

 International Journal of Information, Security and System Management, 2014, Vol.3, No.2, pp. 302-307

A Survey of Concurrency Control Algorithms in the

Operating Systems

Hossein Maghsoudloo
Department of Computer Engineering, Shahr-e-

Qods Branch, Islamic Azad University, Tehran,

Iran

Rahil Hosseini
Department of Computer Engineering, Shahr-e-

Qods Branch, Islamic Azad University, Tehran,

Iran (Corresponding Author)
rahil.hosseini@qodsiau.ac.ir

ABSTRACT
Concurrency control is one of the important problems in

operation systems. Various studies have been reported to

present different algorithms to address this problem, although

a few attempts have been made to represent an overall view

of the characteristics of these algorithms and comparison of

their capabilities to each other. This paper presents a survey

of the current methods for controlling concurrency in

operating systems. Classification of current algorithms in

operating systems has been proposed. Current concurrency

control algorithms are classified into four groups: 1)

software-based algorithms, 2) hardware-based algorithms, 3)

based operating system, and 4) based on message passing.

Furthermore, it presents an analysis of the capabilities and

characteristics of current algorithms' in their own category

(intra-group comparison analysis) and between different

categories (inter-group comparison analysis) to put a light on

the way of selecting a proper algorithm for various

circumstances in operating systems.

Keywords
Concurrency control, Operating systems, Semaphore,

Monitors

1. Introduction
In most modern systems, various numbers of processes

concurrently cooperates with each other, as a whole software

system. In other word, some of parallel processes run on

many or even one a processor. In some of systems such as

multi-programming systems, multi-processing, network

operating systems, distributed operating systems and

distributed systems, concurrency of processes is an attribute

of the system. Parallel processes and concurrency of

processes are discussed in three different areas, which are

summarized as below [1]:

 Multiple applications: multi-programming can

manage the time of process in sort of dynamically

division between numbers of applied programs.

 Structured applications: for development and

design principles and structured programming, a set

of concurrent processes can be implemented.

 Operating system structure: through concurrency in

operating sytems, identical rights are given to

system’s programs which can be implemented like a

set of processes.

While parallel and concurrent performance of processes

can boost system’s efficiency, it can also cause some

problems. Firstly, how processes can exchange information

with each other? Secondly, what would be the solution for

coping with a competitive situation. To address this issue, a

simple solution is that , processes do not interfere with each

other in reference sharing and competition for critical

activities. Thirdly, when there is dependency between two or

many processes, appropriate ranking of activity

accomplishment or process synchronizing plays an important

role.

Regarding the first problem, which is message

exchanging, there are various solutions like duct, message

exchanging and file sharing, but in all of these cases

competency is significantly decreased because of system

calling and also core’s time-consuming trap. Fr this, this

processes can share storage places to have closed and

competent interactions to let all of them to write or read

common data. This common place can be somewhere in the

main memory . Concurrent processes can access to a common

memory, at this point in order to avoid any problem in

concurrent programs and access to critical resources is the

same common memory. To address the second problem that

is competitive situations, proposed is required to satisfy five

conditions:

IJISSM, 2014, 3(2): 302- 307

 303

 Mutually exclusive condition: among all processes

which having the critical zone for the same source or

any mutual competitive factor, there is only one

authorized process at the time which can enter the

critical zone.

 Promotion condition: process, which does not intend

to enter the critical zones currently, does not need the

prohibition right for other processes entrance to

critical zone.

 Limit expectancy condition: processes which, need

to enter critical zone must have a limited awaiting

time and do not encounter famine or even impasse.

 Commonness condition: proposed solution must not

have any limitation on the processes' relative speed,

their number and processor speed or number of

processors.

 Certain condition: solutions do not have uncertain or

random status.

2. Confronting solutions for competitive

situations in concurrency of processes
Currently, competitive situations in processes are

controlled using five groups of solutions, which are explained

in the rest of this section.

2.1. Software-based solutions
In software-based solution, the burden of mutually

exclusive condition satisfaction is in the charge of processes

and written codes by programmer and there is no support

from programming language and operating system. The only

support is provided by hardware is just possible in a moment

of accessing to one place of memory. In all of software

algorithms, busy waiting problem exists which partly

deteriorate this solution's competency. Some of the important

software-based solutions presented in the literatures are as

follows:

 Dekker’s first method (strict alternation) [5]: it is

double processes and has the problem of promotion

condition disregarding. This speed of this algorithm is

low because of decussate accessing to critical zone.

 Dekker’s second method [7]: it is double processes

and disregards the mutually exclusive condition and,

therefore can cause starvation.

 Dekker’s third method [7]: it is double processes and

this method can lead to deadlock.

 Deker’s forth method [7]: it is a double processes. In

this solution there is problem named live lock which

can be reminisce as an open-able dead-end,

meanwhile this algorithm also has the problem of

starvation.

 Dekker’s final [5]: it is double processes and is the

last algorithm which was proposed by Dekker. One of

its biggest deficiency is its complexity.

 Peterson [4]: it is a double processes but the

algorithm’s complexity is less than the Dekker

algorithms.

 Peterson functional call [4]: it is a double processes

and is accomplished by functions which are in

connection with each other by their parameters. It

includes all Peterson’s algorithm characteristic.

 Bakery [6]: this algorithm is like the usual

intermittent method in bakery. This solution is used

for indefinite number of processes, but does not

guaranty that the number, which goes to processes as

an intermittent be the same.

The crucial point here is that all of software solutions which

are innovates as a double process can be extended to

indefinite number of processes. Software solutions merely

used for mutually exclusive control and not used in processes

synchronizing [7].

2.2. Hardware-based solutions
In this method, in the design of the processor there are

instructions for performing two reading and writing functions

of one place in memory like atomic and a reactive cycle.

While running these instructions, pause cannot do the text

substitution and also lock of the memory gateway [1].

Scrutinized hardware solutions in this article consist of:

 Deactivate pause instruction [1]: mutual exclusive

solution and limit expectation condition (cause of

starvation) disregarded in this solution. The pause

deactivation is useful in general but if we give the

deactivation permission control to the user the we

might face with the problem like mutual exclusive

disregarding and starvation.

 TSL instruction [3]: this solution has the same

common problem in software solution that is busy

waiting, in addition to the starvation problem.

 SWAP instruction [2]: This solution suffers from

the problem of busy waiting and starvation.

2.3. Operating systems-based solutions
Semaphores are the solution accomplished by operating

systems. Three basic functions are defined on semaphores

which using them the problem of mutual exclusive and

synchronization of the processes are controlled [3]:

 Give some primary positive

 WAIT action, which reduced a unit and if it is

negative, process will be in wait queue.

 SIGNAL action, which added a unit and if it was not

positive, will release a barred process in queue.

Semaphores exist in two forms: general or binary, with

the same capabilities, i.e., all issues, which are solvable by

general semaphore can be solved by binary semaphores. For

collecting processes, semaphores use a queue that wether this

queue is FIFO kind, Semaphores acted fairly and

idiomatically these semaphores named strong semaphores,

and the semaphores, which have no specific policy on

processes queue are called weak semaphores.

2.4. Programming language-based solutions
These types of solutions are implemented as monitors by

programming language designers. A monitor consists of the

sets of schemes, variations, data structures that are grouped

with each other in a pack [8]. Monitors have two crucial

characters:

 A process can run the schemes in the monitor

whenever it want but cannot access to the monitor’s

inside data by monitors outside schemes that this

feature is insulation.

IJISSM, 2014, 3(2): 302- 307

 304

 Every moment, just one process can be activated in

monitor.

2.5. Messages
Messages are a mechanism to control synchronization and

correlation between processes. The most important

characteristic of messages is that they can be used in

distributed system; messages accomplished by two calling

systems SEND and RECEIVE.

As mentioned up to here, each one of these solutions has

their advantages and disadvantages and even they are

different in function range just as an example messages

beside concurrent control on multiprocessing systems or

multiprocessor they are easily capable of using in server

systems [2].

3. Comparison of Current Algorithms for

Concurrency Control in Operating Systems
Most of current solutions use mutual exclusive of the

processes when dealing with the critical sections. However,

the solutions based on operating systems are capable to

control process synchronization. Therefore, concurrency

control solutions are different in terms of their strength,

number of issues covering and their complexity.

Table 1.1 brings a comparison of the current algorithms

to cope with the problem of concurrency control. The

comparison analysis is conducted in two different studies as

pointed bellows:

1) First study (Intra- Group): comparison of the

algorithms in their categories (e.g., comparison of the

software based algorithms with each other)

2) Second study (Inter-Group): overall comparison of

selected algorithms in the first study (various

categories with each other)

The rest of this section presents the details and result of these

two comparison analysis studies.

3.1 The First Study: Intra- Group

Comparison Analysis
The concurrency control algorithms in operating systems

are considered and classified according to the criteria of

mutual exclusive conditions, promotion, limit waiting and

busy waiting. Table 1 summarizes the concurrency control

algorithms in operating systems in mutual exclusive

conditions regarding promotion, limit waiting and busy

waiting criteria.

3.1.1 Software-based algorithms
As shown in Table 1, software based algorithms are

presented in [4]-[7]. All of software based algorithms have

busy waiting problem in their nature which decreases the

software algorithm competency’s bonus.

Strict alternation algorithm disregards the promotion

condition and even in the case of an empty critical zone while

processes might not have the entering permission. Dekker’s

second algorithm does not accomplish mutual exclusive

condition which is one of the important competitive

conditions between processes. Furthermore, for the

possibility of consecutive entering of a process to critical

zone, may lead to starvation. Dekker’s third algorithm has the

dead end problem and two processes can wait up to infinity

for entering to critical zone. Dekker’s forth algorithm besides

having starvation problem has the live lock problem that

means none of these processes can enter the critical zone,

although with change in relative speed of two processes this

cycle can be broken. Bakery algorithm does not guarantee

that the number which goes to processes as a turn be unique

and can be used in a case that the number of two or more

processes from FIFO queue be the same This algorithm's

major problems are complexity and calculation, and

intermittent system and intermittent control condition which

reduces its competency.

Table 1: Intra-Group Comparison Analysis of Concurrency Algorithms

No. Algorithm Name
Mutual

Exclusive

Promotion

Condition
Limit Waiting Busy Waiting

1 Deactivating pause [1] No No Starvation Yes

2 SWAP [2] Yes Yes Starvation Yes

3 TSL [3] Yes Yes Starvation Yes

4 General semaphore [3] Yes Yes Yes No

5 Messages [3] Yes Yes Yes No

6 Monitor [3] Yes Yes Yes No

7 Peterson [4] Yes Yes Yes Yes

8 Peterson functional call [4] Yes Yes Yes Yes

9 binary semaphore [4] Yes Yes Yes No

10 Dekker’s final [5] Yes Yes Yes Yes

11 Dekker’s first [5] Yes No Yes Yes

12 Bakery [6] Yes Yes Yes Yes

13 Dekker’s second [7] No Yes Starvation Yes

14 Dekker’s third [7] Yes Yes Dead lock Yes

15 Dekker’s forth [7] Yes Yes starvation Yes

IJISSM, 2014, 3(2): 302- 307

 305

Based on the Peterson’s algorithm in Table 1, Peterson

like call function, Dekker’s five algorithm has all essential

conditions for confronting with competitive condition.

Peterson’s algorithm has the lowest complexity between these

three algorithms and it is easily possible to be accomplished.

Therefore, the Peterson’s algorithm is chosen for the second

study of comparison analysis because of competent use of

mutual resources, simplification and its comprehensiveness.

3.1.2 Hardware-based solutions
Hardware based solutions include deactivating pauses

solution order, the TSL and the SWAP instructions. As

shown in Table 1, all hardware based solutions have the

problem of starvation and busy waiting. Between these three,

the TSL and the SWAP algorithms are better because

deactivating pause solution is just valid in mono processor

and just deactivates that processor pause and other processor

by continuously running pauses and turning off the pauses by

user’s process which threat security of the system. On the

other side, the TSL and the SWAP instructions suffer from

serious issues such as processor support of the TSL and the

SWAP instructions. Therefore, according to the comparison

of the hardware based solutions the TSL and SWAP solutions

are selected and used in the second study of the comparison

analysis.

3.1.3 Operating system based solutions

(semaphores)
Semaphores are used for mutual exclusion regarding and

synchronizing while former solution is only used for mutual

exclusion. This can be count as a benefit for semaphores

besides semaphores might have some problems in their

functions. However, it was reported in some literatures that

the semaphores may lead to dead lock but semaphore’s do not

have dead lock in their nature. This fact depends to how

implement them in a programming language.

One of the advantages of semaphore is multi-processing,

they do not have busy waiting and reverse preference issues

which emphasizes on this type of algorithms' strength.

Among the general and binary semaphores, binary

semaphores were chosen for the second round of comparison.

Using semaphores degrades the complexity

3.1.4 Programming language based

solutions (monitors)
Using this method in general is easier than semaphores.

Implementation of monitors is not too complicated.

Furthermore, synchronization and mutual exclusion, and

insulation are managed and the program is more isolated and

can degrade the error percentage. The problem of some of

conventional programming languages is that they do not

support semaphores (such as C, and Pascal). Another

important problem is that monitors are usable just in single

processor systems or with the multi-processors with mutual

memory.

3.1.5 Message passing solutions
Messages are more complicated mechanism than other

solutions. This complication requires lots of adjustment to an

algorithm to provide proper function such as bellows:

 Reliability and not losing sender’s and receiver’s

messages

 Processes addressing

 Possessing sender’s and receiver’s identity for

boosting system security

 System competency when sender and receiver are on

one system.

This method is more effective for distributed system. This

solution is more comprehensive and has similar competency

on multi-programming, multi-processing, network operating

systems, distributed operating systems, and distributed

systems. However, messages are proper for distributed

systems and distributed operating systems. Using them on

other systems may deteriorate complexity and boosting error

ratio. For this reason, they are not considered in second

comparison study.

3.2 The Second Study: Inter-Group

Comparison
In the first study, as summarized in Table 1, solutions are

compared with each other in terms of mutual exclusive

condition, promotion, limit waiting and busy waiting and the

algorithms chosen in each category are as bellows:

 From software solution of Peterson’s algorithm,

because of competent use of mutual resources,

simplification, comprehensiveness and regarding

mutual exclusion condition, limit waiting and

promotion.

 From hardware solution the TSL and the SWAP

algorithm, because of considering mutual exclusion

condition and promotion

 From operating systems solutions, binary semaphore

were chosen because of mutual exclusion condition

regarding, limit waiting, promotion, not having busy

waiting and simplified accomplishment

 From programming languages solutions, monitors

were selected because of their mutual exclusion

condition regarding, limit waiting, promotion, not

having busy waiting, insulation and reducing error

percentage.

Algorithms selected for the second comparison analysis

all consider the mutual exclusion condition and promotion. In

the second comparison analysis, as shown in Table 2,

solutions are considered and compared in terms of limit

waiting condition, busy waiting and usage limitation

conditions.

According to Table 2, Peterson algorithm has busy

waiting problem. This algorithm besides having busy waiting

problem has reverse preference problem (processes locking).

Another point is that nature of this algorithm is binary but it

can be extended to infinite number of processes which may

increase complexity of the solutions.

The TSL and the SWAP do not consider the limit waiting

condition and they may lead to starvation, besides having

busy waiting and they can be used in a case which the

processor support them.

IJISSM, 2014, 3(2): 302- 307

 306

Table 2: Inter Group Comparison Analysis of the Concurrency Algorithms

No. Algorithm Limit Waiting
Busy

Waiting
Usage Limitation

1 Peterson [4] Yes Yes Its nature is binary (extendable)

2 TSL [3] Starvation Yes In case of processor support of the TSL instruction

3 SWAP [2] Starvation Yes In case of processor support of the SWAP instruction

4 Binary semaphore [4] Yes No
Accomplishment of two action SIGNAL and WAIT should be done

in atomic and indissoluble (regarding mutual exclusion)

5 Monitors [3] Yes No In case of programming language support of monitors

In programming language solutions that is monitors, it

should be noted that some of common programming

languages do not support them (e.g., C and Pascal).

Therefore, using this solution depends on the supporting

conditions of programming language which is not always

possible. Also, usage of them are limited to mono-processor

or multi-processor with mutual memory. On the other hand,

semaphores can control most of essential conditions in

processes competitive conditions that is mutual exclusion,

promotion and can control limit waiting and also can

accomplished by indefinite number of processes and no busy

waiting or live lock occur during their usage. In addition,

semaphores are can be accomplished in all of systems or on

the other word their covering area are wider than other

solutions. It should be noted that semaphores need the special

ability of programmer in synchronizing to control their

complexity. In this case choosing the initial amount for

semaphores is difficult.

According to Table 2, two actions of WAIT and SIGNAL

in semaphores should be accomplished in form of atomic and

indissoluble. This is because of the need for mutual exclusion

in this action and each moment just one process can have the

permission to manipulate the semaphores using one of these

two actions.

4. Conclusions
This paper presents a survey of current algorithms for

management of the problem of concurrency in operating

systems. The existing methods are classified into four

categories: 1) software-based algorithms, 2) hardware-based

algorithms, 3) based operating system, and 4) based on

message passing. Furthermore, it provides a comparison of

algorithms capabilities. For this, two different studies are

conducted to compare algorithm characteristics within their

categories (Intra-group analysis) and between different

categories (Inter-group analysis). Table 3 summarizes these

results. In the second study comparison analysis, after

comparing current algorithms capabilities it was concluded

that semaphores considers all conditions of mutual exclusion,

promotion and limit waiting and do not have busy waiting

problem. On the other hand, they are capable to be

accomplished on all systems because of their support by

operating systems. The only problem that seems to be hidden

in semaphores is mutual exclusion regarding in two actions

WAIT and SIGNAL. Indissolubility of these two actions is

able to be managed using three methods presented in [3], and

[10-12], which are summarized as bellows:

1) Software method: In this method, software solutions

such as Peterson can be used. However, this solution

has busy waiting problem.

2) Hardware solution of pause activation and

deactivation: because semaphores are supported by

operating system so all pauses can be deactivated

while testing the amount of semaphores, updating,

sleeping and waking up the processes, but this

method is useful when the system is mono-processor.

3) Using the TSL instruction: if the system is multi-

processing, this solution can be used. It should be

noted that the processor may not support this

instruction and it can be accomplished using a high-

level language.

Table 3 shows the classification of algorithms and

represents the advantages and disadvantages of atomic

SIGNAL and WAIT accomplishment.

Table 3. Advantages and Disadvantages of Different

Categories

No. Method Advantage Disadvantage

1
Software
solution

Regarding

mutual

exclusion

Low speed and

reducing

competency

2

Hardware

solution of

pause
activation

and

deactivation

Regarding
mutual

exclusion

and
High speed

Accomplishment

just on mono-
processor

systems

3

Hardware
solution of

using TSL

instruction

Regarding
mutual

exclusion
and

High speed

Possibility of not
supporting the

instruction by

processor

According to Table 3, semaphores are suggested in the

following circumstances:

1) If the system is mono-processor, using the hardware

methods of pause activation and deactivation which

consider the mutual exclusion and also have

reasonable speed.

2) If the system is multi-processor and processor

supports the TSL instruction, hardware solution based

on the TSL instruction which consider the mutual

exclusion but have the busy waiting can be used.

3) If the system is multi-processing and does not support

the TSL instruction, using the software based solution

can be considered which manage the mutual

exclusion but has busy waiting problem.

Using semaphores in case of indissolubility of two

actions WAIT and SIGNAL, just in one case may have busy

IJISSM, 2014, 3(2): 302- 307

 307

waiting (if the system be multi-processing and does not

support TSL instruction) . In these two forms do not have

busy waiting and have proper speed (if the system is multi-

processing and processor support the TSL instruction and or

the system is mono-processing). Therefore, the

comprehensive use of semaphores just in certain condition

that the system does not support the TSL instruction and is

multi-processing has busy waiting and are able to be

accomplished on all systems, this can occur if:

 Software and hardware based solutions in the second

study (the Peterson, TSL, and SWAP methods) have

always busy waiting problem.

 Programming language based solutions are not

supported in some programming languages (e.g. C,

Pascal) and just can be used in mono-processor or

multi-processor systems with mutual memory.

According to the comparison analysis results, it was

realized that semaphores are more competent than other

solutions for concurrency and synchronization control in

operating systems. However except in case of copping with

busy waiting, in most of occasions have acceptable

performance in operating systems.

References
1. W.Stallings, Operating System Internal And Design

Principles, Prentice Hall, 2009 7th Edition, March 2011.

2. A.Silberchatz, B.Galvin, G.Gange, Operating System

Concepts, Wiley, 9th Edition, December 2014.

3. A.s Tanenbaum A.s Woodhull, Operating Systems

Design & Implementation, Pearson Prentice Hall, 3rd

Edition, January 2009.

4. A.s Tanenbaum, Modern Operating Systems, Pearson

Education, 3rd Edition, 2008.

5. Clay Breshears, The Art of Concurrency: A Thread

Monkey's Guide to Writing Parallel Applications, Oreilly,

2009.

6. Leslie Lamport, A New Solution Of Dijkstra's Concurrent

Programming Problem, Massachusetts Computer

Associates , Communication of the ACM, Vol. 17, No. 8,

1974.

7. M. Ben-Ari, Principles of Concurrent and Distributed

Programming, Addison-Wesley, 2th Edition , February

2006.

8. Sibsankar Haldar, Alex Aravind, Operating Systems,

Pearson, November 2010.

9. Peter W. O’Hearn, Concurrency and Local Reasoning,In

Proc. 13th European Symposium on Programming, Spain,

ESOP 2004.

10. Andrew D. Birrell, Implementing Condition Variables

with Semaphores, Microsoft Research, Silicon Valley,

January 2003.

11. Matt Welsh, Systems Programming and Machine

Organization, Harvard University, November 2009.

12. CarstenGriwodz, Semaphores and other Wait-and-Signal

mechanisms, University of Oslo

