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Abstract. In this paper, we consider a nonlinear non autonomous system of differential equations. 
We linearize this system by the Newton's method and obtain a sequence of linear systems of ODE. 

We are going to solve this system on 
1

[0, ] [( 1) , ]N
k

Nl k l kl
=

= −  for some positive integer N and 

a positive real 0l  . For this purpose, in the first step we solve the problem on [0, ]l   .By 

knowing the solution on [0, ]l , we solve the problem on [ , 2 ]l l  and obtain the solution on 

[0, 2 ]l . We continue this procedure until [0, ]Nl . In each partial interval [( 1) , ]k l kl− , first of 

all, we solve the problem by the extrapolation method and obtain an initial guess for the Newton-

Taylor polynomial solutions. These procedures cause that the errors don’t propagate. The sequence 
of linear systems in Newton's method are solved by a famous method called Taylor polynomial 

solutions, which have a good accuracy for linear systems of ODE. Finally, we give a mathematical 

model of the novel corona virus disease and illustrate accuracy and applicability of the method by 
some examples from this model and compare them by similar work, that simulate the numerical 

solutions. 
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1. Introduction 

In this paper we consider the following nonlinear non autonomous system of ordinary 

differential equations 

( )  

0

(t) , (t) , 0, ,

(0) ,

IU f t U t N l

U U

 = 


=
 (1) 

where ( )1(t) (t),..., (t)
T

dU u u= is unknown vector of functions and  

( ) ( ) ( )( )1, ( ) , ( ) ,..., , ( ) ,
T

df t U t f t U t f t U t=  (2) 

is a known continuous vector valued function. We shall solve the problem on 1[0, ] ,IN

I k kN l I==
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where 0l   be the length of partial intervals, IN  is the number of intervals and 

[( 1) , ]kI k l kl= − is the k th partial interval of the partition.  

The Newton-Taylor polynomial solutions technique for numerical solution of above 

system is described in [3] and we are going to modified the method by adding the 

extrapolation method for obtaining an initial guess for the starting of Newton’s method. 

This starting value is important, since the Newton's method converges much more rapidly 

than a simple iterative method, if the starting point is already close to a zero.  

Organization of the paper are as follow: in Section 1, Newton's method is described. 

Section 2 explains using the Taylor polynomial solutions technique for solving a linear 

ODE system. By extrapolation method, we obtain an initial guess for Newton's method, 

hence we describe this technique in Section 3. In Section 4 flow-chart form of the total 

algorithm is given. In Section 5 we give a mathematical model of the novel corona virus. 

This model is in the form of nonlinear ordinary differential equations (1). Finally in Section 

6 numerical results of the method are given by some examples originated on Section 5. 

2. Newton’s method 

In accordance with [3], one step of Newton's method is 

( ) ( ) ( ) ( )( 1) ( ) ( 1) ( ) ( ) ( )( ) , ( ) ( ) , ( ) , ( ) ( )n n n n n nU t f t U t U t f t U t f t U t U t+ +  − = −  (3) 

where ( ) ( )

( )

( ) ( )
, (t) ( , (t))i

n
j

fn

u U t U t
d d

f t U t U


 =


  =
  

is the Frechet derivative or the Jacobian 

matrix. Newton's method for this model is applicable and passes all hypotheses of 

Kantorovich theorem [1,12], which guarantees the convergence of Newton's method, and 

described in [3]. For this purpose, as mentioned in [3], the operator  

( ) ( )(t) , (t) ,i

j

f
A U t U

u

 
=  

  

 (4) 

must be satisfies  

( , )

sup ,    , ,
W l V V

A W V V D


      
(5) 

where ( , )l V V be the line segment between V and V , D  is the biologically feasible 

domain [11]. For investigation of (5), we give some definitions and a lemma about linear 

and bilinear operators. 

Definition 1.1 Let X  and Y  are normed linear spaces. We denote all continuous linear 

operators from X  to Y  by ( , )X Y . The space ( , )X Y  is itself a linear space. 

Definition 1.2 Let 2( , )X Y denotes all continuous linear operators ( , )X X Y→ . The 

space 2( , )X Y  is again a linear space. An element of 2( , )X Y  is called a bilinear 

operator. If ,dX Y= =  then ( , )X Y  is the set of all d d  matrices. The bilinear 

operators are the operations which transform vectors in to matrices. These are denoted by 

d d d  arrays. Indeed, if the bilinear operator B  has elements ,  , , 1,..., ,ijkb i j k d=  

then 

( ) ( )11
,   ,..., ,

d T

ijk k dij k
BU b u U u u

=
= =  (6) 
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defines a d d  matrix. 

Lemma 1.3 Let :
d d

P → be defined by 

( )

( )1

( ) ( (t)) , ( ) ,

(t) (t),..., (t) .
T

d

P U P U f t U t

U u u

 = =


=

 

Then ( ) ( )P U A U = , where A  is defined by (4). Suppose dW   is given, then the 

second Frechet derivative of P  at ,W  is the bilinear operator B A W P W = =  and

1
( ) ( ) ( ) ,

d

ij ij ij ijk kk
BV A WV P WV b v

=
 = = = where ( )1,..., ,

T

dV v v=   , 1,..., ,i j d=   

 
2

( )( , ( )) .i

j k

f

ijk U t Wu u
b t U t



= 
=  

Proof  See Example 5.11 of [5].                                                      ◼ 

Suppose , ,  ( , )V V D W l V V  and are arbitrary, with the infinity norm of matrices we 

obtain 

( )
11 1 1

111 1

0
1

1 1

sup sup max

                                    sup max

                                    max : ,

d

iji dV V j

d
d

ijk kki dV j

d d

ijk
i d

j k

A W A WV A WV

b v

b L

 



  = = =

= = =

 
= =

  = =

=

 =







 (7) 

where ijkb  are defined by the Lemma 1.3, (7) implies that the linear operator A  is 

Lipschitz continuous with the Lipschitz constant 0L . Whatever 0L  is small, the accuracy 

of the method is better. For more details about the k -linear operators for k  , see [5]. 

3. Taylor polynomial solutions technique 

The Taylor polynomial solutions technique for the following linear system of differential 

equations is described in [3].  

0 1( ) (t) ( ) (t) ( )P t U P t U r t+ =  (8) 

where 0 1, ,P P r are known vector valued functions and ( )1(t) ( ),..., ( )
T

dU u t u t=  is 

unknown vector valued function. We briefly explain this technique and for more details 

the reader is referred to [3,8]. From (3) each step of Newton's method is in the form (8) 

with 1( ) dP t I=  (the d d identity matrix), ( )
0 ( ) ( , ( ))nP t f t U t= − , ( 1)( ) ( )nU t U t+=  

and ( ) ( ) ( )( ) ( , ( )) ( , ( )) ( )n n nr t f t U t f t U t U t= − . We are going to represent the solution by a 

truncated Taylor series  

( )

0

( ) ( ) ,  1,..., ,  .
( )

!

T

j

i

N j
i

j

u t t c i d a c b
u c

j
=

= − =    (9) 



4                                B. Babayar-Razlighi/𝐼𝐽𝑀2𝐶, 11 -04 (2021) 1-15. 

 

where 1TN   is the Taylor polynomial degree and ( ) ( )j
iu c  are the Taylor coefficients to 

be determined. The general solution of (8) obtains from the following linear system of 

algebraic equations 

,X =W R  (10) 

where 

 
* *

0 0 1 1
( 1) ( 1)

: ,
T T

ij
N d N d

w M M
+  +

 = = + W P T P T  

 

0

1

( 1) ( 1)

( ) 0 0 0

0 ( ) 0 0
,   1,2,

0 0 0 ( )
T

T T

i

i

i

i N
N N Blocks

P t

P t
i

P t
+  +

 
 
 = =
 
 
  

P  

 
* * *

0 1
1 ( 1)

( ) ( ) ( ) ,
T

T
N

N Blocks
T t T t T t

 +

 =
 

T  

 ( )* 2

 

( ) 0 0 0

0 ( ) 0 0
( ) ,  ( ) 1,( ), ( ) ,..., ( ) ,

0 0 0 ( )

TN

d d Blocks

T t

T t
T t T t t c t c t c

T t


 
 
 = = − − −
 
 
 

 

 
*

 

0 0 0

0 0 0
,   1,2,

0 0 0

i

i
i

i d d Blocks

M

M
M i

M


 
 
 = =
 
 
 

 

 0 1

1
0 0 0 01

0 0 0 0!
0!

1
0 0 0 01

0 0 0 1!
1!

1
0 0 0 01 ,     ,

0 0 0 2!
2!

1
0 01

0 0 0 ( 1)!
!

0 0 0 0 0

T
T

M M

N
N

 
   
   
   
   
   
   

= =   
   
   
   
   

−   
    

 

 ( )

01

12 ( )

1 ( 1) 1

( )

( )
, ( ), ( ), ( ),..., ( ) , ,

( )

T

i

T
T

T
N

i i i i

Nd d Blocks N Blocks

r tX

r tX
X X u c u c u c u c

r tX
 + 

  
  
    = = =
  
  
    

R  

and 

,   0,1,..., ,j T

T

b a
t a j j N

N

−
= + =  (11) 

are the Taylor collocation points. For a particular solution of (8) which satisfies the 

following initial condition 
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( )(0) (0)
0 1( ) ,..., ,

T

dU a U u u= =  (12) 

we must replace the rows of the matrices * *
0 ( 1)( ) [ ]

Tij d N dT a M v  += =V  and 0U , by the 

last rows of the matrices W  and R , respectively and obtain 

,W X R=  (13) 

where 

11 12 1,( 1)d

21 22 2,( 1)d

,1 ,1 ,( 1)d

11 12 1,( 1)d

21 22 2,( 1)d

1 2 d,( 1)d

,

T

T

T T T T

T

T

T

N

N

N d N d N d N

N

N

d d N

w w w

w w w

w w w
W

v v v

v v v

v v v

+

+

+

+

+

+

 
 
 
 
 
 
 =
 
 
 
 
 
 
 

     

0

1

1

(0)
1

(0)
2

(0)

( )

( )

( )

.
TN

d

r t

r t

r t

R
u

u

u

−

 
 
 
 
 
 

=  
 
 
 
 
 
  

 

Convergence analyses of the method are given in [4] and its references. 

 

4. Extrapolation method 

Suppose  0, It N l , by integration of ( ) ( , ( )),  [0, ]U f U t   =  , the Eq. (1), reduces 

to 

( )0

0

(t) , ( ) .

t

U U f U d  = +   (14) 

Eq. (14) is a special case of (2) from [2]. Suppose we have solved (14) on [0, ( 1) ]k l−  for 

some k  , and we are going to solve the problem on [( 1) , ]k l kl− . For this purpose, 

suppose ( )1, 1 ,  0,1,...,
P

i
k i PN

t k l i N− = − + =  are the mesh points of [( 1) , ]k l kl−  and 

1(( 1) ) kU k l U −− =  is known from the lag interval [0, ( 1) ]k l− . Eq. (14) at 1,k it t −=  yields 

that 

( ) ( )
1, ( 1)

1, 0 1

( 1) 0

( ) , ( ) , ( ) .

k it k l

k i k

k l

U t f U d U f U d U     

− −

− −

−

− = + =   (15) 

By using the composite trapezoidal rule we obtain 

( ) ( )( ) ( )
1

1, 1 1 1, 1, 1, 1, j

1

( 1) , , , ,
2

                                                                                                          1,..., ,

i

k i k k k i k i k j k

j

P

h
U U f k l U f t U h f t U

i N

−

− − − − − − −

=

= + − + +

=


 (16) 

where 1,k jU −  is the approximation of 1,( )k iU t −  and 
P

l
h

N
= . For 1i = , the  term 
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in the righthand side of (16) vanishes. The following algorithm approximate 

1, ,  1,...,k i PU i N− = , where PN   denotes the number of partition and ItN  is the 

number of iterations. This algorithm is similar with Algorithm 1 of [10] and a convergence 

analysis is given there.  

Remark 4.1 In this paper a d -column vector V  with i th component ,  1,...,iv i d=  is 

denoted by [ : 1,..., ]v i di= =V . Each component iv can be a vector or a matrix. In such 

cases we have a vector of vectors or a vector of matrices. For example, in the following 

algorithm the variable vec is a vector of vectors 

Algorithm 1. (Composite Trapezoidal iteration flow-chart) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

We denote the output of Algorithm 1 by ( )1, 1, kTrap N k U −− . The i th component of 

( )1, 1, kTrap N k U −−  is a crude approximation for 1,( )k iU t − . After the above algorithm, 

we apply the Romberg extrapolation technique for numerical solution of (15). Indeed 

( )1, 1, kTrap N k U −−  is an initial guess for Romberg extrapolation and the solution 

obtained by Romberg extrapolation is an initial guess for Newton-Taylor polynomial 

solutions. These procedures cause that the initial guess of the Newton's method be near the 

exact solution and the Newton's iterations improve the final approximation. Romberg 

iterations in a simple case is described by algorithm 7.1 in [6], and we extend this method 

for vector case. For more details about extrapolation method and its convergence analysis 

see [7,9]. 

 

  

 

End 

Yes 

No 

Start 

Define a local environment with the local variables ; Set 

 ; ; 

; 

 
Return  

as the output 

of algorithm 

 

 

No Yes 
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5. Total algorithm of the method 

For illustration of superiority and applicability of the method we give the total algorithm 

for the numerical solution of the problem (1) by the proposed method. In this algorithm, 

NN  is the number of Newton's iterations, EN  is the number of extrapolations and other 

parameters are illustrated in the previous sections. In the last rectangle, each step of 

Newton's method is solved by the Taylor polynomial solutions, and we obtain the 

approximations on nodal points. This algorithm is denoted by the following flow-chart  
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6. The Corona virus model 

Now we consider the following model of the novel corona virus epidemic in Wuhan China 

( )

( )

1 2

( ) ( ) ( ) (V) ,

( ) ( ) ( ) (V) ,

( ) ,

( ) ,

( ) ,

E I V

E I V

S t E SE I SI SV S

E t E SE I SI SV E

I t E I

R t I R

V t E I V

   

    

   

 

  

=  − − − −

= + + − +








= − + +

 = −



= + −


 (17) 

where , , , ,S E I R V are unknown functions of the model. Here , , ,S E I R are susceptible, 

exposed, infected and recovered classes of human population respectively, and V is the 

concentration of the corona virus in the environmental reservoir. 1 2, , , , , ,      are 

known positive constants, and ( ), ( ), (V)E I VE I    are the known functions of their 

arguments.  

Equilibrium analysis of the method with some numerical simulations are described in 

[11]. In this work we want to obtain a good accuracy of solutions and compare with [11], 

hence we rewrite Tables 1,2 of [11] for illustration of the parameters. This purpose is done 

in Table 1. 

Table 1. Definitions and values of model parameter. 

Parameter Definition 
Estimated mean 

value 
Parameter Definition 

Estimated 

mean value 

  Influx rate 2.7123 per day 1/  Incubation 

period 

7 days 

0E  Transmission 

constant between S  

and E  

83.11 10−  

person/day 

  Disease-

induced 

death rate 

0.01 per day 

0I  Transmission 

constant between S  

and I  

83.11 10−  

person/day 

  Recovery 

rate 

1/15 per day 

0V  Transmission 

constant between S  

and V  

83.11 10−  

person/day 

  Removal rate 

of virus 

1 per day 

c  Transmission 

adjustment 

coefficient 

41.01 10−  1  Virus 

shedding rate 

by exposed 

people 

2.30 per 

person per 

day per ml 

  Natural death rate 53.01 10−  2  Virus 

shedding rate 

by exposed 

people 

0 per person 

per day per 

ml 
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7. Numerical Results 

Example 7.1 Associated with the data of Table 1, the initial condition is set as follows 

[10]. 

( ) ( )(0), (0), (0), (0), (0) 8998505,1000,475,10,10000 .
T T

S E I R V =  

Figures 1,2,3 show the numbers of (t)S , (t)R , (t)V  during 150 days. In this example 

the transmission rates are 0( )E EE = , 0( )I II = , 0( )V VV = . Figure 4 shows the 

numbers of exposed and infected individuals during 150 days, which is similar to the 

simulation result in Figure 4 of [10]. But in our work the result is computed by a 

convergence method and has a better accuracy than a simulation. In this example value of 

the quantity 0L  in (7) is  

( )
5 5

8
0 0 0 0

1 5
1 1

max 2 9.52 10 ,ijk E I V
i

j k

L b    −

 
= =

= = + + =   

which is excellent for numerical computations. Here we put 0.1l =  and hence for 

obtaining a result on 150 days we set 1500IN = . In this example we set 4,TN =

5, 8, 5, 5N P E ItN N N N= = = = .  

 

Figure 1. Variation of the ( )S t  as a function of t  for Example 7.1. 

 

 

Figure 2. Variation of the ( )R t  as a function of t for Example 7.1. 
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t
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4 106
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S t
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t
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4 106

6 106

8 106

R t
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Figure 3. Variation of the ( )V t  as a function of t  for Example 7.1. 

 

    

Figure 4. Variation of the ( ), ( )E t I t  as functions of t for Example 7.1. 

Example 7.2 For obtaining a similar sample problem which has some exact components 

of solution vector, suppose  ( )( )2
3000000exp ln 3000 5 5t 2( )E t − −

 
=

 
, then the 

following semi-linear non-autonomous system 

 ( )

 ( )
( )

 ( )

0

2 0 0

2

2

1

3000000

ln 300
(

0 5
exp

25

) ,

3000000

ln 3000 5
( ) ,

( )

exp
25

3000000

ln 3000 5
exp

,

)

25

( ,

E

I V
S t I

t
V S

I
t

t I

R t I R

V t
t

V


  


  

 




=  − +
−

+ +

  
  
  
  
  

 
 

 
 
  

 −
 
  

 −
 




= − + +





= −


=

  

−




 

20 40 60 80 100 120 140
t

1 106

2 106

3 106
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6 106
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V t

20 40 60 80 100 120 140
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500000

1.0 10
6
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6
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3.0 10
6
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6
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E t

I t
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is similar with (17). The first equation of the above system is nonlinear and other ones are 

linear. The linear equations are analytically solvable and exact values of (t)I , (t)R , (t)V  

are available. Associated with the data of Table 1, the initial condition is set as follows 

( ) ( )(0), (0), (0), (0) 8998505, 475,10,10000 .
T T

S I R V =  We solve this problem by two methods 

on [0,150] : the proposed method with 5,NN =  4,TN =  5,EN =  8,PN =  5,ItN =  

0.1,l =  1500IN =  and the Runge-Kutta fourth-order method with step length 0.1h = . 

Suppose we denote approximation values of , ,I R V  by , ,I R V respectively, then Table 

2 shows relative errors of , ,I R V at the points 15 ,  1,...,10it i i= = . As Figures 5-7 and 

Table 2 show, the accuracy of the proposed method is very good and there is not any error 

propagation in this long interval. Since ( )V t  is near zero, relative error is not a good 

criterion in this case, hence we give absolute errors of V  at the above points by the 

following vector 

4 10 16 23 29 35 42

48 55 61

(8.72 10 ,8.52 10 ,5.79 10 ,8.71 10 ,4.84 10 ,1.45 10 ,3.99 10

                                                                            ,2.24 10 ,4.48 10 ,1.76 10 ).

− − − − − − −

− − −

      

  
 

Note that at the point 15t = , 2141.6808 071976( 5) 856V t =  , and at this point the 

relative error is a good criterion than the absolute error. Table 2 shows both methods have 

good accuracy, but the proposed method has symmetric values of relative errors for 

, ,I R V and these values is not symmetric in Runge-Kutta fourth-order method. Figure 8 

shows that both methods give same shapes for the numbers of susceptible individuals 

during 150 days. 

     

Figure 5. Variation of the ( )I t  as a function of t  for Example 7.2. 

    

Figure 6. Variation of the ( )R t  as a function of t  for Example 7.2. 

20 40 60 80 100 120 140
t

200000

400000

600000

800000

1 106

I t
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20 40 60 80 100 120 140
t

200000

400000
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6
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6

R t

Exact

Approximation



12                                B. Babayar-Razlighi/𝐼𝐽𝑀2𝐶, 11 -04 (2021) 1-15. 

 

 

    

Figure 7. Variation of the ( )V t  as a function of t  for Example 7.2. 

Table 2. Relative errors of , ,I R V at 15it i=  for Example 7.2. 

Errors of Runge-Kutta fourth-order 

method 

 Errors of Proposed method 

i  

V  R  I   V  R  I  
65.92 10−  119.27 10−  101.05 10−   74.07 10−  86.93 10−  77.70 10−  1 

51.95 10−  101.03 10−  117.16 10−   61.30 10−  74.00 10−  72.79 10−  2 

53.31 10−  101.01 10−  113.82 10−   62.89 10−  71.63 10−  84.47 10−  3 

54.67 10−  119.98 10−  124.79 10−   61.42 10−  63.30 10−  61.50 10−  4 

56.03 10−  119.90 10−  112.86 10−   62.58 10−  62.56 10−  75.55 10−  5 

57.39 10−  119.87 10−  116.20 10−   62.52 10−  62.22 10−  71.05 10−  6 

58.74 10−  119.85 10−  119.54 10−   62.27 10−  72.24 10−  77.12 10−  7 

41.01 10−  119.85 10−  101.29 10−   64.17 10−  61.83 10−  74.89 10−  8 

41.15 10−  119.84 10−  101.62 10−   62.73 10−  79.16 10−  75.21 10−  9 

41.28 10−  119.84 10−  101.96 10−   63.50 10−  63.05 10−  61.75 10−  10 

 

 

Figure 8. Variation of the ( )S t  as a function of t  for Example 7.2. 
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Example 7.3 In the Example 7.1, suppose the transmission rates be 0( )
1

E
E E

cE
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+
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. Here we set 0.1l = , and for obtaining a result during 

300 days we set 3000IN = . Figures 9,10,11 show the numbers of (t)S , (t)R , (t)V  

during 300 days. Figure 12 shows the numbers of exposed and infected individuals 

during 300 days, which is similar to the simulation result in Figure 2 of [10]. In this 

example, the quantity 0L  in (7) is as follows 
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where ( ) ( )1 2 3 4 5, , , , , , , , ,
T T

x x x x x S E I R V=  1 1 0 ,x x S S= =   0 0 0 0max , , ,E I V   =

3 2

1
1 (1 ) (1 )0

max | | 1,x

x xx
m

+ +
= − =

2

1
2 1(1 )0

max | | 1.x
xxx

m
++

= − = This value of 0L  is an upper 

bound for Lipschitz constant. Even so this upper bound is excellent for numerical 

computations. Other parameters are similar to Example 7.1. 

 

Figure 9. Variation of the ( )S t  as a function of t for Example 7.3. 
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Figure 10. Variation of the ( )R t  as a function of t for Example 7.3. 

 

 

Figure 11. Variation of the ( )V t  as a function of t  for Example 7.3. 

 

    

Figure 12. Variation of the ( ), ( )E t I t  as functions of t  for Example 7.3. 

8. Conclusions 

In this paper we consider a mathematical model for the novel corona virus, which is in the 

form (1). We consider the problem on union of many partial intervals. The proposed 

method solves the problem, interval by interval and the accuracy of the Newton's method 

caused that the propagation of the error doesn't appear. Although sufficient conditions for 
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convergence of the Newton's method is referred to [3], but for applicability of the method 

it is necessary that the operator A  in (4) is Lipschitz continuous and the initial guess 
(0)U

is near the solution, which are true in our problem. As mentioned in the text and see in the 

Table 2, the proposed method has a good accuracy on long time interval which is required 

in medical phenomena. In future we are going to apply the proposed method for Influenza 

and some other infectious diseases models.  
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