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1. Introduction 

The concepts of metric spaces are introduced in [1]. In 2004, the concept of a partial 

ordering structure in the notions of metric spaces was introduced in [2]. Later, the authors 

in [2] proved fixed point theorems for monotone singlevalued mappings in a metric space 

endowed with partial order. The investigation of a new approach in metric fixed point 

theory by replacing an order structure with a graph structure in metric spaces was initiated 

in [3]. Still in [3], they obtained the fixed point theorem for Banach contraction principle 

on metric spaces endowed with a graph. 

Banach contraction result was initiated in 1922 and the unique fixed point of this operator 

is proved in a complete metric space. The result gained wide range of applications in 

mathematics and applied mathematics. Due to its applications, numerous researchers 

extended and generalized it in several areas (see [4], [5], [6], [7], [8]). In particular, the 

author in [9] generalized the Banach contraction mappings to quasi contraction mappings. 

Fixed point theorems for quasi contraction mappings in both metric and modular metric 

spaces with a graph structure are proved in [10].  The work of [10] was extended to G-

monotone generalized quasi contraction mappings in the same spaces. The family of 

contraction mappings was introduced and studied by [12]. The study of existence of 

common fixed point for finite and infinite family of self mappings has been proved by 

many authors. For example, [1 3 -16]. 
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2. Basic Concept 

3. Common Fixed Point Theorems for Family of Mappings  
4. Conclusion 
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The aim of this paper is to prove some new results on the existence and uniqueness of 

common fixed points for finite family of self-mappings satisfying certain contractive 

conditions in a metric space endowed with a graph. 

 

2. Basic Concept 

 

In this section, we review some definitions and motivations that will be needed to prove 

our results. 

In 1971, the following definitions and facts were introduced in [9, 12]. 

Definition 2.1. Let (𝑋, 𝑑) be a metric space and 𝑇: X →  Xbe a selfmap. The map𝑇is 

called quasi contraction if there exists  0 ≤ k <  1 such that for each 𝑥, y ∈ 𝑋,  

     𝑑(Tx, Ty) ≤ k max{ d(𝑥, y), d(𝑥, Tx), d(𝑦, Ty), d(𝑥, Ty), d(𝑦, Tx)}. 
 

Definition 2.2. Let 𝑋 be a nonempty set and let  {𝑇𝑖} be a family of self mappings on 𝑋. 

A point 𝑥0  ∈ 𝑋is called a common fixed point for this family if and only if 𝑇𝑖(𝑥0)  =  x0, 

for each 𝑖 ∈ ℕ. 

 

The following theorem was given by [12] for a family of generalized contraction mappings. 

Theorem 2.3. Let (𝑋, 𝑑) be a complete metric space and let {𝑇𝑖}𝑖∈𝐽 be a family of self 

mappings of 𝑋. If there exists fixed 𝑗 ∈ 𝐽such that for each𝑖 ∈ 𝐽 

𝑑(𝑇𝑖𝑥, T𝑗𝑦) ≤ 𝜆 max {𝑑(𝑥, y), d(𝑥, T𝑖𝑥), d(𝑦, T𝑗𝑦),
1

2
[𝑑(𝑥, T𝑗𝑦) +  d(𝑦, T𝑖𝑥)]},  for 

some 𝜆 = 𝜆(𝑖) ∈  (0, 1) and all 𝑥, y ∈ 𝑋, then all  𝑇𝑖have a unique common fixed point, 

which is unique fixed point of each  {𝑇𝑖},𝑖 ∈ 𝐽. 

 

We now give brief description of graph theory. Details of graph theory can also be found 

in [17]. 

Let (𝑋, 𝑑) be a metric space, 𝛿 = 𝛿(𝑋) is the diagonal of𝑋. Let 𝑉 be a set and 𝐸 ⊂
𝑉 × 𝑉 be a binary relation on𝑉, the ordered pair (𝑉, E) is called a graph𝐺. The elements 

of 𝐸 are called edges and are denoted by𝐸(𝐺). If the edges are directed then we have a 

directed graph. Suppose 𝐺has no parallel edges then the graph can be represented by the 

ordered pair (𝑉(𝐺), E(𝐺))and the metric space is equipped with𝐺. 

If the direction of the edges is reversed then we have graph 𝐺−1. Also we have undirected 

graph 𝐺, if the direction of the edges is ignore. In other words, we have 𝑉(𝐺−1) = 𝑉(𝐺) =

𝑋, 𝐸(𝐺−1) = {(𝑥, y): (𝑦, 𝑥) ∈ 𝐸(𝐺)} and 𝐸(𝐺 ) =  E(𝐺) ∩  E(𝐺−1). 
If 𝑥, y ∈ 𝑋, then a finite sequence {𝑥𝑖}𝑖=0

∞  consisting of  𝑁 +  1vertices is called a path in 

𝐺from 𝑥 to𝑦whenever 𝑥0 = 𝑥, 𝑥𝑁 = 𝑦and (𝑥𝑖−1, x𝑖) is an edge of 𝐺  for 𝑖 = 1, … , N. 

The graph 𝐺 is called connected if there exists a path in 𝐺 between each two vertices of 

𝐺. 

 

The following definitions are found in [11]. 

Definition 2.4. A mapping 𝑇: 𝑋 → 𝑋 is called a 𝐺 -monotone if 𝑇 preserves edges of𝐺, 

that is, for all 𝑥, y ∈ 𝑋,(x, y)  ∈ 𝐸(𝐺)  ⇒ (Tx, Ty)  ∈ 𝐸(𝐺). 

 

Definition 2.5. A mapping 𝑇: 𝑋 → 𝑋 is called 𝐺 -contraction if 𝑇 preserves edges of 𝐺 

that is, for all 𝑥, y ∈ 𝑋, (x, y)  ∈ 𝐸(𝐺)  ⇒ (Tx, Ty)  ∈ 𝐸(𝐺) and 𝑇 decreases weight of 

edges of 𝐺 in the following way; there exists 𝜆 ∈  (0, 1) and for all 𝑥, y ∈ 𝑋,(x, y)  ∈
𝐸(𝐺)  ⇒ 𝑑(Tx, Ty)  ≤ 𝛼 d(𝑥, 𝑦). 
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Definition 2.6. Let 𝐶 be a nonempty subset of 𝑋. A mapping 𝑇: C → 𝐶is called 𝐺 - 

monotone quasi contraction if 𝑇is 𝐺 - monotone and there exists  k <  1 such that for 

any 𝑥, y ∈  C, (𝑥, y)  ∈  E(𝐺), we have 

𝑑(T x, T y) ≤ k max { d(𝑥, y), d(𝑥, Tx), d(𝑦, Ty), d(𝑥, Ty), d(𝑦, Tx)}. 
 

Definition [3] 2.7. Suppose that(𝑋, 𝑑) is a metric space and 𝐺 is a directed graph. The 

triple (𝑋, 𝑑, 𝐺) is said to have Property (𝐴) if and only if for any sequence {𝑥𝑛} in 𝑋 

such that 𝑥𝑛 → x and (𝑥𝑛, x𝑛+1)  ∈  E(𝐺)where 𝑛 ∈ 𝑁, we have that (𝑥𝑛, x) ∈  E(𝐺). 

Definition 2.8 . Let 𝑇: 𝑋 → (−∞,∞) be a function on a topological space 𝑋. Then, 𝑇is 

upper semi continuous at the point 𝑥 ∈ 𝑋 if and only if   x𝑛 → x ⇒ 𝑙𝑖𝑚𝑠𝑢𝑝
𝑛→∞

𝑇(𝑥𝑛) ≤ Tx . 

Recall that 𝜗: 0, ∞) →  0, ∞) is called a comparison function if it is increasing and upper 

semi- continuous. As a consequence, we also have 𝜗(𝑡)  <  t, for each t > 0, 𝜗(0)  = 0 

. For example, 𝜗(𝑡)  =  at(where a ∈ 0, 1), 𝜗(𝑡)  =
𝑡

1+𝑡
 and 𝜗(𝑡)  =  ln(1 +  t), t ∈

ℝ+ . 
 

Definition 2.9. Let 𝐶 be a nonempty subset of a metric space 𝑋. A mapping 𝑇: C → 𝐶is 

called 

(i)𝐺 - monotone if𝑇preserves edges of𝐺, 

(ii)𝐺 - monotone generalized quasi contraction if 𝑇 is𝐺 - monotone and there exists a 𝜗 ∈
Φ  such that for any 𝑥, y ∈  C, (𝑥, y)  ∈  E(𝐺) , we have 𝑑(T x, T y) ≤  max 
{𝜗 (𝑑(𝑥, y)), 𝜗 (𝑑(𝑥, Tx)), 𝜗(𝑑(𝑦, Ty)), 𝜗(𝑑(𝑥, Ty)), 𝜗(𝑑(𝑦, Tx))}. 

Definition [18] 2.10. Let 𝑇: 𝑋 → 𝑋be a selfmap on a metric space. For each 𝑥 ∈ 𝑋and for 

any positive whole number 𝑛 , 𝑂𝑇(𝑥, n)  = {𝑥, Tx, T2𝑥, T3𝑥, … , T𝑛𝑥} and O𝑇(𝑥,∞)  =
{𝑥, Tx, T2𝑥, T3𝑥, … }. 
The set 𝑂𝑇(𝑥,∞) is called the orbit of 𝑇at 𝑥  and the metric space 𝑋  is called 𝑇  - 

orbitally complete if every Cauchy sequence in 𝑂𝑇(𝑥,∞) is convergent in 𝑋. 

 

 

3. Common Fixed Point Theorems for Family of Mappings  

In this segment, we present the definition of finite G- monotone generalized quasi 

contraction mappings in a metric space. The existence and uniqueness of the common fixed 

point of this map is proved in a metric space endowed with a graph. Example is provided 

to validate our results. 

Definition 3.1.  Let (𝑋, 𝑑) be a metric space endowed with a graph G and   {𝑇𝑖}𝑖=1
𝑚  be a 

finite family of self mappings on𝑋.  {𝑇𝑖}𝑖=1
𝑚 is called ;  

(𝐴1) 𝐺 - monotone if  {𝑇𝑖}𝑖=1
𝑚 preserves the edges of G , that is, (𝑥, y) ∈  E(𝐺) implies 

(𝑇𝑖𝑥, T𝑖𝑦) ∈ 𝐸(𝐺) for all 𝑥, y ∈ 𝑋; 
(𝐴2)𝐺 - monotone generalized quasi contraction if 𝑇𝑖 is 𝐺 - monotone and there exists a 

𝜗 ∈ Φ such that for any 𝑥, y ∈ 𝑋, with (𝑥, y) ∈  E(𝐺), we have 

𝑑(𝑇𝑖𝑥, T𝑖𝑦) ≤  M𝑖(𝑥, y), for all  i ∈ {1, 2, ⋯ , m}                                                  (1) 

where 

𝑀𝑖(𝑥, y) =  max {
𝜗 (𝑑( T𝑖−1𝑥, T𝑖−1𝑦)), 𝜗 (𝑑( T𝑖−1𝑥, T𝑖𝑥)),

𝜗(𝑑( T𝑖−1𝑦, T𝑖𝑦)), 𝜗(𝑑( T𝑖−1𝑥, T𝑖𝑦)), 𝜗(𝑑( T𝑖−1𝑦, T𝑖𝑥))
}. 

 

 Lemma 3.1. Let (𝑋, 𝑑) be a metric space and 𝐺be a reflexive and transitive digraph on 

𝑋. Let  {𝑇𝑖}𝑖=1
𝑚  be a finite family of self mappings on 𝑋. Let𝐶be a nonempty subset of 𝑋 
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and 𝑇𝑖: C → 𝐶 be a 𝐺 - monotone generalized quasi contraction mapping. Let 𝑥 ∈ 𝐶 be 

such that (𝑥, T𝑖𝑥) ∈  E(𝐺) and 𝛿(𝑥)  <  ∞ then for any n ∈ ℕ, we have  

                   𝛿(𝑇𝑖+𝑛(𝑥)) ≤ 𝜗𝑛(𝛿(𝑥)) 

where 𝜗 ∈ Φis the comparison function associated with the 𝐺 - monotone generalized 

quasi contraction definition of 𝑇𝑖. Moreover, we have  

                  𝑑(𝑇𝑖+𝑛𝑥, T𝑖+𝑛+𝑚𝑥)  ≤ 𝜗𝑛(𝛿(𝑥)) 

for all n,m ∈ ℕ. 

 Proof. Let 𝑥 ∈ 𝑋be arbitrary chosen. Since 𝑇𝑖is𝐺 -monotone and  
( T𝑖+𝑛𝑥, T𝑖+𝑛+1𝑥) ∈ 𝐸(𝐺) for each n ∈ ℕ. By the transitivity of 𝐺, for each  n ∈ ℕ, we 

also have ( T𝑖+𝑛𝑥, T𝑖+𝑛+𝑚𝑥) ∈  E(𝐺) for any 𝑚 ∈ 𝑍+. 

As 𝐺 is reflexive, (𝑥, x) ∈  E(𝐺) and by the𝐺 - monotonicity of 𝑇𝑖, we obtain 
( T𝑖+𝑛𝑥, T𝑖+𝑛𝑥) ∈ 𝐸(𝐺) for any n ∈ ℕ, 

 and hence (1) holds for m=0. Thus, we obtain 
( T𝑖+𝑛𝑥, T𝑖+𝑛+𝑚𝑥) ∈ 𝐸(𝐺) for any n,m ∈ ℕ.                                  (2) 

 

Now we show that  

𝛿(𝑇𝑖+𝑛(𝑥)) ≤ 𝜗𝑛(𝛿(𝑥)), for each n ∈ ℕ. 

For n =1, from (2) and using the monotonicity of 𝜗, we have 

𝑑(𝑇𝑖+1𝑥, T𝑖+1+𝑚𝑥) ≤ max {𝜗(𝑑( T𝑖𝑥, T𝑖+𝑚𝑥)), 𝜗 (𝑑( T𝑖𝑥, T𝑖+1𝑥)),                       

                     𝜗 (𝑑( T𝑖+𝑚𝑥, T𝑖+1+𝑚𝑥), 𝜗(𝑑( T𝑖𝑥, T𝑖+1+𝑚𝑥)), 𝜗(𝑑( T𝑖+𝑚𝑥, 

T𝑖+1𝑥))}                   ≤ 𝜗(𝛿(𝑥)), 

for each m ∈ ℕ. This shows that 

             𝛿(𝑇𝑖+1(𝑥)) ≤ 𝜗(𝛿(𝑥)).                                         (3) 

From (3) and the monotonicity of 𝜗, we get 

 𝜗 (𝛿(𝑇𝑖+1(𝑥))) ≤  𝜗2(𝛿(𝑥)).                                                                                      (4) 

By combining (3) and (4) and the monotonicity of 𝜗, we have 

𝛿(𝑇𝑖+2(𝑥))  = 𝛿 (𝑇(𝑇𝑖+1(𝑥)))  

                 ≤ 𝜗(𝛿((𝑇𝑖+1(𝑥)) 

                  ≤ 𝜗2(𝛿(𝑥)). 

                    
By induction we conclude that 

𝛿(𝑇𝑖+𝑛(𝑥))  = 𝛿 (𝑇(𝑇𝑖+𝑛−1(𝑥)))  

                   ≤ 𝜗(𝛿((𝑇𝑖+𝑛−1(𝑥)) 

                   ≤ 𝜗𝑛(𝛿(𝑥)), 
 

for each n ∈ ℕ. Thus, for each n ∈ ℕ,  

 𝛿(𝑇𝑖+𝑛(𝑥))  ≤ 𝜗𝑛(𝛿(𝑥)).                                                   (5) 

On the other hand, using (2) and the definition of 𝛿, we obtain 

𝑑(𝑇𝑖+𝑛𝑥, T𝑖+𝑛+𝑚𝑥)  =   d(𝑇𝑖+𝑛𝑥, 𝑇𝑚( T𝑖+𝑛)𝑥) 
                             ≤ 𝛿(𝑇𝑖+𝑛(𝑥)),                                    (6) 

for each n,m ∈ ℕ. From (5) and (6) we conclude that𝑑(𝑇𝑖+𝑛𝑥, T𝑖+𝑛+𝑚𝑥) ≤ 𝛿𝑛(𝛿(𝑥)), 

for each n,m ∈ ℕ. 

 

Theorem 3.1. Let (X, d) be a metric space and G be a reflexive and transitive digraph 

defined on X such that the triple (X, d, G) has Property (A), for any sequence {𝑥𝑛}𝑛∈𝑁in 

X, if 𝑥𝑛 →  x and (𝑥𝑛, x𝑛+1)  ∈ 𝐸(𝐺) for n ∈ ℕ, then (𝑥𝑛, x) ∈ 𝐸(𝐺)for each n ∈ ℕ. 

Let C be a closed subset of X and 𝑇𝑖 , i = 1, 2, ⋯ , ma finite family of self mappings on X 
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is a G- monotone generalized quasi contraction mapping with 𝜗 ∈ Φ, the comparison 

function. For x ∈ 𝐶 with (𝑥, T𝑖𝑥) ∈ 𝐸(𝐺) and 𝛿(𝑥)  < ∞ .  Let T(X) be orbitally 

complete, then we have the following; 

(i) There exists 𝑝 a common fixed point of 𝑇𝑖 , i = 1, 2, ⋯ , m such that {𝑇𝑖}𝑖=1
𝑚 converges 

to 𝑝. Moreover, we have (𝑥, p) ∈ 𝐸(𝐺) and 𝑑(𝑇𝑖+𝑛𝑥, p) ≤ 𝜗𝑛(𝛿(𝑥)) for each n ∈ ℕ. 

(ii) if 𝑢is any common fixed point of 𝑇𝑖 , i = 1, 2, ⋯ , m such that (𝑥, u) ∈ 𝐸(𝐺), then 

𝑢 = 𝑝. 

 Proof. We need to prove (i). By Lemma 3.1, we proved that {𝑇𝑖}𝑖=1
𝑚  is a Cauchy sequence 

in C. Since X is a complete metric space and C is a closed subset of X , there exists 𝑝 ∈ 𝐶 

such that {𝑇𝑖}𝑖=1
𝑚  converges to p. From (7) we have  

𝑑(𝑇𝑖+𝑛𝑥, T𝑖+𝑛+𝑚𝑥) ≤  𝜗𝑛(𝛿(𝑥)),                                                                               (7) 

for anyn,m ∈ ℕ. Letting 𝑚 → ∞ in (7) yields 

𝑑(𝑇𝑖+𝑛𝑥, p) ≤ 𝜗𝑛(𝛿(𝑥)), 

for n ∈ ℕ. Since 𝑇𝑖 is G-monotone and (𝑥, T𝑖+𝑛𝑥) ∈ 𝐸(𝐺) we have 𝑑(𝑇𝑖+𝑛𝑥, T𝑖+𝑛𝑥) ∈
𝐸(𝐺)for each n ∈ ℕ and using Property (A), we concluded that 𝑑(𝑇𝑖+𝑛𝑥, p) ∈ 𝐸(𝐺) for 

each n ∈ ℕ. In particular, (𝑥, p) ∈ 𝐸(𝐺).. 
 

We need to show that 𝑝is the common fixed point of 𝑇𝑖 for all  i = 1, 2, ⋯ , m . From 

𝑑(𝑇𝑖+𝑛𝑥, p) ∈ 𝐸(𝐺) the 𝐺  - monotonicity of  𝑇𝑖 , we have 𝑑(𝑇𝑖+𝑛𝑥, T𝑖𝑝) ∈ 𝐸(𝐺) for 

each n ∈ ℕ. As 𝑑(𝑇𝑖+𝑛𝑥, T𝑖+𝑛𝑥) ∈ 𝐸(𝐺) and 𝐺 is transitive, we obtain 

𝑑(𝑇𝑖+𝑛𝑥, T𝑖𝑝) ∈ 𝐸(𝐺) for each n ∈ ℕ.                                              (8) 

 

Therefore using (8) and the condition that 𝐺 -monotone generalized quasi- contraction, 

we have a comparison function 𝜗 satisfying 

𝑑(𝑇𝑖+𝑛𝑥, T𝑖𝑝) ≤ max {
𝜗 (𝑑( T𝑖+𝑛−1𝑥, p)), 𝜗 (𝑑( T𝑖+𝑛−1𝑥, T𝑖+𝑛x )),

𝜗(𝑑( p, T𝑖 p), 𝜗 (𝑑( T𝑖+𝑛−1𝑥, T𝑖𝑝)), 𝜗(𝑑( p, T𝑖+𝑛𝑥))
} ,    (9) 

for each n ∈ ℤ+. Letting n → ∞ in (9) and using the upper semi-continuity of 𝜗, yields,  

𝑑(𝑝, T𝑖𝑝) ≤ 𝜗(𝑑(𝑝, T𝑖𝑝)). 

 

This implies that 𝑑(𝑝, T𝑖𝑝) = 0, hence 𝑝, = T𝑖𝑝 for all 𝑖 =  1, 2, ⋯ , m. 

Next we show (ii). Let 𝑢 ∈  C be any common fixed point of 𝑇𝑖 such that (𝑥, u) ∈ 𝐸(𝐺). 

Then for each n ∈ ℕ, and 𝑇𝑖 a 𝐺 -monotone, we have (𝑇𝑖+𝑛𝑥, u) ∈ 𝐸(𝐺). Therefore, 

𝑑(𝑇𝑖+𝑛𝑥, u) ≤ max{𝜗(𝑑( T𝑖+𝑛−1𝑥, u)), 𝜗(𝑑( T𝑖+𝑛−1𝑥, T𝑖+𝑛x )), 

               𝜗(𝑑( u, T𝑖𝑢), 𝜗(𝑑( T𝑖+𝑛−1𝑥, u)), 𝜗(𝑑( u, T𝑖+𝑛𝑥))} 

             =  max{𝜗(𝑑( T𝑖+𝑛−1𝑥, u)), 𝜗(𝑑( T𝑖+𝑛−1𝑥, T𝑖+𝑛x )), 

               𝜗(𝑑( T𝑖+𝑛−1𝑥, u)), 𝜗(𝑑( u, T𝑖+𝑛𝑥))}.                                                     (10) 

 

If   max{𝜗(𝑑( T𝑖+𝑛−1𝑥, u)), 𝜗(𝑑( T𝑖+𝑛−1𝑥, T𝑖+𝑛x )), 

     𝜗(𝑑( T𝑖+𝑛−1𝑥, u)), 𝜗(𝑑( u, T𝑖+𝑛𝑥))} = 𝜗(𝑑( u, T𝑖+𝑛𝑥)) 

for some n ∈ ℤ+, then from (10) we have,  

𝑑(𝑇𝑖+𝑛𝑥, u) ≤ 𝜗(𝑑( u, T𝑖+𝑛𝑥)).  

By the property of (ii) of 𝜗, we obtain 

𝑑( u, T𝑖+𝑛𝑥) = 0. This implies u = T𝑖+𝑛𝑥. 

 

This shows that the sequence 𝑇𝑖+𝑛𝑥 → 𝑢as 𝑛 → ∞. By the uniqueness of the limit, we 

conclude that u= p. Otherwise, 

 max{𝜗(𝑑( T𝑖+𝑛−1𝑥, u)), 𝜗(𝑑( T𝑖+𝑛−1𝑥, T𝑖+𝑛x )), 

     𝜗(𝑑( T𝑖+𝑛−1𝑥, u)), 𝜗(𝑑( u, T𝑖+𝑛𝑥))} ≠ 𝜗(𝑑( u, T𝑖+𝑛𝑥)) 
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Applying (10) again yields, 

𝑑(𝑇𝑖+𝑛𝑥, u) ≤ max{𝜗(𝑑( T𝑖+𝑛−1𝑥, u)), 𝜗(𝑑( T𝑖+𝑛−1𝑥, T𝑖+𝑛x ))} 

              ≤ 𝜗(𝑑( T𝑖+𝑛−1𝑥, u)) +  𝜗(𝑑( T𝑖+𝑛−1𝑥, T𝑖+𝑛x )),                                      (11) 

 

for all n ∈ ℤ+. 

Take the limit superior of (11) and using the upper semi-continuity of 𝜗 yields 

𝑑(𝑝, u) ≤ 𝑙𝑖𝑚𝑠𝑢𝑝
𝑛→∞

𝜗(𝑑( T𝑖+𝑛−1𝑥, u)) + 𝑙𝑖𝑚𝑠𝑢𝑝
𝑛→∞

𝜗(𝑑( T𝑖+𝑛−1𝑥, T𝑖+𝑛x )) ≤ 𝜗(𝑑(𝑝, u))  

                                                                                     (12) 

By property (ii) of 𝜗and (12) we conclude that𝑑(𝑢, p) = 0. Hence u = p. 

Remarks 3.1. (i) If 𝑚 = 1 in {𝑇𝑖}𝑖=1
𝑚  then Theorem 3.1 reduces to Theorem 5 of Hunde 

et al.[11]. We proved our result for finite family of 𝐺  -monotone generalized quasi 

contraction mappings while Hunde et al.[11] proved their result for single map. 

(ii) Also if we take 𝜗(𝑡) =  kt, where 𝑘 ∈  0, 1) and 𝑚 = 1 in {𝑇𝑖}𝑖=1
𝑚 then Theorem 3.3 

is reduced to the result of Alfuraidan [10], (Theorem 3.1). 

(iii) If we take 𝜗(𝑡) =  t- 𝜗(𝑡) and quasi contraction is replaced with Reich contraction 

and our space reduces to metric space then Theorem 3.1 reduces to the result of Lin and 

Wang ([13], Theorem 2.1). 

(iv) The finite family {𝑇𝑖}𝑖=1
𝑚 of self mappings in Theorem 3.1 is neither commuting nor 

continuous. These conditions are often assumed when proving common fixed point 

theorems, see [13]. 

 

Corollary 3.1. Let (𝑋, d)be a metric space and𝐺be a reflexive and transitive digraph 

defined on 𝑋such that the triple (𝑋, d, G)has Property(𝐴), for any sequence {𝑥𝑛}𝑛∈ℕin 𝑋, 

if 𝑥𝑛 → 𝑥and (𝑥𝑛, x𝑛+1) ∈ 𝐸(𝐺)for 𝑛 ∈  N, then (𝑥𝑛, x) ∈ 𝐸(𝐺) for each 𝑛 ∈ ℕLet 𝐶 

be a subset of 𝑋 and 𝑇 a self mappings on 𝑋 is a 𝐺  - monotone generalized quasi 

contraction mapping with 𝜗 ∈ Φ, the comparison function. For 𝑥 ∈ 𝐶  with (𝑥, Tx) ∈
𝐸(𝐺) and  𝛿(𝑥) < ∞, we have the following; 

(i) There exists 𝑝a fixed point of 𝑇such that {𝑇𝑛} converges to 𝑝. Moreover, we have 

(𝑥, p) ∈ 𝐸(𝐺)and 𝑑(𝑇𝑛𝑥, p) ≤ 𝜗𝑛(𝛿(𝑥)) for each 𝑛 ∈  N. 

(ii) if 𝑢 is any fixed point of 𝑇 such that (𝑥, u) ∈ 𝐸(𝐺), then u = p.  

Corollary 3.2. Let (𝑋, d)be a metric space and𝐺be a reflexive and transitive digraph 

defined on 𝑋such that the triple (𝑋, d, G)has Property(𝐴), for any sequence {𝑥𝑛}𝑛∈ℕin 𝑋, 

if 𝑥𝑛 → 𝑥and (𝑥𝑛, x𝑛+1) ∈ 𝐸(𝐺)for 𝑛 ∈  N, then (𝑥𝑛, x) ∈ 𝐸(𝐺) for each 𝑛 ∈ ℕLet 𝐶 

be a subset of 𝑋and 𝑇a self mappings on 𝑋. If there exists 𝑘 ∈ 0, 1)such that 𝑇is a𝐺 - 

monotone quasi contraction mapping then for 𝑥 ∈ 𝐶 with (𝑥, Tx) ∈ 𝐸(𝐺) and  𝛿(𝑥) <
∞, we have the following; 

(i) There exists 𝑝a fixed point of 𝑇such that {𝑇𝑛} converges to 𝑝. Moreover, we have 

(𝑥, p) ∈ 𝐸(𝐺)and 𝑑(𝑇𝑛𝑥, p) ≤ 𝜗𝑛(𝛿(𝑥)) for each 𝑛 ∈  N. 

(ii) if 𝑢 is any fixed point of 𝑇 such that (𝑥, u) ∈ 𝐸(𝐺), then u = p. 

 

The following results give the unique common fixed point for a pair of finite families of𝐺 

-monotone generalized quasi contraction mappings in metric spaces equipped with a graph. 

 

 Definition 3.2. Let 𝐺be a directed graph, and let  𝑆, 𝑇: X → 𝑋be two mappings. We say 

that 𝑆is 𝑇 -edge preserving with respect to 𝐺if 
(Tx, Ty) ∈ 𝐸(𝐺) ⇒  (Sx, Sy) ∈ 𝐸(𝐺). 
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Definition 3.3. Let (𝑋, d) be a metric space endowed with a directed graph 𝐺  and 

 𝑆, 𝑇: X → 𝑋 be two finite families, where 𝑆 = {𝑆1, S2, ⋯ , n}  and 𝑇 = {𝑇1, T2, ⋯ , T𝑚} . 

The pair (𝑆, T)is called 𝐺 -monotone generalized quasi contraction mapping if 

(1)𝑆 is 𝑇 -edge preserving with respect to 𝐺; 

(2) there exists 𝜗 ∈ Φ and for all 𝑥, y ∈ 𝑋such that (Tx, Ty) ∈ 𝐸(𝐺), 

𝑑(Sx, S y) ≤ 𝑀(𝑥, y),                                                               (13) 

where 

𝑀(𝑥, y) =  max {𝜗(𝑑( Sx, Sy)), 𝜗(𝑑( Sx, Tx)), 

            𝜗(𝑑( Sy, Ty)), 𝜗(𝑑( Sx, Ty)), 𝜗(𝑑( Sy, Tx))}. 

 

We establish the following Lemma needed to prove the next theorem. 

Lemma 3.2. Let (𝑋, d)be a metric space and 𝐺be a reflexive and transitive digraph on𝑋. 

Let 𝑇and 𝑆be two finite families of self mappings on𝑋. Let 𝐶be nonempty subset of 𝑋and 

𝑆, T : C → 𝐶be 𝐺 -monotone generalized quasi contraction mapping. Let 𝑥 ∈ 𝐶be such 

that (Sx, Tx) ∈ 𝐸(𝐺) and 𝛿(𝑥)  < ∞then for any 𝑛 ∈  N, we have 

 

𝛿(Tx𝑛) ≤ 𝜗𝑛(𝛿(𝑥)) 

where 𝜗 ∈ Φ is the comparison function associated with the𝐺  -monotone generalized 

quasi contraction definition of 𝑇and 𝑆. Moreover, we have 𝑑( Sx𝑛, Sx𝑛+𝑚 ) ≤ 𝜗𝑛(𝛿(𝑥)) 

for each 𝑛, m ∈ 𝑁. 

Proof. Suppose 𝑥0 ∈ 𝑋such that  (Tx0, Sx0) ∈ 𝐸(𝐺). By the assumption that 𝑆(𝑋) ⊂
𝑇(𝑋) and Sx0 ∈ 𝑋, we can easily construct sequences {𝑥𝑛}in 𝑋 for which 

               Tx𝑛+1 =  Sx𝑛,                                                 (14) 

for all 𝑛 ∈ 𝑁. If Tx𝑛0
= Sx𝑛0

for some 𝑛0 ∈ 𝑁, then 𝑥𝑛0
is the coincidence point of the 

mappings 𝑇and 𝑆. Thus we assume that for each𝑛 ∈ 𝑁, Tx𝑛+1 ≠ Sx𝑛 holds. 

Since (Sx0, Tx0)  =  (Sx0, Sx1) ∈ 𝐸(𝐺)and 𝑆is edge preserving with respect to 𝑇 , we 

have (Sx0, Sx1)  =  (Tx1, Tx2) ∈ 𝐸(𝐺) . Continuing inductively, we obtain 
(Sx𝑛, Sx𝑛+1) ∈ 𝐸(𝐺) for each 𝑛 ∈ 𝑁. By the transitivity of 𝐺, for each 𝑛 ∈ 𝑁, we also 

have (Sx𝑛, Sx𝑛+𝑚) ∈ 𝐸(𝐺) for any  𝑚 ∈ 𝑍+. 

 

As 𝐺 is reflexive, (Sx0, Sx0) ∈ 𝐸(𝐺)  and by the 𝐺  -monotonicity of 𝑇 , we 

have(Sx𝑛, Sx𝑛) ∈ 𝐸(𝐺)for any𝑛 ∈ 𝑁and hence (14) holds for 𝑚 = 0. Thus, we have 
(Sx𝑛, Sx𝑛+𝑚) ∈ 𝐸(𝐺) for any n,m ∈ 𝑁. 

 

Now we show that 

𝛿(Sx𝑛) ≤ 𝜗𝑛(𝛿(𝑥)), for each 𝑛 ∈ 𝑁.  

For 𝑚 = 1, from (12) and using the monotonicity of 𝜗, we have  

𝑑(Sx𝑛, Sx𝑛+1) ≤ max{𝜗(𝑑( Tx𝑛, Tx𝑛+1)), 𝜗(𝑑( Sx𝑛, Tx𝑛)), 

             𝜗(𝑑(Sx𝑛+1, Tx𝑛+1)), 𝜗(𝑑( Tx𝑛, Sx𝑛+1)), 𝜗(𝑑( Sx𝑛, Tx𝑛+1))} 

                =  max{𝜗(𝑑( Sx𝑛−1, Sx𝑛)), 𝜗(𝑑( Sx𝑛−1, Sx𝑛)), 

             𝜗(𝑑(Sx𝑛, Sx𝑛+1)), 𝜗(𝑑( Sx𝑛−1, Sx𝑛+1)), 𝜗(𝑑( Sx𝑛, Sx𝑛))} 

             = 𝜗(𝛿(𝑥)). 

 

for each 𝑚 ∈ 𝑁. This shows that 

                 𝛿(𝑆(𝑥)) ≤ 𝜗(𝛿(𝑥)).                                    (15) 

From (14) and the monotonicity of 𝜗, we get 

                𝜗(𝛿(Sx)) ≤ 𝜗2(𝛿(𝑥)).                                   (16) 

Combining (15) and (16) and the monotonicity of 𝜗we obtain 
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𝛿(𝑆2𝑥) = 𝛿(𝑆(Sx)) ≤ 𝜗(𝛿(Sx)) ≤ 𝜗2(𝛿(𝑥)). 

By induction we conclude that, 

             𝛿(𝑆𝑛𝑥) = 𝛿(𝑆(𝑆𝑛−1𝑥)) 

                      ≤ 𝜗(𝛿(𝑆𝑛−1𝑥) 
 ⋮ 
≤ 𝜗𝑛(𝛿(𝑥)) 

for each 𝑛 ∈ 𝑁. 

On the other hand, using (14) and the definition of𝛿we obtain 

𝑑(𝑆𝑛x , S𝑛+𝑚𝑥)  =  d(𝑆𝑛(𝑥), S𝑚(𝑆𝑛(𝑥)) ≤ 𝛿(𝑆𝑛(𝑥)),                     (17) 

 

for each n,m ∈ 𝑁. From (16) and (17) we conclude that, 

𝑑(𝑆𝑛𝑥, S𝑛+𝑚𝑥) ≤ 𝜗𝑛(𝛿(𝑥)), 

for each n,m ∈ 𝑁. 

 

Now, we prove the theorem for a pair of finite families of𝐺 -monotone generalized quasi 

contraction in metric spaces endowed with a graph. 

Theorem 3.2. Let {𝑇1, T2, ⋯ , T𝑛}  and {𝑆1, S2, ⋯ , S𝑚} be two finite families of 

selfmappings on metric space and 𝐺 be a reflexive, transitive digraph defined on 𝑋 such 

that the triple (𝑋, d, G)has Property (𝐴), 𝑇 = {𝑇1, T2, ⋯ , T𝑛}and 𝑆 = {𝑆1, S2, ⋯ , S𝑚}. 

Let 𝐶 be a subset of 𝑋and 𝑆, T: C → 𝐶 finite families of 𝐺 -monotone generalized quasi 

contraction mappings with 𝜗 ∈ Φ, the comparison function. For x ∈ 𝐶 with (Sx, Tx) ∈
𝐸(𝐺) and 𝛿(𝑥)  <  ∞, we have that if 𝑆(𝑋) ⊂ 𝑇(𝑋)and 𝑇(𝑋) and 𝑆(𝑋) are compatible 

then 𝑆and 𝑇 have a coincidence point. Moreover, 

(i) There exists 𝑝 a common fixed point of 𝑇 and 𝑆 such that {𝑆𝑖}𝑖=1
𝑚 converges to 𝑝. 

Also, we have (𝑥, p) ∈  E(𝐺) and 𝑑(𝑆𝑖+𝑛𝑥, p) ≤ 𝜗𝑛(𝛿(𝑥)) for each 𝑛 ∈ 𝑁. 

(ii) if 𝑢 is any common fixed point of𝑇and 𝑆such that (𝑥, u) ∈ 𝐸(𝐺), then 𝑢 =  p. 

Proof. We need to prove that 𝑆 and 𝑇 have coincidence point in 𝑋. By Lemma 3.2, we 

proved that {𝑆𝑛𝑥} is a Cauchy sequence in 𝐶. Since 𝑋 is a complete metric space and 𝐶 

is a closed subset of 𝑋, there is a 𝑝 = Tx such that; 

𝑙𝑖𝑚
𝑛→∞

 Sx𝑛  = 𝑙𝑖𝑚
𝑛→∞

 Tx𝑛=p. 

 

The compatibility of 𝑆 and 𝑇 give 

            𝑙𝑖𝑚
𝑛→∞

𝑑(STx𝑛, TSx𝑛) = 0.                                            (18) 

Using the triangle inequality, 

𝑑(Sp, Tp) ≤  d(Sp, STx𝑛)  +  d(STx𝑛, TSx𝑛)  +  d(TSx𝑛, Tp). 
 

Letting n → ∞ in (18) yields 

𝑑(Sp, Tp) ≤ 𝑑(Sp, Sp) +  0 +  d(Tp, Tp). 

 

This gives 𝑑(Sp, Tp) = 0, which implies Sp =  Tp. So 𝑝 is the coincidence point of 

𝑆and 𝑇.  

Next we show that 𝑝 is the common fixed point of 𝑆and 𝑇. From (17) we have, 

 

𝑑(Sx𝑛, Sx𝑛+𝑚) ≤ 𝜗𝑛(𝛿(𝑥)),                                                     (19) 

 

for any 𝑛, m ∈ 𝑁. Letting m → ∞ in (19) yields, 

𝑑(Sx𝑛, p) ≤ 𝜗𝑛(𝛿(𝑥)),                                                          (20) 
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for n ∈ 𝑁. Since 𝑆 is 𝐺 -monotone and (Sp, Sp)  ∈ 𝐸(𝐺) , it implies (Sx𝑛, Sx𝑛+𝑚) ∈
𝐸(𝐺) for n ∈ 𝑁. Using Property(𝐴), we conclude that (Sx𝑛, Sp) ∈  E(𝐺) for each n ∈
𝑁. With the 𝐺 - monotonicity of 𝑆, we have (Sx𝑛+1, Sp) ∈  E(𝐺) for each n ∈ 𝑁. As 
(Sx𝑛, Sx𝑛+1) ∈ 𝐸(𝐺) and 𝐺 is transitive, we have, 
(Sx𝑛, Sp) ∈  E(𝐺) for each n ∈ 𝑁.                                             (21) 

 

Thus using (21) and the condition that 𝑆 and 𝑇  are 𝐺  -monotone generalized quasi 

contraction , we have a comparison function satisfying  

𝑑(Sx𝑛, Sp) ≤  max{𝜗 (𝑑( Sx𝑛−1, p)), 𝜗(𝑑( Sx𝑛−1, Sx𝑛)), 

             𝜗(𝑑(Sp, p)), 𝜗(𝑑( Sp, Sx𝑛−1)), 𝜗(𝑑( Sx𝑛, p))},                  (22) 

 

for each 𝑛 ∈ ℤ+. Letting n → ∞ in (22) and using the upper semi-continuity of 𝜗yields, 

𝑑(𝑝, Sp) ≤ 𝜗(𝑑(𝑝, Sp)). 

 

This means that 𝑑(𝑝, Sp) = 0 which implies 𝑝 = Sp = Tp. 

Next, assume 𝑢to be a different common fixed point of 𝑆and 𝑇such that (𝑥, u) ∈ 𝐸(𝐺). 

Then for each𝑛 ∈ 𝑁,𝑆 is 𝐺 -monotone and (Sx𝑛, u) ∈ 𝐸(𝐺)for each 𝑛 ∈ ℤ+. Therefore 

𝑑(Sx𝑛, u) ≤  max{𝜗(𝑑( Sx𝑛−1, u)), 𝜗(𝑑( Sx𝑛−1, Sx𝑛)), 

               𝜗(𝑑(Su, u)), 𝜗(𝑑( u, Sx𝑛−1)), 𝜗(𝑑( Sx𝑛, u))}. 

Using the convergence of Sx𝑛we have  

𝑑(𝑝, u) ≤ 𝜗(𝑑(𝑝, u)).                                                     (23) 

 

By the Property (ii) of 𝜗and (23) we conclude that 𝑑(𝑝, u) = 0. Hence p = u. Uniqueness 

proved. 

 

Example 3.1. Let 𝑋 =  [0, 1] be a metric space with the distance 𝑑(𝑥, y)  =  |x −  y|, for 

 x, y ∈ 𝑋. Let 𝐶 =  0, 1) ⊂ [0, 1] which is closed. Define a map 𝑇𝑖: C → 𝐶by 

\ 

𝑇𝑖(𝑥) = {
1                        if  0<x ≤ 1

2

3
 + 

𝑥

1 +  x
     if  x = 0

 

Consider a graph 𝐺 on 𝑋 with 𝐸(𝐺) =  X × 𝑋  , then 𝐺  is connected, reflexive and 

transitive digraph. To show that 𝑇𝑖 is a 𝐺  -monotone generalized quasi contraction 

mapping, we consider a function , 𝜗: 0,∞) →  0,∞), by 

𝜗(𝑡) =
𝑡

1 + t
. We observe that 𝜗 is a comparison function. Let 𝑥, y ∈ 𝐶, without loss of 

generality we assume x >  y  (since 𝑑 is symmetric then x < y  holds by the same 

argument).  

There are three possible cases: 

(i) Let 𝑥, y ∈ 0, 1. Then 

𝑑(𝑇𝑖𝑥, T𝑖𝑦) =  |𝑇𝑖x − 𝑇𝑖𝑦| = 0 

 

           = |
𝑥

1+𝑥
− 1 + 1 −

𝑦

1 + y
| 

           = |
𝑥

1+𝑥
−

𝑦

1 + y
| 

          =
x − y

1 + x + y + xy
 

             ≤
x − y

1 + x + y
  

             ≤
x − y

1 + x − y
 

             ≤ 𝜗(x −  y)  
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            = 𝜗(𝑑(𝑥, y)) 

            ≤ max {
𝜗(𝑑(𝑥, y)), 𝜗(𝑑(𝑥, Tx)), 𝜗(𝑑(𝑦, Ty)),

𝜗(𝑑(𝑥, Ty)), 𝜗(𝑑(𝑦, Tx))
}. 

(ii) Let 𝑥, y ∈ [0,1), y = 0. Then 

𝑑(𝑇𝑖𝑥, T𝑖𝑦) = |𝑇𝑖x − 𝑇𝑖𝑦|  

             = |1 − ( 
𝑦

1 + y
+ 

2

3
)| 

             ≤  |
1

3
− 

𝑦

1 + y
| 

             ≤  |
1

3
−

𝑦

1 + y
+ 

1

3
+ 

𝑥

1 + x
| 

             =  |
𝑥

1 + x
− 

𝑦

1 + y
| 

             ≤
x − y

1 + y + x
 

             ≤
x − y

1 + x− y
 

           = 𝜗(𝑑(𝑥, y)) 

             ≤ max {
𝜗(𝑑(𝑥, y)), 𝜗(𝑑(𝑥, Tx)), 𝜗(𝑑(𝑦, Ty)),

𝜗(𝑑(𝑥, Ty)), 𝜗(𝑑(𝑦, Tx))
}. 

 

 (iii) Let 𝑥 = 𝑦 = 0. Then 

𝑑(𝑇𝑖𝑥, T𝑖𝑦) = |𝑇𝑖x − 𝑇𝑖𝑦|  

             =  | (
𝑥

1 + x
+

2

3
) − (

𝑦

1 + y
+ 

2

3
)| 

             =  |
𝑥

1 + x
− 

𝑦

1 + y
| 

             ≤
x − y

1 + x− y
 

             = 𝜗(𝑑(𝑥, y)) 

             ≤ max {
𝜗(𝑑(𝑥, y)), 𝜗(𝑑(𝑥, Tx)), 𝜗(𝑑(𝑦, Ty)),

𝜗(𝑑(𝑥, Ty)), 𝜗(𝑑(𝑦, Tx))
} 

Therefore 𝑇𝑖  is a 𝐺  -monotone generalized quasi contraction mapping. The unique 

common fixed point of 𝑇𝑖is 1 for each 𝑖 ∈ 𝑁 

 

5. Conclusion 

 

This research defines a class of finite family of𝐺 - monotone generalized quasi contraction 

mappings in a metric space. The existence of common fixed point for finite family of these 

maps is proved in a metric space equipped with a graph. The existence and uniqueness of 

the common fixed point of this map can be established in other abstract spaces.  
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