results reveal
that the technique is very effective and simple.
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1. Introduction

Over the last decades several analytical/numerical methods have been developed to
solve nonlinear equations. For initial-value problems in ordinary differential equa-
tions, some of these technique include perturbation [12], variational [6−−8], decom-
position [2] methods, etc [14]. In the recent years, radial basis function collocation
has become a useful alternative to finite difference and finite element methods for
solving elliptic partial differential equations. RBF collocation methods have been
shown numerically [10] and theoretically [5] to be very accurate even for a small
number of collocation points. In application finite difference methods often have a
low approximation order and consequently can require a large grid and consider-
able computation to obtain a sufficiently accurate solution. RBF collocation has
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been applied to linear elliptic PDEs in R2 and R3 [11], to time dependent problems
[9], and to non-linear problems [13]. In this paper we present new numerical results
for RBF collocation, and the purpose of this work, is to use RBF method to solve
the first-order evolution nonlinear equations. We can present this technique to the
other similar problems. The paper is organized as follows. In Section 2, we con-
sider radial basis function and newton’s method, respectively. We then introduce
first-order evolution equation and consider approximating solution. Some applica-
tions to the first-order evolution equation problems are presented in Section 4. A
summary of the main conclusions presented in the last section of the paper.

2. Preliminaries radial basis functions and newton’s method

Radial Basis Functions (RBFs) are popular for interpolating scattered data since
the associated system of linear equations is guaranteed to be invertible under very
mild conditions on the location of the data points. For example, the thin-plate
spline used in this library only requires that the points are not co-linear. In partic-
ular, Radial Basis Functions do not require that the data lie on any sort of regular
grid [4]. A radial basis function (RBF) is a function of the form:

s(x) = p(x) +
N∑
i=1

λiΦ(x− xi), (1)

where: s is the radial basis function (RBF for short) and p is a low degree poly-
nomial, typically linear or quadratic and the λi’s are the RBF coefficients and
Φ is a real valued function called the basic function and the xi ’s are the RBF
centres. The RBF consists of a weighted sum of a radially symmetric basic func-
tion φ located at the centres xi and a low degree polynomial p. Given a set of N
points xi and values fi, the process of finding an interpolating RBF, s, such that,
s(xi) = fi, i = 1, 2, ..., N is called fitting. The fitted RBF is defined by the λi, the
coefficients of the basic function in the summation, together with the coefficients
of the polynomial term p(x). [4] For a fixed point xj ∈ Rd , a radial basis function
is defined:

φj(x) = φ(‖ (x− xj) ‖) (2)

which is function only dependents on the distance between xj ∈ Rd and the point
xj . This function is radially symmetric near the center xj .

φ(r) = exp(−cr2) (3)

φ(r) =
√
r2 + c2 (4)

However c is a shape parameter which should be considered suitably also the Eu-
clidean distance is considered for the RBF have a global support [3].
Newton’s method for nonlinear equations: A system of nonlinear equations
is expressed in the form F (X) = 0 , where F is a vector-valued function of the
vector variable X;F : R −→ R. Given an estimate X(k) of a solution X∗. Newton’s
method indicates the estimate X(k+1) by setting the local linear approximation to
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F at X(k) to zero and solving for X:

J(X(k))H(k) = −F (X(k)), X(k+1) = X(k) +H(k) , k = 0, 1, 2, ... (5)

In this calculation, J = J(X(k)) is the Jacobian matrix of F at X(k).

3. First-order evolution

Consider the first-order nonlinear evolution equation, [1, 14]

ut = f(x, t, u, ux, uxx) , 0 < t <∞ , u(x, 0) = g(x) (6)

where t denotes time 0 < t < ∞ and x is the spatial coordinates and f is a
nonlinear function of u, ux, uxx and the subscripts denote partial differentiation.
Integrated from equation (6) to yield:

u(x, t) = g(x) +

∫ t

0
f(x, p, u, ux, uxx)dp,

solve iteratively as,

uk+1(x, t) = g(x) +

∫ t

0
f(x, p, uk, ukx, u

k
xx)dp,

which k shows the k th iteration. The g(x) +
∫ t

0 fdp is a contractive mapping. The
convergence of this equation is ensured by Banach’s fixed-point theorem [15].

Let (X, d) be a nonempty complete metric space and let X −→ X be a contrac-
tion mapping on X, then is, there exists a nonnegative real number q < 1 such that
d(Tx, Ty) 6 qd(x, y) for all x and y in X.Then the map T admits one and only one
fixed point x∗ in X such that Tx∗ = x which can be determined by starting with an
arbitrary x0 in X and the iterative sequence xk = Txk−1, n = 1, 2, 3, ..., converge

and its limits is x∗ with the following speed of convergence d(x∗, xk) 6 qk

1−qd(x1, x0),
and the smallest value of q is sometimes called the Lipschitz condition.

In the case that equation (6) represents an ordinary differential equation, i.e.,
f = f(u, t), the Picard-Lindelof theorem indicates that equation (6) has a unique
solution if f is continuous with respect to t and Lipschitz continuous with respect
to u, ux, uxx.

To illustrate the basic concepts of this technique, consider the approximation
solution as:

ũ(x, t) ≡
N∑
i=1

ciφi(x, t) (7)

which ci’s are constants and the φi’s are radial basis functions. where φi(x, t) =
φ(‖(x−xi, t− ti)‖) is a radial basis function on r = ‖(x, t)‖. From equation (7) we
have:

ũt ≡
N∑
i=1

ci
∂φi

∂t (x, t), ũx ≡
N∑
i=1

ci
∂φi

∂x (x, t), ũxx ≡
N∑
i=1

ci
∂2φi

∂x2 (x, t) (8)
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Substitution of the equation (8) into (6) yields,

N∑
i=1

ci
∂φi

∂t (xj , tj)− f(x, t,
N∑
i=1

ciφi,
N∑
i=1

ci
∂φi

∂x ,
N∑
i=1

ci
∂2φi

∂x2 )(xj , tj) ≡ 0 (9)

For simplicity, by considering:

αij(xj , tj) = φi(xj , tj), βij(xj , tj) = ∂φi

∂t (xj , tj)

γij(xj , tj) = ∂φi

∂x (xj , tj), λij(xj , tj) = ∂2φi

∂x2 (xj , tj)

and substituting them into equation (9), we have

N∑
i=1

ciβij(xj , tj)− f(xj , tj ,
N∑
i=1

ciαij ,
N∑
i=1

ciγij ,
N∑
i=1

ciλij)(xj , tj) ≡ 0 (10)

which is a nonlinear system of equations. Furthermore, we assume N = N1 + N2

that N1 denotes the number of boundary points and N2 shows the number of
interior points. Suppose that the following sets contain a collocation of scattered
nodes in every levels of interpolation

Ξ1 = {(xi, ti) ∈ Ω̄× [0, T1], i = 1, ...,m}, T > T1. (11)

Ξk = {(xi, ti + (k − 1)T1); (xi, ti) ∈ Ξ1, i = 1, ...,m, k = 2, 3, ...} (12)

and the problem has a solution in Ω̄× [(k − 1)T1, kT1].

4. Numerical examples

To achieve the goal of this work, we consider some examples, and we draw them
in the another page, you can compare them.

Example 4.1 Consider the following nonlinear partial differential equation:
ut = uxxu+ 9u2 + 2u
with initial conditions: u(0, t) = 0, u(1, t) = sin(3) exp(2t), u(x, 0) = sin(3x)
The exact solution is: u(x, t) = sin(3x) exp(2t).
By considering φ(r) =

√
c2 + r2, and with taking c = 2, N = 7, 0 6 x 6 1, we

obtain error graph for this approximation as in Figure 1.

Example 4.2 We assume:
ut = uxxu− u2

x + exp(x2) cos(t)
with initial conditions: u(x, 0) = 0, u(x, 1) = exp(x2) sin(1), u(0, t) = sin(t)
The exact solution is: u(x, t) = exp(x2) sin(t).
As stated before, using equation (4), and by taking c = 3, N = 7, 0 6 x 6 1, we
have Figure 2 for error function.

Example 4.3 Consider the following problem:
ut = uxxu+ u2 − 3u
with initial conditions: u(0, t) = exp(−3t), u(1, t) = (sin 1 + cos 1) exp(−3t),
u(x, 0) = sinx+ cosx
and the exact solution: u(x, t) = (sinx+ cosx) exp(−3t).
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According to the equation (4) and by considering c = 3, N = 7, 0 6 x 6 1, we
obtain the error function shown in Figure 3.

Example 4.4 Consider the problem:
ut = t

u

with the initial conditions: u(0, t) =
√
t2 + 1, u(1, t) =

√
t2 + 2,

u(x, 0) =
√
x2 + 1

The exact value is: u(x, t) =
√
x2 + t2 + 1.

Using the method and the equation (4), by considering c = 3, N = 7,
0 6 x 6 1, We have the error function which is shown in Figure 4.

The error functions are shown in four figures.

Left: Figure 1: Error function in ut = uxxu+ 9u2 + 2u
Right: Figure 2: Error function in ut = uxxu− u2

x + exp(x2) cos(t).

Left: Figure 3: Error function in ut = uxxu+ u2 − 3u
Right: Figure 4: Error function in ut = t

u .

5. Conclusions

Radial basis function method has been known as a powerful tool for solving many
equations. In this article, we have presented a general framework of the RBF
method for first-order equations. The present work shows the validity and great
potential of RBF technique for solving linear and nonlinear equations. All of exam-
ples show that the results of RBF are in excellent agreement with those obtained
by other methods. In this type of problems, if we take care in selection of ap-
proximation radial basis functions and their shape parameter, we can obtain more
accurate solution with less error.
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