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Abstract In this article, we have proposed and analyzed a computational method for the
numerical solution of a general two point Helmholtz type boundary value problems. The
proposed method is tested to ensure its computational efficiency. We have obtained compu-
tational results that are in good agreement with the theoretical results for the considered
model problems. Thus we conclude that the proposed method is computationally efficient
and effective.
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1. Introduction

Consider the general Helmholtz type second-order boundary value problem given
by

u′′(x) +K2u(x) = f(x, u, u′), x ∈ (a, b),

subject to the boundary conditions

u(a) = α and u(b) = β. (1)
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where a, b, α, β and K are finite constants.
We assume that u(x) ∈ C6[a, b], the set of all functions of x with continuous

derivatives up to order 6 in the region R, f(x, u, u′) is continuous on (0, 1)×R×R,

f(x, u, u′) is sufficiently differentiable w.r.t. x, u and u′, ∂f
∂u ⩾ 0, and | ∂f∂u′ | ⩽ H

where H is positive constant. Further some specific assumption on f(x, u, u′), to
ensure existence and uniqueness will not be considered [2]. Thus the existence and
uniqueness of the solution u(x) for the problem (1) is assumed [7, 9, 13].
In the literature, problems of the form (1) are conventionally solved by using

finite difference method [5, 7, 10], variational techniques [6], spline techniques [4],
shooting method [11] and homotopy method [15] and references therein. So much
research has reported on the numerical solution of nonlinear two point boundary
value problems in literature, many of them are excellent work. But a concept
to develop an efficient method to solve numerically problem (1) cannot be over
emphasized and always attracts researcher.
In this article, we develop a finite difference method capable of solving numeri-

cally Helmholtz type problems (1). A similar method was reported [12] in study of
numerical solution of Helmholtz equation by difference method. Having seen the
performance of the method for solution of special boundary value problems, we are
motivated and challenged to investigate what will happen if a similar idea is used
to derive a method for solution of general two point boundary value problems of
Helmholtz type.
This paper is divided into five sections. Section 2 deals with the derivation

and development of the algorithm while truncation error and convergence of the
algorithm are developed in Section 3. Numerical experiments on model problems
are presented in section 4. Section 5 will give some conclusions and an out view
for future research work in this area.

2. Development and Derivation of the Method

Many phenomena that occur in chemical, biological, engineering, physical and so-
cial sciences can be modeled mathematically in the form of either ordinary or
partial differential equations. However it is difficult to obtain exact solution for
these differential equations especially if it is nonlinear, by analytical means. So we
consider an approximate solution to these problems. There are numerous ways by
which an approximate solution can be constructed. In numerical analysis a con-
cept of approximation play very important role. Thus solving approximately these
practical problems which modeled as differential equation is one of the main preoc-
cupations in numerical analysis. We define N, the finite number of the nodal points
of the interval [a,b], in which the solution of the problem (1) is desired as

xj = a+ jh, j = 0, 1, 2 . . . , N + 1 (2)

where the term in right side of expression (2) are defined as the constant step

length h =
(b− a)

N + 1
. So it is clear that x0 = a and xN+1 = b. Suppose we have to

determine a number uj , which is numerical approximation to the numerical value
of the theoretical solution u(x) of problem (1) at the nodal point xj , j = 1, 2 . . . , N .
Similarly we can define other notations like fj i.e. f(xj , uj , u

′
j) etc.. So using these

notations, we can rewrite problem (1) at nodal points xj as follows,

u′′j +K2uj = fj , j = 1, 2, . . . , N. (3)
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If f(x) is the forcing function in problem (1) then the fourth-order discretization
of problem as given in [12] is

(12+K2h2)uj+1−2(12−5K2h2)uj +(12+K2h2)uj−1 = h2(fj+1+10fj +fj−1),

j = 1, 2, . . . , N. (4)

We set following approximations,

u′j =
uj+1 − uj−1

2h
. (5)

u′j+1 =
3uj+1 − 4uj + uj−1

2h
. (6)

u′j−1 =
−uj+1 + 4uj − 3uj−1

2h
. (7)

Define

f j+1 = f(xj+1, uj+1, u
′
j+1). (8)

f j−1 = f(xj−1, uj−1, u
′
j−1). (9)

Let

u
′
j = u′j + c(u′j+1 + u′j−1) + dh(f j+1 − f j−1). (10)

where c and d are free parameters which will be determined in an appropriate
condition. Finally we define,

f j = f(xj , uj , u
′
j). (11)

Then at each node xj , j = 1, 2, . . . , N , we discretize equation (3) as,

(12+K2h2)uj+1−2(12−5K2h2)uj+(12+K2h2)uj−1 = h2(f j+1+10f j+f j−1),

j = 1, 2, . . . , N. (12)

By application of Taylor series expansion method, from (6) and (8) we have,

f j+1 = fj+1 − (
h2

3
u
(3)
j +

h3

3
u
(4)
j )(

∂f

∂u
)j −

h3

3
u
(3)
j (

∂2f

∂x∂u
)j +O(h4). (13)

Similarly from (7) and (9) we have,

f j−1 = fj−1 − (
h2

3
u
(3)
j − h3

3
u
(4)
j )(

∂f

∂u
)j +

h3

3
u
(3)
j (

∂2f

∂x∂u
)j +O(h4). (14)
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Using (5)-(7),(13) and (14) in (10), we have

u
′
j = (1 + 2c+ 2dK2h2)u′j +

h2

6
(1 + 2c+ 12dK2)u

(3)
j +O(h4). (15)

Using (15) in (11) and by application of Taylor series expansion method we will
obtain,

f j = fj + ((2c+ 2dK2h2)u′j +
h2

6
(1 + 2c+ 12dK2)u

(3)
j )(

∂f

∂u′
)j . (16)

Thus form (13),(14) and (16), we have

f j+1 + 10f j + f j−1 = fj+1 + 10fj + fj−1 +
h2

3
(5(1 + 2c+ 12dK2)− 2)(u(3)

∂f

∂u′
)j

+ 20(c+ dK2h2)(u′
∂f

∂u′
)j +O(h4). (17)

Thus f j+1 + 10f j + f j−1 will provide O(h4) approximation for fj+1 + 10fj + fj−1

if

5(1 + 2c+ 12dK2)− 2 = 0 (18)

c+ dK2h2 = 0 (19)

Solving (18) and (19), we have

d =
3

10K2(h2 − 6)
and c =

−3h2

10(h2 − 6)
. (20)

Thus we have a difference method (12) which is of O(h4) for numerical solution
of problem (1) for the above values of free parameters c and d. If the system of
equations (12) are linear generally solved by iterative method otherwise Newton
Raphson method. In the numerical section, we will see that the performance of
proposed algorithm for a variety of second order boundary value problems.

3. The Local Truncation Error and Convergence

In this section, we consider the error associated to the proposed difference method
(12). Let the local truncation error in (12) be Tj and defined as in [8],

Tj =
−(12 +K2h2)uj+1 + 2(12− 5K2h2)uj − (12 +K2h2)uj−1

h2
+(f j+1+10f j+f j−1),

j = 1, 2, . . . , N. (21)
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Using (17) with parameters defined in (20) and expanding the terms uj±1 and fj±1

are in Taylor series about point xj , simplify the so obtained expression, so we have

Tj =
h4

360
(K2h2 − 18)u

(6)
j

|Tj | ⩽
h4

360
(K2h2 − 18)M, j = 1, 2, . . . , N. (22)

where M = max |u(6)(x)| for all x ∈ [a, b]. Thus local truncation error Tj is
bounded.
Consider the general Helmholtz type second-order boundary value problem given
by

−u′′(x)−K2u(x) + f(x, u, u′) = 0, x ∈ (a, b),

Discretize the above equation by difference method (12), we have

− (12 +K2h2)uj+1 + 2(12− 5K2h2)uj − (12 +K2h2)uj−1

+ h2(f(xj+1, uj+1, u
′
j+1) + 10f(xj , uj , u

′
j) + f(xj−1, uj−1, u

′
j−1)) = 0,

j = 1, 2, . . . , N. (23)

Let U is exact solution of (12), so we have

− (12 +K2h2)Uj+1 + 2(12− 5K2h2)Uj − (12 +K2h2)Uj−1

+ h2(f(xj+1, Uj+1, U
′
j+1) + 10f(xj , Uj , U

′
j) + f(xj−1, Uj−1, U

′
j−1)) + Tj = 0,

j = 1, 2, . . . , N. (24)

Let define ϵj = uj − Uj and subtract (24) from (23). Using quasi linearization
technique [3] to linearize f(xj , uj , u

′
j), so we have

− (12 +K2h2)ϵj+1 + 2(12− 5K2h2)ϵj − (12 +K2h2)ϵj−1+

h2(ϵj+1Gj+1+(u′j+1−U
′
j+1)Ij+1+10(ϵjGj+(u

′
j−U

′
j)Fj)+ϵj−1Gj−1+(u′j−1−U

′
j−1)Ij−1)

= Tj , j = 1, 2, . . . , N. (25)

where G = ∂f
∂U , I = ∂f

∂U
′ and F = ∂f

∂U
′ . Expand F ,G and I in Taylor series about

point xj and using approximations (5)-(10),simplify the expression, we have

−(12+(K2+Mj)h
2)ϵj+1+2(12−5(K2−Gj)h

2+20hIjFj)ϵj−(12+(K2+mj)h
2)ϵj−1 = Tj ,

j = 1, 2, . . . , N. (26)

where Mj = Gj + 30dIjFj + 10dhGjFj +
2Ij+5(1+2c)Fj

2h and

mj = Gj+30dIjFj−10dhGjFj− 2Ij+5(1+2c)Fj

2h . It is possible to write (26) in matrix
form as,

JE = T (27)
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where J = [−(12 + (K2 +mj)h
2), 2(12− 5(K2 −Gj)h

2 + 20hIjFj),−(12 + (K2 +
Mj)h

2)] tridiagonal matrix,E = [ϵ1, ϵ2, . . . , ϵN ]T and T = [T1, T2, . . . , TN ]T .
Let

G∗ = min
x∈[a,b]

∂f

∂U
, G∗ = max

x)∈[a,b]

∂f

∂U

Then

0 < G∗ ⩽ Gj ⩽ G∗ .

Let us assume that

0 < |θ| < q0, q0 > 0, , ∀ θ ∈ I0.

where I0 = {Ij , Fj ; ∀j = 1, 2, . . . , N}. It is easy to verify for sufficiently small h that
matrix J is row diagonally dominant. Let J be the adjacency matrix of some graph
Gr. We may easily prove that graph Gr is connected. From this fact it follows that
adjacency matrix J is irreducible [14]. By the row sum criterion it follows that J
is monotone [7]. Thus positive J−1 exist. Thus from (27), we have

∥E∥∞ ⩽ ∥J−1∥∞∥T∥∞. (28)

With the help of (22) and (28), for sufficiently small h, we have

∥E∥ ⩽ O(h4) (29)

Thus the proposed difference method (12) converges and the order of the conver-
gence is four.

4. Numerical Experiment

In this section, numerical examples linear and nonlinear were considered, to il-
lustrate our algorithm (12) and to demonstrate computationally its efficiency and
accuracy. In tables we have shown maximum absolute error computed on the nodal
points in the interval of integration for these examples in their solution. Let uj is
the numerical value of solution calculated by (12) which is an approximate value
of the theoretical solution u(x) at the point x = xj . Maximum absolute error is
calculated in both solution and derivative of solution by

MAE(u) = max
j

|u(xj)− uj |, j = 1, 2, . . . , N.

All computations were performed on a Windows 2007 Ultimate operating system
in the GNU FORTRAN environment version 99 compiler (2.95 of gcc) on Intel
Core i3-2330M, 2.20 Ghz PC.

Problem 1. Consider the nonlinear boundary value problem

u′′(x) +K2u(x) = u(x)u′(x) + f(x), 0 < x < 1.
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Table 1. Maximum absolute error in u(x) = sin(πx) for problem 1.

2* MAE

N

K 4 8 16 32

100 .13411045(-4).23245811(-5).59604645(-6).17881393(-6)

1000 .11920929(-6).59604645(-7).59604645(-7).59604645(-7)

10000.59604645(-7).59604645(-7).59604645(-7).59604645(-7)

subject to boundary conditions

u(0) = 0 , u(1) = 0

where f(x) is calculated so that the analytical solution of the problem is
u(x) = sin(πx). The maximum absolute error in u(x) for different values of K are
given Table 1.

Problem 2. Consider linear boundary value problem [1],

u′′(x) +K2u(x) = x2 + exp(x) + f(x), 0 < x < 1.

subject to boundary conditions

u(0) = 0 , u(1) = 1.0 + sin(K)

where f(x) is calculated so that the analytical solution of the problem is
u(x) = x2 + sin(Kx). The maximum absolute error in u(x) for different values of
K are given Table 2.

Problem 3. Consider the nonlinear boundary value problem

u′′(x) +K2u(x) = u2(x) + f(x), 0 < x < 1.

subject to boundary conditions

u(0) = 0 , u(1) = sin(
πK

2
)

where f(x) is calculated so that the analytical solution of the problem is
u(x) = sin(πKx

2 ). The maximum absolute error in u(x) for different values of K
are given Table 3.
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Table 2. Maximum absolute error in u(x) = x2 + sin(Kx) for problem 2 .

2* MAE

N

K 32 64 128

2 .11920929(-6).11920929(-6).11920929(-6)

4 .11920929(-6).11920929(-6).11920929(-6)

5 .13113022(-5).11920929(-6).11920929(-6)

Table 3. Maximum absolute error in u(x) = sin(πKx
2 ) for problem 3 .

2* MAE

N

K 32 64 128 256

4 .10371208(-4).59604645 (-7).59604645 (-7).59604645 (-7)

6 overflows .95367432(-5) .59604645(-7) .59604645(-7)

8 overflows .92983246(-5) .59604645(-7) .59604645(-7)

5. Conclusion

In this article, we have described a novel method that is efficient and convergent for
solving two point Helmholtz type boundary value problems in ordinary differential
equations. The results we obtained in numerical section for examples show that
method is computationally efficient and accurate. It is clear that computational
efficiency of the method depends on both h and K. How we can improve the
computational efficiency without any effect of K and order of accuracy of the
method? Investigation in this specific direction will be done in the future. However
our future works will deal with similar extension of the present method to solve
boundary value problems in partial differential equations. Work in this direction is
in progress.
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