
Available online at http://ijim.srbiau.ac.ir/

Int. J. Industrial Mathematics (ISSN 2008-5621)

Vol. 8, No. 4, 2016 Article ID IJIM-00774, 8 pages

Research Article

Approximation solution of two-dimensional linear stochastic

Volterra-Fredholm integral equation via two-dimensional Block-pulse

functions

M. Fallahpour ∗, M. Khodabin †‡, K. Maleknejad §

Received Date: 2015-10-25 Revised Date: 2016-02-11 Accepted Date: 2016-11-02

————————————————————————————————–

Abstract

In this paper, a numerical efficient method based on two-dimensional block-pulse functions (BPFs)
is proposed to approximate a solution of the two-dimensional linear stochastic Volterra-Fredholm
integral equation. Finally the accuracy of this method will be shown by an example.
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1 Introduction

T
The nonlinear and linear Volterra-Fredholm
ordinary integral equations arise from vari-

ous physical and biological models. The essential
features of these models are of wide applicable.
These models provide an important tool for mod-
eling a numerous problems in engineering and sci-
ence [6, 7]. Modelling of certain physical phenom-
ena and engineering problems [8, 9, 10, 11, 12]
leads to two-dimensional nonlinear and linear
Volterra-Fredholm ordinary integral equations of
the second kind. Some numerical schemes have
been inspected for resolvent of two-dimensional
ordinary integral equations by several probers.
Computational complexity of mathematical op-
erations is the most important obstacle for solv-
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ing ordinary integral equations in higher dimen-
sionas.
These include the Nystrom method, collocation
method, Gauss product quadrature rule method,
Galerkin method, using triangular fuctions, Leg-
ender polynomial method, differential transform
method, meshless method, Bernstein polynomi-
als method and Haar wavelet method [13, 14, 15,
16, 17, 18, 19, 20, 21, 22, 23, 24, 25]. It’s easy to
show that the Volterra integral form of the gen-
eral hyperbolic differential equation [9] is given
by two-dimentional integral equation

g(x, y)

= f(x, y) +

∫ y

0

∫ x

0
K(x, y, s, t)g(s, t)dsdt.

If we import statistical noise in the general hy-
perbolic differential equation [9], we can obtain
two-dimensional linear stochastic Volterra inte-
gral equation of the second kind, i.e.

g(x, y) = f(x, y)

+

∫ y

0

∫ x

0
K1(x, y, s, t)g(s, t)dsdt
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+

∫ y

0

∫ x

0
K2(x, y, s, t)g(s, t)dB(s)dB(t), (1.1)

(x, y) ∈ [0, T1)× [0, T2) , s ⩽ x < t ⩽ y.

Alike two-dimensional linear Volterra-Fredholm
ordinary integral equations we can obtain two-
dimensional linear stochastic Volterra-Fredholm
integral equation of the second kind from Eq. 1.1
as

g(x, y) = f(x, y)

+

∫ 1

0

∫ 1

0
K1(x, y, s, t)g(s, t)dsdt

+

∫ y

0

∫ x

0
K2(x, y, s, t)g(s, t)dsdt

+

∫ y

0

∫ x

0
K3(x, y, s, t)g(s, t)dB(s)dB(t),

(1.2)

(x, y) ∈ [0, T1)× [0, T2) , s ⩽ x < t ⩽ y.

where the kernels K1(x, y, s, t), K2(x, y, s, t),
K3(x, y, s, t) and the function f(x, y) in 1.2
are known functions whereas g(x, y) is un-
known function and is called the solution of
two-dimensional stochastic integral equation.
Also B(s) is a Brownian motion process and∫ y
0

∫ x
0 K3(x, y, s, t)g(s, t)dB(s)dB(t) is the double

Wiener-It̂o integral. The condition s ⩽ x < t ⩽
y is necessary for adaptability to the filtration
{Ft; 0 ≤ t ≤ 1} where Ft = σ{B(s); 0 ≤ s ≤ t}.
Some detailed treatments of numerical method
for solving the one-dimensional case of Eqs. 1.1
and 1.2 can be found in [2, 3, 4]. According to
[1] in this paper we apply two-dimensional block-
pulse functions (BPFs), constructed on [0, T1) ×
[0, T2) to solve Eq. 1.2. Our method consists of
reducing 1.2 to a set of algebraic equations by
expanding unknown function as two-dimensional
BPFs with unknown coefficients. For validation
the stochastic double Wiener-Ito integral we need
the following lemma and definition [5]:

Lemma 1.1 Put ϕ(t, s) = K(x, y, s, t)g(s, t).
Let ϕ be a function in L2([0, 1]2). Then there ex-
ists a sequence ϕn of off-diagonal step functions
such that

lim
n→∞

∫ b

a

∫ b

a
| ϕ(t, s)− ϕn(t, s) |2 dtds = 0.

Definition 1.1 Let ϕ ∈ L2([0, 1]2). Then the
double Wiener-It̂o integral of ϕ in L2(Ω) is

defined as∫ b

a

∫ b

a
ϕ(t, s)dB(t)dB(s)

= lim
n→∞

∫ b

a

∫ b

a
ϕn(t, s)dB(t)dB(s).

This paper is organized as follows: In Section
2 we introduce BPFs and their properties.

In Section 3 we solve the two-dimensional linear
stochastic Volterra-Fredholm integral equation
1.2 by finding the ordinary and stochastic
operational matrixes. In Section 4 we apply
the proposed method in an example, showing
the accuracy and efficiency with %95 confidence
interval for it.

2 Two dimentional BPFs

The block-pulse functions are a set of orthogonal
functions with piecewise constant values and are
usually applied as a useful tool in the analysis,
synthesis, identification and other problems of
contorol and systems science. This set of func-
tions was first introduced to electrical engineers
by Harmuth in 1969, and have been extensively
applied due to their simple and easy operations
for one-dimensional problems [26, 27, 28, 29].
The complete details for one-dimensional BPFs
is given in [26, 27]. These discussions can also be
extended to the two-dimensional BPFs [27] that
are presented in this section.

2.1 Definition and properties
An (n1n2)-set of two-dimensional BPFs
ψa1,a2(x, y) (a1 = 1, 2, ..., n1); (a2 = 1, 2, ..., n2)
is defined in the region of x ∈ [0, T1) and
y ∈ [0, T2) as:

ψa1,a2(x, y)

=

 1, for
(a1 − 1)k1 ≤ x < a1k1
(a2 − 1)k2 ≤ y < a2k2

0, otherwise,

where (n1, n2) are arbitary positive integers and
we have

k1 =
T1
n1

, k2 =
T2
n2
.
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Similar to the one-dimensional case, we have the
elementary properties for two-dimensional BPFs
that are as follows:

1. Disjointness. The BPFs are disjoined with
each other:

ψa1,a2(x, y)ψb1,b2(x, y)

=

{
ψa1,a2(x, y), if a1 = b1 , a2 = b2

0, otherwise.

2. Orthogonality. The BPFs are orthogonal
with each other:∫ T1

0

∫ T2

0
ψa1,a2(x, y)ψb1,b2(x, y)dydx

=

{
k1k2, for a1 = b1 , a2 = b2
0, otherwise,

in the region of x ∈ [0, T1) and
y ∈ [0, T2), where a1, b1 = 1, 2, ..., n1
and a2, b2 = 1, 2, ..., n2.

3. Completeness. The BPF set is complete
when n1 and n2 approaches to the infinity.
This means that for every h ∈ L2([0, T1) ×
[0, T2)) Parseval’s identity holds:∫ T1

0

∫ T2

0
h2(x, y)dxdy

=

∞∑
a1=1

∞∑
a2=1

h2a1,a2∥ψa1,a2(x, y)∥2,

where

ha1,a2

=
1

k1k2

∫ T1

0

∫ T2

0
h(x, y)ψa1,a2(x, y)dydx.

The set of two-dimensional BPFs can be written
as a vector ψ(x, y) of dimension n1n2:

Ψ(x, y) = [ψ1,1(x, y), ..., ψn1,n2(x, y)]
T (2.3)

where (x, y) ∈ [0, T1)× [0, T2).
From the above representation and disjointness
property, it follows:

Ψ(x, y)ΨT (x, y) =


ψ1,1(x, y) 0 ... 0

0 ψ1,2(x, y) ... 0
...

...
. . .

...
0 0 ... ψn1,n2(x, y)

 ,

(2.4)

ΨT (x, y)Ψ(x, y) = 1,

and

Ψ(x, y)ΨT (x, y)V = ṼΨ(x, y), (2.5)

where V is an n1n2-vector and Ṽ = diag(V ).
Moreover, it can be clearly concluded that for ev-
ery (n1n2)× (n1n2) matrix A:

ΨT (x, y)AΨ(x, y) = ÂTΨ(x, y), (2.6)

where Â is an n1n2-vector with elements equal
to the diagonal entries of matrix A.

2.2 Two dimensional BPFs expansions
A function h(x, y) defined over [0, T1)×[0, T2) can
be expanded by the two-dimensional BPFs as

h(x, y)

≃
n1∑

a1=1

n2∑
a2=1

ha1,a2ψa1,a2(x, y) = HTΨ(x, y),

where F is an (n1n2)× 1 vector given by

H = [h1,1, ..., h1,n2 , ..., hn1,1, ..., hn1,n2 ]
T ,

and Ψ(x, y) is defined in 2.3.
The block-pulse coefficients, ha1,a2 , are obtained
as

ha1,a2

=
1

k1k2

∫ a1k1

(a1−1)k1

∫ a2k2

(a2−1)k2

h(x, y)dydx.

Similarly a function of four variables,K(x, y, s, t),
on [0, T1)×[0, T2)×[0, T3)×[0, T4) can be approx-
imated with respect to BPFs such as:

K(x, y, s, t) ≃ Ψ(x, y)TKΨ(s, t),

where Ψ(x, y) is two-dimensional BPF vector of
dimension n1n2 and K is the (n1n2) × (n3n4),
two-dimensional BPF coefficient matrix.
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2.3 Operational matrix of integration
The integration of the vector Ψ(x, y) defined in
2.3 can be approximately obtained as [1]∫ x1

0

∫ x2

0
Ψ(y1, y2)dy1dy2 ≃ PΨ(x1, x2)

= [O(n1×n1) ⊗O(n2×n2)]Ψ(x1, x2), (2.7)

where x1 ∈ [0, T1), x2 ∈ [0, T2) and P is the
(n1n2)× (n1n2) operational matrix of integration
for two-dimensional BPFs where O is the oper-
ational matrix of one-dimensional BPFs defined

over [0, T ) with k =
T

n
and T = T1 = T2 as fol-

lows

O =
k

2


1 2 2 ... 2
0 1 2 ... 2
0 0 1 ... 2
...

...
...

. . .
...

0 0 0 ... 1

 .

In 2.7, ⊗ denotes the Kronecker product defined
as

D ⊗ E = (dijE).

Also from (2.4) we have:∫ 1

0

∫ 1

0
Ψ(s, t)ΨT (s, t)dsdt

=


k1k2 0 ... 0
0 k1k2 ... 0
...

...
. . .

...
0 0 ... k1k2

 = D, (2.8)

where D is the (n1n2)× (n1n2) known matrix.

2.4 Stochastic operational matrix
based on two-dimensional BPFs
Similarly we obtain the stochastic integration of
the vector Ψ(x, y) defined in 2.3 as [30, 1]∫ x1

0

∫ x2

0
ψ(y1, y2)dB(y1)dB(y2)

≃ Psψ(x1, x2)

= [Os,(n1×n1) ⊗Os,(n2×n2)]ψ(x1, x2), (2.9)

where x1 ∈ [0, T1), x2 ∈ [0, T2) and Ps is the
(n1n2) × (n1n2) stochastic operational matrix
of integration for two-dimensional BPFs where
Os is n1 × n2 stochastic operational matrix of

one-dimensional BPFs defined over [0, T ) with

k =
T

n
and T = T1 = T2 as follows [2]

Os =
B(

k

2
) ... B(k)

...
. . . B(2k)−B(k)

0 ... B(
(2n− 1)k

2
)−B((n− 1)k)


In the next sections, it is assumed that T1 =
T2 = 1, so two-dimensional BPFs are defined over

[0, 1)× [0, 1) and k1 =
1

n1
, k2 =

1

n2
.

Figure 1: Approximate solution n = 4

Figure 2: Approximate solution n = 10

3 Method of solution

In this section we solve two-dimensional linear
stochastic Volterra-Fredholm integral equation
1.2 using two-dimensional BPFs.
Approximating functions f(x, y), K1(x, y, s, t),
K2(x, y, s, t), K3(x, y, s, t) and g(x, y) with re-
spect to two-dimensional BPFs by the way men-
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Table 1: The solutions mean with %95 confidence interval for above example.

n (x, y) ḡ(x, y) (L,U)

(0, 0.25) −1.58407 (−1.61509,−1.55305)
4 (0.25, 0.5) −3.46561 (−3.52655,−3.40467)

(0.25, 0.75) −6.88707 (−6.97383,−6.80031)

(0, 0.5) −2.16111 (−2.19703,−2.12519)
6 (0.33, 0.67) −4.19015 (−4.30596,−4.07435)

(0.17, 0.83) −4.08131 (−4.15619,−4.00643)

(0, 0.12) −0.82309 (−0.84059,−0.80559)
8 (0.25, 0.5) −2.98738 (−3.04395,−2.93080)

(0.62, 0.87) −8.29961 (−8.41224,−8.18698)

(0, 0.1) −1.02272 (−1.02633,−1.01911)
10 (0.3, 0.6) −3.63773 (−3.65491,−3.62055)

(0.7, 0.9) −9.62180 (−9.64288,−9.60071)

tioned in Section 2 gives

f(x, y) = F TΨ(x, y), (3.10)

K1(x, y, s, t) = ΨT (x, y)Γ1Ψ(s, t), (3.11)

K2(x, y, s, t) = ΨT (x, y)Γ2Ψ(s, t), (3.12)

K3(x, y, s, t) = ΨT (x, y)Γ3Ψ(s, t), (3.13)

and

g(x, y) = GT
1 Ψ(x, y), (3.14)

where the vectors F and G1 and matrices K1, K2

and K3 are BPFs coefficients of f(x, y), g(x, y),
K1(x, y, s, t), K2(x, y, s, t) and K3(x, y, s, t) re-
spectively and Ψ(x, y) is defined in 2.3. In 3.10, F
is (n1n2× 1) known vector, also in 3.11, 3.12 and
3.13, Γ1, Γ2 and Γ3 are (n1n2) × (n1n2) known
matrices but in 3.14, G1 is (n1n2 × 1) unknown
vector.
In Eq. 1.2 to approximate the first two-
dimensional integral from 3.11 and 3.14 we get∫ 1

0

∫ 1

0
K1(x, y, s, t)g(s, t)dsdt

=

∫ 1

0

∫ 1

0
ΨT (x, y)Γ1Ψ(s, t)ΨT (s, t)G1dsdt,

by using operational matrix D from Eq. 2.8 we
have

= ΨT (x, y)Γ1

(∫ 1

0

∫ 1

0
Ψ(s, t)ΨT (s, t)dsdt

)
×G1 = ΨT (x, y)Γ1DG1 = (Γ1DG1)

TΨ(x, y)

= GT
2 Ψ(x, y),

where G2 is an (n1n2)-vector obtained from
Γ1DG1. Therefore the approximation of the
first two-dimensional integral with respect to two-
dimensional BPFs may be compactly written as∫ 1

0

∫ 1

0
K1(x, y, s, t)g(s, t)dsdt ≃ GT

2 Ψ(x, y).

(3.15)
To approximate the second two-dimensional inte-
gral in 1.2 from Eqs. 3.12 and 3.14 we get [1]∫ y

0

∫ x

0
K2(x, y, s, t)g(s, t)dsdt

≃
∫ y

0

∫ x

0
ΨT (x, y)Γ2Ψ(s, t)ΨT (s, t)G1dsdt

= ΨT (x, y)Γ2

(∫ y

0

∫ x

0
Ψ(s, t)ΨT (s, t)G1dsdt

)
,

from Eq. 2.5 follows

= ΨT (x, y)Γ2

(∫ y

0

∫ x

0
G̃1Ψ(s, t)dsdt

)

= ΨT (x, y)Γ2G̃1

(∫ y

0

∫ x

0
Ψ(s, t)dsdt

)
,

Using operational matrix P in Eq. 2.7 we have∫ y

0

∫ x

0
K2(x, y, s, t)g(s, t)dsdt

≃ ΨT (x, y)Γ2G̃1PΨ(x, y),

in which Γ2G̃1P is an (n1n2)×(n1n2) matrix. Eq.
2.6 follows:∫ y

0

∫ x

0
K2(x, y, s, t)g(s, t)dsdt ≃ GT

3 Ψ(x, y),

(3.16)
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where G3 is an (n1n2)-vector with components
equal to the diagonal entries of matrix Γ2G̃1P .
Similarly to approximate the stochastic integral
case in 1.2 from Eqs. 3.13 and 3.14 we get∫ y

0

∫ x

0
K3(x, y, s, t)g(s, t)dB(s)dB(t)

≃
∫ y

0

∫ x

0
ΨT (x, y)Γ3Ψ(s, t)ΨT (s, t)

×G1dB(s)dB(t) = ΨT (x, y)Γ3

×
(∫ y

0

∫ x

0
Ψ(s, t)ΨT (s, t)G1dB(s)dB(t)

)
,

from Eq. 2.5 we have

= ΨT (x, y)Γ3

(∫ y

0

∫ x

0
G̃1Ψ(s, t)dB(s)dB(t)

)

= ΨT (x, y)Γ3G̃1

(∫ y

0

∫ x

0
Ψ(s, t)dB(s)dB(t)

)
.

By using operational matrix Ps in Eq. 2.9 we
have ∫ y

0

∫ x

0
K3(x, y, s, t)g(s, t)dB(s)dB(t)

≃ ΨT (x, y)Γ3G̃1PsΨ(x, y),

in which Γ3G̃1Ps is an (n1n2) × (n1n2) matrix.
Eq. 2.6 follows:∫ y

0

∫ x

0
K3(x, y, s, t)g(s, t)dB(s)dB(t)

≃ GT
4 Ψ(x, y), (3.17)

where G4 is an (n1n2)-vector with components
equal to the diagonal entries of matrix Γ3G̃1Ps.
Applying Eqs. 3.10, 3.14, 3.15, 3.16 and 3.17 in
Eq. 1.2 we get

GT
1 Ψ(x, y) ≃ F TΨ(x, y) +GT

2 Ψ(x, y)

+GT
3 Ψ(x, y) +GT

4 Ψ(x, y). (3.18)

Replacing ≃ with =, Eq. 3.18 gives

G1 −G2 −G3 −G4 = F. (3.19)

The equation 3.19 generate a system of (n1n2)
linear equations with (n1n2) unknown variable
which can be solved using Newton’s iterative
method.

4 Numerical Example

In this section, the numerical example is given to
demonstrate the applicability and accuracy of our
method. For convenience we put n1 = n2 = n so

k1 = k2 =
1

n
.

Example 4.1 Consider the following linear two-
dimensional stochastic Volterra integral equation
of second kind:

g(x, y) = f(x, y)

+

∫ 1

0

∫ 1

0
(x+ y + t− s)u(s, t)dsdt

+

∫ y

0

∫ x

0
(x+ y + t− s)u(s, t)dsdt

+

∫ y

0

∫ x

0
(x+ y + t+ s)u(s, t)dB(s)dB(t)

where

f(x, y) = x+ y − 1

12
xy(x3 + 4x2y + 4xy2 + y3).

The solutions mean (ḡ(x, y)) with %95 confidence
interval (L,U) at the points that as for condition
s ⩽ x < t ⩽ y are selected for the present
method for 500 iterative of system 3.19 is shown
in Table 1. The numerical example is carried out
for selected grid points which are proposed by
difference as (2−k, k = 4, 6, 8, 10). In Figs. 1-2,
three-dimensional graphs of the approximate
solution for various values of arbitary positive
integer n are shown.

5 Conclusion

The two-dimensional integral equations are usu-
ally difficult to solve analytically. In many
cases, it is required to obtain the numerical solu-
tions. The numerical solution of two-dimensional
stochastic integral equations because of the ran-
domness is very difficult or sometimes impossi-
ble. In this paper, the method based on two-
dimensional BPFs and its operational matrix has
been successfully used for approximate a solution
of two-dimensional linear stochastic Volterra-
Fredholm integral equations. This approach
transformed a two-dimensional linear stochastic
Volterra-Fredholm integral equation to a matrix
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equation which corresponds to a system of linear
equations with unknown coefficients. The illus-
trative example is included to demonstrate the
validity and applicability of the technique. Math-
ematica has been used for computations.
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