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ABSTRACT 
Nowadays project management is a key component in 

introductory operations management. The educators and the 
researchers in these areas advocate representing a project as a 
network and applying the solution approaches for network 
models to them to assist project managers to monitor their 
completion. In this paper, we evaluated project’s completion 

time utilizing the Q-learning algorithm. So the new algorithm 
is proposed to solve completion time project. Then, we run 
this algorithm in example network in Matlab. The results 
showed that the algorithm has achieved the best time to 
complete the project. 
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1. Introduction 
Nowadays project management has been an important 

issue for industrial organizations because it should maximize 
resource utilization and minimize cost and time for 
organizations. Although Time management play more 
significant role in project management compares to 
scheduling control, resource management and cost 
management. But, Research has shown that many projects are 
not completed on time. In large projects, only approximately 

10%_15% of them finishes on time [8, 14]. In fact, major 
subject of this point is not only their planned schedule, but 
their budget is more important. The network techniques used 
to tackle project analysis are Critical Path Method (CPM) and 
Project Evaluation and Review Technique (PERT) [15]. With 
CPM a deterministic assessment for activity time was used 
[16, 17], while with PERT random time assessments were 
employed [18, 19, 20]. 

Introductory discussions has begun Expression the basic 
concepts of activities, durations, and precedence 
relationships, followed by the development of network 

representations of a project; earliest and latest start and 
completion times; slack; and critical path. The problem of 

determining the completion time of a project has been 
extensively dealt with in management science/operations 
research/industrial engineering. The educators and the 
researchers in these areas advocate representing a project as a 
network and applying the solution approaches for network 
models to them to assist project managers to monitor their 
completion. The purpose of this paper is to Evaluate project’s 
completion time utilizing the Q-learning algorithm. 

 
 

2. Related work 
One of the most important problems in project 

management is obtain the total completion time. The main 

approaches used are the Program Evaluation and Review 
Technique (PERT) and the Critical Path Method 
(CPM).Martin in 1965 calculates the completion time using 
polynomials by approximating task duration density 
functions. Wolf in 1985 represented assessed using a sound 
approach to calculate the completion time for practical and 
managerial purposes, what matters is the criticality of each 
activity within a PERT network. Many researchers have 
focused on this issue using different methods. A survey of 

recent developments can be found in Table 1. 
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Table 1- recent developments 

ID Researchers Year Subject Result 

1 

Maria Elena Bruni, 

Francesca Guerriero, 

Erika Pinto 

 

2008 

Evaluating project completion 

time in project networks with 

discrete random activity durations 

 

- Deterministic models for project scheduling suffer from the fact 

that they assume complete information and neglect random 

influences that occur during project execution. 

- This phenomenon occurs even in the absence of resource 

constraints and has been the subject of extensive research in the 

scientific community. 

- This paper: a method for obtaining relevant information about 

the project make span for scheduling models, with dependent 

random processing time available in the form of scenarios [1]. 

2 

AlirezaAlagheband, 

Mohammad Ali 

Soukhakian 

 

2012 

An efficient algorithm for 

calculating the exact overall time 

distribution function of a project 

with uncertain 

task durations 

 

- Calculating the probability distribution function (pdf) for project 

completion time is caused by structural and statistical 

dependence between activities. 

- This paper: a method for taking into accounts the structural 

dependence between activities and provides a generalized 

algorithm to evaluate the exact PDF for project completion time 

[2]. 

3 

Peng-Jen Lai, Hsien-

ChungWu  

 

2011 

1.  Evaluate the fuzzy completion 

times in the fuzzy flow shop 

scheduling problems using the 

virus-evolutionary genetic 

algorithms 

 

- A computational procedure is proposed to obtain the 

approximated membership function of fuzzy completion time for 

each schedule. 

- We plan to minimize the fuzzy make span and total weighted 

fuzzy completion time. 

- Evolutionary genetic algorithms to search for the best schedules. 

- MATLAB[3]. 

4 

Cs. Király, M. 

Garetto,M. Meo,M. 

AjmoneMarsan, R. Lo 

Cigno 

 

2005 

2.  Analytical computation of 

completion time distributions of 

short-lived TCP connections 

3.   

 

- A new technique for the analytical evaluation of distributions 

(and quintiles) of the completion time of short-lived TCP 

connections 

- Open multiclass queuing network (OMQN) models of the TCP 

protocol and computes a discrete approximation, with arbitrary 

accuracy. 

- Computationally efficient, its asymptotic complexity is 

independent of the network topology, of the number of 

concurrent flows, and of other network parameters [4]. 

5 

Roger Buehler
,
 

Johanna Peetz, 

Dale Griffin 

 

2010 

4.  Finishing on time: When do 

predictions influence completion 

times? 

5.   

- We examined whether and when task completion predictions 

influence actual completion times. 

- As hypothesized, the prediction manipulation influenced 

completion times under certain conditions defined by the nature 

of the target task. 

- Manipulated predictions affected completion times of closed 

tasks, defined as tasks carried out within a single, continuous 

session but not of open tasks, defined as tasks requiring multiple 

work sessions. This implies that task completion predictions help 

to initiate action, but their impact diminishes over the course of 

extensive, multi-stage projects [5]. 

6 
Yousry H. Abdelkader 

 
2004 

6.  Evaluating project completion 

times when activity times are 

Weibull distributed 

7.   

- In this paper, a development of the moments method based on 

Weibull distribution of activity time is presented. The method 

provides an accurate estimate of the project completion time 

compared with other d.f.'sestimates[6]. 

7 

KishanMehrotra, 

John Chai, 

Sharma Pillutla 

 

1996 

8.  A study of approximating the 

moments of the job completion 

time in PERT networks 

9.   

- We propose an approximation to determine the TCJ which 

explicitly recognizes this dependency. Dependency in networks 

arises due to commonality of activities among various paths in 

the network. 

- We develop an approximation which is simple to use and makes 

use of readily available tables. The activities on the critical paths 

are divided into an independent portion and a dependent portion. 

The dependent portion comprises activities common to various 

critical paths. Order statistics are used in computing the time for 

the dependent portion of the critical path. 

- Closer to the simulation results. [7]. 

 

 

3. Q-learning 
Machine learning is a growing field with increasing 

importance. It is utilized when normal algorithms are too 
difficult and complex to develop and also because it has the 
ability to recognize complex pattern that otherwise might be 
overlooked. Machine learning methods can also be used when 

the task at hand is in a changing environment where 
adaptability is important in order to overcome new obstacles 
that might arise [9]. 

Reinforcement learning is a subset of the machine 
learning techniques. These techniques learn through trial and 

error in search of an optimal solution. Q-learning is a simple 

http://www.sciencedirect.com/science/article/pii/S0305054808002451
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reinforcement learning algorithm. The main advantage of this 
algorithm is that it is simple and thus easy to implement; the 
actual algorithm consists of only one line of code. Chris 
Watkins developed Q-learning back in 1989 when he 
combined several previous fields into what today is known as 
reinforcement learning [10, 11]. An agent is a Supervisor in 
the project implementation, either a computer or an interface 
towards humans. To understand Q-learning it is crucial to 

understand how a problem is represented. It is possible to 
divide almost all problems into several situations, so called 
states the state of the environment is the current Specified 
Activity. 

An action is a transition from one state to another, which 
is what a Supervisor does or can do in specific state. An 
action generates feedback from the environment. The 
feedback can be either positive or negative. The feedback is 
used in the Q-learning algorithm for estimating how good an 

action is. The term reward is used for positive feedback and 
negative feedback is called punishment. In every state the 
algorithm visits it checks the best possible action it can take. 
It does this by first checking the Q-value of every state it has 
the possibility to get to in one step. It then takes the 
maximum of these future values and incorporates them into 
the current Q-value. When feedback is given, the only value 
that is updated is the Q-value corresponding to the state 

action pair that gave the feedback in question. The algorithm 
for updating Q-values is shown in equation 1, where st and at 
corresponds to the state and action at a given time [10, 11]. 
 

The fact that only one value is updated when feedback is 
given, gives Q-learning an interesting property. It takes a 
while for the feedback to propagate backwards through the 
matrix. The next time a certain state-action pair is evaluated, 

the value will be updated with regards to the states it can lead 
to directly. What this means is that in order for feedback to 
propagate backwards to the beginning, the same path need to 
be taken the same number of times the paths are long, each 
new iteration on the path propagating the effects backwards 
one step. If the algorithm always took the best path it knew of 
it is very likely it will end up in a local maximum where it 
takes the same path all the time. Even though the path it takes 

is the best it knows of that does not mean there is no better 
path. To counter this it is necessary to let the algorithm 
sometimes take a new path and not the best one, in order for it 
to hopefully stumble upon a better solution. 

If there is one, and only one, stable solution, that is which 
action is the best in each state, the Q-learning algorithm will 
converge towards that solution. Because of the back-
propagation property of Q-learning, this however requires a 

large amount of visits to every possible state action pair [13]. 
There are two parameters to the algorithm, the learning 

rate “a” and the discount factor “g”. These both affect the 
behavior of the algorithm in different ways. The learning rate 
decides how much future actions should be taken into regard. 
A learning rate of zero would make the agent not learn 
anything new and a learning rate of one would mean that only 
the most recent information is considered. The discount factor 
determines how much future feedback is taken into account 

by the algorithm. If the discount factor is zero, no regard is 
taken to what happens in the future. Conversely, when the 
discount factor approaches one a long term high reward will 
be prioritized. 

A problem with the Q-learning algorithm is how 
exploration of new paths is done. There are a couple of ways 
to execute this task. The simplest is sometimes to simply use 
a random action and hope it provides a better solution. 

Another way is to have a phase of exploration in the 
beginning of the agent’s lifetime where all possible state-
action pairs are explored. 

The agent used in the implementation uses an exploration 
phase. This means that after the exploration 

Phase, no further exploration is done. This could pose a 
problem since an agent trained against one opponent might 
not learn the most efficient behavior against another opponent 

because there is no real exploration being done. We have 
chosen to ignore this risk, trusting that the Q-learning 
algorithm will cope with it. During the exploration phase each 
state-action pair is tested until it has a decent Q-value. 
Because of back-propagation this means that a state-action 
pair will be tested multiple times. This ensures that a reliable 
result is achieved. 

 
 

 
 

 

4. Evaluate project’s completion time using 

Q-learning 
In Algorithm, each activity is considered a state. We 

begin from first state as first activity, by Breadth first search 
algorithm; agent can go one activity to another activity that 
between activities to another activity should be edge. R-

matrix is adjacent matrix graph of the project. Matrix R 
contains the state that is connected by a path straight to the 
other state. In this algorithm, the matrix R is the reward. The 
matrix R is a direct route between the time-consuming states 
is element of matrix, otherwise, “-in” is valued. 

Parameter gamma is the ratio of the learning rate, which 
determines the learning of Q-learning algorithm. Gamma can 

be considered from 0.01to0.100. If learning rate is higher, 
value of Q-table is increasing. In small projects can be 
considered 1 to give infinitive answer. But in large projects 
are generally considered to bathe bigger the amount of time it 

takes to get an answer. 
Episode parameter specifies the number of repetitions and 

since this parameter is one of the parameters in the algorithm 
complexity is essential to be careful in the choice of its value. 
Q-Learning project's completion time algorithm pseudo-code 
is given in figure 1: 
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1. Create a project using the R-matrix graph 

2. Set the gamma value 

3.Initialise Q with zero 

4.Initialise Q1 with zero 

5.For (each episode) do 

Initialize s 

Determine the value of y using ran perm function 

Determine the state using y(1) 

Find R(state) Greater equality of zero 

q (state,x1)<- R(state,x1)+gamma*qMax(x1) 

State <- x1 

Until s is terminal 

 

6. Time Project <- q (1, j) 

Figure 1- Q-Learning project’s completion time algorithm 

pseudo-code 
 

5. Numerical Example 
In this section, a hypothetical project problem is 

presented to demonstrate the computational process of Q-
learning proposed above. Suppose there is a project network, 
as Figure 2, with the set of node N = {1, 2, 3, 4, 5, 6, 7, 8}, the 

activity time for each activity as shown in figure. All of the 
durations are in hours. 

 

 

 

 
Figure 2- project network 

 
After running the algorithm on the project network in 

Figure 2, Q-matrix is obtained. In fact, output of Q-algorithm 
is called Q-matrix so that ith as the answer. The matrix Q is 
obtained which is given below. 
q =  

     0    25    14    0    0     0     0     0 

     0     0    15    23   0     0     0     0 

     0     0     0     0     0    11    0     0 

     0     0     0     0    20    0     0     0 

     0     0     0     0     0     8     3     0 

     0     0     0     0     0     0     0     8 

     0     0     0     0     0     0     0     0 

     0     0     0     0     0     0     0     0 

 
In Table 2 are gave the project time and the number of 

iterations of the Q-algorithm. Time project comes from the 
maximum amount of first row of the Q-matrix. Number of 
repetitions is the number of loop iterations Q-algorithm. 

 

Table 2- TP and episode 

TP 25 

episode 1069 

The matrix Q is given in graph form in Figure3. As it can be 
seen that the maximum value of25as the time during every 
activity of the project after the project has been obtained. 

 

 
Figure 3 –plot (q) 

 

6. Conclusion 
We evaluated project’s completion time utilizing the Q-

learning algorithm. So, the new algorithm is proposed to 
solve completion time project. In Algorithm, each activity is 
considered a state. We begin from first state as first activity, 

by Breadth first search algorithm; agent can go one activity to 
another activity that between activities to another activity 
should be edge. R-matrix is adjacent matrix graph of the 
project. Matrix R contains the state that is connected by a 
path straight to the other state. In this algorithm, the matrix R 
is the reward. The matrix R is a direct route between the time-
consuming state is element of matrix, Otherwise, “-inf” is 
valued. Parameter gamma is the ratio of the learning rate, 
which determines the learning of Q-learning algorithm. 

Gamma can be considered from 0.01to0.100. If learning rate 
is higher, value of Q-table is increasing. In small projects can 
be considered 1 to give a definitive answer. But in large 
projects are generally considered to bathe bigger the amount 
of time it takes to get an answer. Episode parameter specifies 
the number of repetitions and since this parameter is one of 
the parameters in the algorithm complexity is essential to be 
careful in the choice of its value. Then, we run this algorithm 

in example network in Matlab. Time complexity of the 
algorithmic linear and is defined by number of episodes. 
Complexity Space simply is project the network input and Q-

matrix in the algorithm that is     . The results show that 

the algorithm has achieved the best time to complete the 
project and ineffective. 
 

7. Future work 
For future work, we have implemented a Q-Learning 

algorithm for fuzzy number as time project, of course because 
fuzzy numbers are Triangular or trapezoidal, the structure of 
the input matrix and state matrix and Q-matrix should make a 
difference that is described in this article. Cell array structure 
for fuzzy number scan is used.  Cell array is a multi 
dimensional array, each element of which is an array. Fuzzy 
numbers that are1 x4 or1 x 3 matrixes; each of them will be 
element of the array. 
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