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Abstract

Effects of Hall current, ion-slip and Coriolis force on unsteady MHD Couette-Hartmann flow of a
viscous incompressible electrically conducting fluid through a porous medium bounded by porous
plates in the presence of a uniform transverse magnetic field which is either fixed relative to the fluid
or to the moving porous plate is investigated using Laplace transform technique. The expressions for
the fluid velocity and shear stress at the moving porous plate are also derived. In order to analyze the
physical significance and characteristic features of the problem, the graphs for velocity distribution
and shear stress distribution at the moving porous plate are generated for different values of non-
dimensional parameters. It is observed that the fluid velocity when magnetic field is fixed relative to
the moving porous plate is always more than the fluid velocity when magnetic field is fixed relative to
the fluid while the shear stress at the moving porous plate when magnetic field is fixed relative to the
moving porous plate is always less than the shear stress at the moving porous plate when magnetic
field is fixed relative to the fluid.
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1 Introduction

S
tudies made on magnetohydrodynamic
(MHD) flows in a rotating environment has

attracted many researchers during past several
decades due to its occurrence in various natural
phenomenon and technological situations. Inves-
tigation of interaction of electromagnetic force
with Coriolis force is important because several
geophysical, astrophysical and fluid engineering
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problems are governed by interaction of electro-
magnetic force and Coriolis force. MHD flow in
a rotating system has practical application in
MHD power generation, MHD Ekaman pumping
and turbo machines. When an ionized fluid with
low density is permeated by a strong magnetic
field, the effect of Hall current may be significant
(Sato [20]). Hall current is likely to be important
in underground energy storage system, magneto
meter, Hall effect sensors and spacecraft propul-
sion. It is observed that both the Coriolis force
and Hall current induce secondary flow in the
flow-field. Coriolis force and Hall current play
vital role in determining the flow features of the
MHD fluid flow problems. Taking into account
these facts Chauhan and Agrawal [5], Ghosh [7],
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Ghosh and Pop [8, 9], Ghosh et al. [10], Guria
and Jana [11], Jana and Datta [13], Jha and
Apere [14, 15], Linga Raju and Ramana Rao
[16], Nagy and Demendy [18], Ram et al. [19],
Seth and Ansari [21], Seth and Ghosh [22], Seth
and Singh [23], Seth et al. [24, 25], Singh and
Kumar [27], Singh and Pathak [28], Sivaprasad
et al. [29], Sulochana [31] and Takhar and Jha
[33] studied combined effects of rotation and
Hall current on MHD fluid flow problems in
different conditions and configurations. In the
case of very strong magnetic field, the diffusion
velocity of ions may not be negligible. If we
include the diffusion velocity of ions as well as
that of electrons, we have the phenomenon of
ion-slip (Cramer and Pai [6]). In such condition
we include Hall current and ion-slip in the
generalized Ohm’s law for a moving conductor.
Keeping this fact in mind Attia [2], Beg et al.
[4], Jha and Apere [14, 15], Ram et al. [19],
Soundalgekar et al.[30] and Takhar and Jha [33]
investigated combined effects of Hall current
and ion-slip on MHD flows considering different
aspects of the problem.The governing equation
for fluid motion through a porous medium is
based on Darcy’s law which determine the drag
force exerted by porous medium (Ingham and
Pop [12]). Study of MHD flows through a porous
medium bounded by parallel plates is significant
due to its application in the agricultural, bio-
logical, geophysical and technological problems.
Recently many researchers studied MHD flows of
a viscous incompressible electrically conductiong
fluid through a porous medium bounded by
parallel plates in the presence of an applied
magnetic field by considering various aspects
of the problem. Mention may be made of
the motivating research studies of Ahmed and
Chamkha [1], Beg et al. [3, 4], Chauhan and
Agrawal [5], Seth et al. [24], Singh et al. [26],
Singh and Pathak [28] and Sulochana [31].
In the present study the effects of Hall Current,
ion-slip and Coriolis force on unsteady MHD
Couette-Hartmann flow of a viscous incom-
pressible electrically conducting fluid through
a porous medium bounded by porous plates in
the presence of a uniform transverse magnetic
field which is either fixed relative to the fluid
or to the moving porous plate is analyzed. The
fluid flow through the porous medium bounded
by porous plates is induced due to an applied

pressure gradient acting along x-direction and
due to time dependent movement of the upper
plate along x-direction. Two particular cases of
interest are considered i.e. (i) the case of small
permeable regime and (ii) the case of pure fluid
regime.

Figure 1: Schematic diagram of the problem.

Figure 2: Velocity distribution in the primary
flow direction when Bi = 2.0,K2 = 3 andNt = 1.0
in case of small permeable regime (i.e. Da = 0.01).

Figure 3: Velocity distribution in the secondary
flow direction when Bi = 2.0,K2 = 3 andNt = 1.0
in case of small permeable regime (i.e. Da = 0.01).

The fluid is assumed to be such that the
magnetic Reynolds number Rm = µeσU0h ≪ 1
(where µe, σ and h are, respectively, magnetic
permeability, electrical conductivity and charac-
teristic length) which corresponds to negligible
induced magnetic field in comparison to ex-
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Figure 4: Velocity distribution in the primary
flow direction when Bi = 2.0,K2 = 3 andNt = 1.0
in case of pure fluid regime (i.e. Da → ∞).

Figure 5: Velocity distribution in the secondary
flow direction when Bi = 2.0,K2 = 3 andNt = 1.0
in case of pure fluid regime (i.e. Da → ∞).

ternally applied magnetic field. Since there is
no external applied or polarization voltages on
the flow field, hence the induced electric field
E⃗ = (0, 0, 0). Therefore the Maxwell’s equations
are uncoupled from the Navier-stokes equation
(Cramer and Pai [6]). Since the plates are of
infinite extent in x and z directions so all the
fluid properties except pressure will depend
on y and t only. In the essence of continuity
equation the fluid velocity q⃗ can be assumed as
q⃗ = (u, V0, w).

The general equation of motion for hydromag-
netic flow of a viscous incompressible electrically
conducting fluid through a porous medium in a
rotating system is given by

{
∂q⃗
∂t + (q⃗.∇)q⃗ + 2Ω⃗× q⃗ = −1

ρ∇p′+
ν ∇2q⃗ + 1

ρ J⃗ × B⃗ − νq⃗
k ,

(1.1)

where ρ, p′, υ, J⃗ and k are, respectively, fluid
density, modified pressure, kinematic coefficient
of viscosity, current density and permeability of
the porous medium.

Figure 6: Velocity distribution in the primary
flow direction when Be = 0.25,K2 = 3 and Nt =
1.0 in case of small permeable regime (i.e. Da =
0.01).

Figure 7: Velocity distribution in the secondary
flow direction when Be = 0.25,K2 = 3 and Nt =
1.0 in case of small permeable regime (i.e. Da =
0.01).

In the presence of a strong applied magnetic
field B0 the generalized Ohm’s law for a moving
conductor taking Hall current and ion-slip into
account is given in the following form (Sutton and
Sherman [32]){

J⃗ = σ[E⃗ + (q⃗ × B⃗)]− Be
B0

(J⃗ × B⃗)

+BeBi

B2
0
(J⃗ × B⃗)× B⃗,

(1.2)

where Be and Bi are, respectively, Hall current
and ion-slip parameters.

In the essence of above assumptions, the equa-
tions governing the flow are

∂u
∂t + V0

∂u
∂y + 2Ωw = −1

ρ
∂p′
∂x + υ ∂2u

∂y2

−σB2
0

ρ

[
u(1+BeBi)+wBe

(1+BeBi)2+B2
e

]
− υu

k ,
(1.3)

0 = −1

ρ

∂p′
∂y

, (1.4)


∂w
∂t + V0

∂w
∂y − 2Ωu = υ ∂2w

∂y2

−σB2
0

ρ

[
w(1+BeBi)−uBe

(1+BeBi)2+B2
e

]
− υw

k .
(1.5)
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Figure 8: Velocity distribution in the primary
flow direction when Be = 0.25,K2 = 3 and Nt =
1.0 in case of pure fluid regime (i.e. Da → ∞).

Figure 9: Velocity distribution in the secondary
flow direction when Be = 0.25,K2 = 3 and Nt =
1.0 in case of pure fluid regime (i.e. Da → ∞).

Eq. (1.4) shows that modified pressure p′
is constant along y-axis i.e. along the axis of
rotation. Since there is a net cross flow along
z-axis so the pressure gradient term is absent in
Eq. (1.5).

The initial and boundary conditions relevant to
the problem are

t ≤ 0 : u = w = 0 ∀y, (1.6)

t > 0 : u = w = 0 at y = 0, (1.7)

t > 0 : u = U0t
n, w = 0 at y = h. (1.8)

Eq. (1.3) is valid when the magnetic field is
fixed relative to the fluid. On the other hand
when the magnetic lines of force are fixed related
to the moving porous plate i.e. the magnetic lines
of force are also moving with the velocity U0t

n,
we must account for the relating motion, then Eq.
(1.3) can be replaced by the following equation

∂u
∂t + V0

∂u
∂y + 2Ωw = −1

ρ
∂p′
∂x + υ ∂2u

∂y2

−σB2
0

ρ

[
u(1+BeBi)+wBe−U0tn

(1+BeBi)2+B2
e

]
− υu

k .
(1.9)

Eq. (1.3) and (1.9) can be combinedly repre-

Figure 10: Velocity distribution in the primary
flow direction when Be = 0.25, Bi = 2.0 and Nt =
1.0 in case of small permeable regime (i.e. Da =
0.01).

Figure 11: Velocity distribution in the secondary
flow direction when Be = 0.25, Bi = 2.0 and Nt =
1.0 in case of small permeable regime (i.e. Da =
0.01).

sented by a single equation
∂u
∂t + V0

∂u
∂y + 2Ωw = −1

ρ
∂p′
∂x + υ ∂2u

∂y2

−σB2
0

ρ

[
u(1+BeBi)+wBe−K1U0tn

(1+BeBi)2+B2
e

]
−υu

k ,

(1.10)

where

K1 =


0 when B0 is fixed relative to the

fluid

1 when B0 is fixed relative to the

moving porous plate.

The mathematical model of the present physi-
cal problem is represented by Eqs. (1.5) and
(1.10) with initial and boundary conditions (1.6)
to (1.8). Now it is essential to find the solution of
Eqs. (1.5) and (1.10) with the initial and bound-
ary conditions (1.6) to (1.8).

2 Solution of the Problem

The flow described by Eqs. (1.5) and (1.10)
is the general representation of the fluid velocity
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Figure 12: Velocity distribution in the primary
flow direction when Be = 0.25, Bi = 2.0 and Nt =
1.0 in case of pure fluid regime (i.e. Da → ∞).

Figure 13: Velocity distribution in the secondary
flow direction when Be = 0.25, Bi = 2.0 and Nt =
1.0 in case of pure fluid regime (i.e. Da → ∞).

for the Couette-Hartmann flow through a porous
medium bounded by infinite porous plates due to
movement of the upper plate and applied pres-
sure gradient. In order to analyze the specific
flow pattern we have considered the case when
n = 1 which corresponds to the uniformly accel-
erated motion. Combining Eqs. (1.5) and (1.10)
by putting n = 1, the governing equation in com-
pact form, become

∂q1
∂t + V0

∂q1
∂y − 2iΩq1 =

−1
ρ
∂p′
∂x + υ ∂2q1

∂y2

−σB2
0

ρ

[
{(1+BeBi)−iBe}q1−K1U0t

(1+BeBi)2+B2
e

]
−υq1

k ,

(2.11)

where q1 = u+ iw.

The initial and boundary conditions in compact
form after taking n = 1, are given by

t ≤ 0 : q1 = 0 ∀y , (2.12)

t > 0 : q1 = 0 at y = 0, (2.13)

t > 0 : q1 = U0t, at y = h. (2.14)

Figure 14: Velocity distribution in the primary
flow direction when Be = 0.25, Bi = 2.0,K2 = 3
and Nt = 1.0.

Figure 15: Velocity distribution in the secondary
flow direction when Be = 0.25, Bi = 2.0,K2 = 3
and Nt = 1.0.

Introducing following non-dimensional quanti-
ties

x∗ =
x

h
, y∗ =

y

h
, q∗1 =

q1
U0

,

p∗ =
p′
ρU2

0

and t∗ =
tU0

h
.

Eq. (2.11) in non-dimensional form become
∂q∗1
∂t∗ +Nt

∂q∗1
∂y∗ − 2iK2q∗1 = R+ 1

Re

∂2q∗1
∂y∗2

−H2
a

Re

[
{(1+BeBi)−iBe}q∗1−K1R1t∗

(1+BeBi)2+B2
e

]
− q∗1

DaRe
,

(2.15)

and the initial and boundary conditions assumes
the following non-dimensional form

t∗ ≤ 0 : q∗1 = 0 ∀y∗, (2.16)

t∗ > 0 : q∗1 = 0 at y∗ = 0, (2.17)

t∗ > 0 : q∗1 = R1t
∗ at y∗ = 1. (2.18)

where Nt = V0/U0 is suction/injection parame-
ter (Nt > 0 for suction and Nt < 0 for injec-
tion) which represents the mass of fluid passing
into the porous channel via the stationary plate



406 J. K. Singh et al. /IJIM Vol. 8, No. 4 (2016) 401-414

Figure 16: Velocity distribution in the primary
flow direction when Be = 0.25, Bi = 2.0 and K2 =
3 in case of small permeable regime (i.e. Da =
0.01).

Figure 17: Velocity distribution in the secondary
flow direction when Be = 0.25, Bi = 2.0 and K2 =
3 in case of small permeable regime (i.e. Da =
0.01).

and exiting via the moving plate, K2 = Ωh/U0

is rotation parameter which represents the rel-
ative strength of Coriolis force to the inertial
force, R = −∂p∗/∂x∗ is modified pressure gra-
dient, Re = hU0/υ is Reynolds number which
represents the relative strength of inertial force
to the viscous force, H2

a = σB2
0h

2/ρυ is square of
Hartmann number (magnetic parameter) which
represents the relative strength of magnetic force
to the viscous force, Da = k/h2 is Darcy num-
ber (permeability parameter) which represents
the relative permeability of porous channel and
R1 = h/U0 is a constant.
The analytical solution of Eq. (2.15) subject
to the initial and boundary conditions (2.16) to
(2.18) is obtained by Laplace transform tech-
nique. Define the Laplace transform variable

q∗1(y
∗, s) =

∫ ∞

0
e−st∗q∗1(y

∗, t∗)dt∗

where s is Laplace transform parameter, s > 0
and then taking Laplace transform of Eq. (2.15)
and using initial condition (2.16), Eq. (2.15)

Figure 18: Velocity distribution in the primary
flow direction when Be = 0.25, Bi = 2.0 and K2 =
3 in case of pure fluid regime (i.e. Da → ∞).

Figure 19: Velocity distribution in the secondary
flow direction when Be = 0.25, Bi = 2.0 and K2 =
3 in case of pure fluid regime (i.e. Da → ∞).

transform to the following equation

d2q∗1
dy∗2 −NtRe

dq∗1
dy∗ −Re

[
s+ 1

DaRe

+ H2
a(1+BeBi)

Re((1+BeBi)2+B2
e )

−i

{
2K2 + H2

aBe

Re((1+BeBi)2+B2
e )

}]
q∗1

= − H2
aR1K1

s2((1+BeBi)2+B2
e )

− RRe
s .

(2.19)

The boundary conditions (2.17) and (2.18)
after taking Laplace transform, transform to the
equations

q∗1 = 0 at y∗ = 0, (2.20)

q∗1 =
R1

s2
at y∗ = 1. (2.21)

The solution of the Eq. (2.19) subject to the
boundary conditions (2.20) and (2.21) is
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Figure 20: Shear stress distribution in the pri-
mary flow direction when K2 = 3 and Nt = 1.0 in
case of small permeable regime (i.e. Da = 0.01).

Figure 21: Shear stress distribution in the sec-
ondary flow direction when K2 = 3 and Nt = 1.0
in case of small permeable regime (i.e. Da = 0.01).



q∗a = K1X1
s2X5

−

(
K1X1−X5R∗

X2
5

)

×

[
1
s −

1
s+X5

]

+
∑∞

n=0

[(
e−aλ1−e−bλ1

s2

)

−(−1)n

[
K1X1
X5

(
e−cλ1+e−dλ1

s2

)

−

(
K1X1−X5R∗

X2
5

){(
e−cλ1+e−dλ1

s

)

−

(
e−cλ1+e−dλ1

s+X5

)}]]
,

(2.22)

where

a = 2n+ 1− y∗, b = 2n+ 1 + y∗,

c = n+ y∗, d = n+ 1− y∗,

X1 =
H2

a

Re((1+BiBe)2+Be
2)
, X2 = BeX1,

X3 =
1

DaRe
+ (X1 +BiX2),

Figure 22: Shear stress distribution in the pri-
mary flow direction when K2 = 3 and Nt = 1.0 in
case of pure fluid regime (i.e. Da → ∞).

Figure 23: Shear stress distribution in the sec-
ondary flow direction when K2 = 3 and Nt = 1.0
in case of pure fluid regime (i.e. Da → ∞).

X4 = 2K2 +X2, X5 = X3 − iX4,

α, β = 1√
2

[{(
N2

t Re

4 +X3

)2
+X2

4

} 1
2

±
(
N2

t Re

4 +X3

)] 1
2
,

q∗a =
q∗1
R1

= u∗a + iw∗
a, R∗ = R

R1
,

P = α− iβ,

λ1 = (NtRe/2) +
√
Re

√
s+ P 2.

Using following Fourier-Mellin inversion in-
tegral formula to invert Eq. (2.22)L−1

[
e−y1(s+g)1/2

sN+1

]
= F (y1, t

∗, g,N)

= 1
2πi

∫
Br2

est
∗
e−y1(s+g)1/2

sN+1 ds,

(2.23)


L−1

[
e−y1(s+g)1/2

(s−a1)N+1

]
= G(y1, t

∗, g,N)

= 1
2πi

∫
Br2

est
∗
e−y1(s+g)1/2

(s−a1)N+1 ds,

(2.24)
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Figure 24: Shear stress distribution in the pri-
mary flow direction when Be = 0.25, Bi = 2.0 and
Nt = 1.0 in case of small permeable regime (i.e.
Da = 0.01).

Figure 25: Shear stress distribution in the sec-
ondary flow direction when Be = 0.25, Bi = 2.0
and Nt = 1.0 in case of small permeable regime
(i.e. Da = 0.01).

and


F (y1, t

∗, g,N)

= d
dg [F (y1, t

∗, g,N − 1)]

+t∗F (y1, t
∗, g,N − 1),

(2.25)

where Br2 is Bromwich path defined by McLach-
lan [17].
When N = 0, from Eqs. (2.23) and (2.24), we
have



F (y1, t
∗, g, 0) = 1

2

{
ey1

√
g

×erfc
(

y1
2
√
t∗

+
√
gt∗
)
+ e−y1

√
g

×erfc
(

y1
2
√
t∗

−
√
gt∗
)}

,

(2.26)

Figure 26: Shear stress distribution in the pri-
mary flow direction when Be = 0.25, Bi = 2.0
and Nt = 1.0 in case of pure fluid regime (i.e.
Da → ∞).

Figure 27: Shear stress distribution in the sec-
ondary flow direction when Be = 0.25, Bi = 2.0
and Nt = 1.0 in case of pure fluid regime (i.e.
Da → ∞).



G(y1, t
∗, g, 0) = ea1t

∗

2

{
ey1

√
g1

×erfc

(
y1

2
√
t∗

+
√
g1t∗

)
+ e−y1

√
g1

×erfc

(
y1

2
√
t∗

−
√
g1t∗

)}
,

(2.27)

where g1 = a1 + g.

When N = 1, from Eqs. (2.25) and (2.26), we
obtain



F (y1, t
∗, g, 1) = 1

4
√
g

{
(2t∗

√
g + y1)

×ey1
√
gerfc

(
y1

2
√
t∗

+
√
gt∗
)

+(2t∗
√
g − y1)

×e−y1
√
gerfc

(
y1

2
√
t∗

−
√
gt∗

)}
.

(2.28)

After inverting Eq. (2.22), the solution for fluid
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velocity are presented in the following form


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The fluid velocity when magnetic field is
fixed relative to the fluid is obtained by putting
K1 = 0 in Eq. (2.29) while the fluid velocity
when magnetic field is fixed relative to the
moving porous plate is found by putting K1 = 1
in Eq. (2.29).

Figure 28: Shear stress distribution in the pri-
mary flow direction when Be = 0.25, Bi = 2.0 and
K2 = 3.

Figure 29: Shear stress distribution in the sec-
ondary flow direction when Be = 0.25, Bi = 2.0
and K2 = 3.
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3 Shear Stress at the Moving
Porous Plate

The non-dimensional shear stress in the pri-
mary flow direction τ∗xa and the non -dimensional
shear stress in the secondary flow direction τ∗za
at the moving porous plate when magnetic field
is either fixed relative to the fluid (K1 = 0) or to
the moving porous plate (K1 = 1) are given by
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4 Results and Analysis

In order to observe physical insight into
this fluid flow problem the graphs for velocity
distribution and shear stress distribution at the
moving porous plate are computed and generated
for various values of different non-dimensional
parameters taking H2

a = 81, t∗ = 0.5, R = 5
and Re = 4. The values of non-dimensional
parameters corresponding to each figure are
included in the caption of the figure and there
inside the figure. Figs. 2 to 5 show the influence
of Hall current parameter Be on the fluid velocity
in the primary and secondary flow directions.
Figs. 2 and 4 display that in case of both the
small permeable regime (Da = 0.01) and pure
fluid regime (Da → ∞), fluid velocity in the
primary flow direction u∗a decreases on increasing
Hall current parameter Be when magnetic field
is either fixed relative to the fluid (K1 = 0) or
to the moving porous plate (K1 = 1). Figs. 3
and 5 represent that in case of both the small
permeable regime (Da = 0.01) and pure fluid
regime (Da → ∞), fluid velocity in the secondary
flow direction w∗

a decreases on increasing Hall
current parameter Be in most part of the channel
whereas it increases on increasing Hall current
parameter Be in the vicinity of the moving
porous plate when magnetic field is either fixed
relative to the fluid (K1 = 0) or to the moving
porous plate (K1 = 1). This concludes that in
case of both the small permeable regime and
pure fluid regime, Hall current tends to reduce
fluid velocity in the primary flow direction and
secondary flow direction in most part of the
channel whereas it has reverse effect on the fluid
velocity in the secondary flow direction in the
vicinity of the moving porous plate. The usual
nature of Hall current is to induce fluid flow in
the secondary flow direction.
Figs. 6 to 9 illustrate the effect of ion-slip
parameter Bi on the fluid velocity in the primary
and secondary flow directions. Figs. 6 to 9
depict that in case of both the small permeable
regime (Da = 0.01) and pure fluid regime
(Da → ∞), fluid velocity in the primary flow
direction u∗a and fluid velocity in the secondary
flow direction w∗

a decrease on increasing ion-slip
parameter Bi when magnetic field is either fixed
relative to the fluid (K1 = 0) or to the moving
porous plate (K1 = 1). This implies that in
case of both the small permeable regime and

pure fluid regime, ion-slip tends to reduce fluid
velocity in both the primary and secondary flow
directions when magnetic field is either fixed
relative to the fluid or to the moving porous plate.

Figs. 10 to 13 show the impact of rotation
parameter K2 on the fluid velocity in the pri-
mary and secondary flow directions. Figs. 10
to 13 represent that in case of both the small
permeable regime (Da = 0.01) and pure fluid
regime (Da → ∞), fluid velocity in the primary
flow direction u∗a decreases whereas fluid velocity
in the secondary flow direction w∗

a increases on
increasing rotation parameter K2 when magnetic
field is either fixed relative to the fluid (K1 = 0)
or to the moving porous plate (K1 = 1). This
concludes that in case of both the small perme-
able regime and pure fluid regime, Coriolis force
tends to reduce fluid velocity in the primary
flow direction whereas it has reverse effect on
the fluid velocity in the secondary flow direction
when magnetic field is either fixed relative to the
fluid or to the moving porous plate. Similar to
the Hall current the usual nature of the Coriolis
force is to induce fluid flow in the secondary flow
direction. Our result comply it.

Figs. 14 and 15 display the effect of per-
meability parameter Da on the fluid velocity in
the primary and secondary flow directions. Figs.
14 and 15 show that both the fluid velocity in
the primary flow direction u∗a and fluid velocity
in the secondary flow direction w∗

a increase on
increasing permeability parameter Da when
magnetic field is either fixed relative to the
fluid (K1 = 0) or to the moving porous plate
(K1 = 1). This concludes that permeability of
the medium tends to enhance fluid velocity in
both the primary and secondary flow directions
when magnetic field is either fixed relative to the
fluid or to the moving porous plate.
Figs. 16 to 19 illustrate the effect of suc-
tion/injection parameter Nt (Nt > 0 for suction
and Nt < 0 for injection) on the fluid velocity
in the primary and secondary flow directions.
Figs. 16 to 19 show that in case of both the
small permeable regime (Da = 0.01) and pure
fluid regime (Da → ∞), fluid velocity in the
primary flow direction u∗a and fluid velocity
in the secondary flow direction w∗

a increase on
increasing suction parameter Nt (¿0) whereas
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it decrease on increasing injection parameter
Nt (¡0) in the lower half of the channel when
magnetic field is either fixed relative to the
fluid (K1 = 0) or to the moving porous plate
(K1 = 1). In the upper half of the channel this
property is reversed. This implies that in case of
both the small permeable regime and pure fluid
regime, suction tends to enhance fluid velocity in
both the primary and secondary flow directions
in the lower half of the channel whereas the
injection has reverse effect on it in the lower half
of the channel when magnetic field is either fixed
relative to the fluid or to the moving porous
plate. This effect of suction/injection is reversed
in the upper half of the channel.
It is also noticed from Figs. 2 to 19 that the fluid
velocity when magnetic field is fixed relative to
the moving porous plate is always more than
the fluid velocity when magnetic field is fixed
relative to the fluid.

Figs. 20 to 23 describe the effects of Hall
current parameter Be and ion-slip parameter Bi

on the shear stress at the moving porous plate in
primary and secondary flow directions. Figs. 20
and 22 exhibit that in case of both the small per-
meable regime (Da = 0.01) and pure fluid regime
(Da → ∞), shear stress at the moving porous
plate in the primary flow direction τ∗xa increases
on increasing both the Hall current parameter
Be and ion-slip parameter Bi when magnetic
field is either fixed relative to the fluid (K1 = 0)
or to the moving porous plate (K1 = 1). Figs.
21 and 23 show that in case of both the small
permeable regime (Da = 0.01) and pure fluid
regime (Da → ∞), shear stress at the moving
porous plate in the secondary flow direction τ∗za
decreases on increasing Hall current parameter
Be and it increases on increasing ion-slip parame-
ter Bi when magnetic field is either fixed relative
to the fluid (K1 = 0) or to the moving porous
plate (K1 = 1). This concludes that in case of
both the small permeable regime and pure fluid
regime, both the Hall current and ion-slip tend to
enhance shear stress at the moving porous plate
in the primary flow direction when magnetic
field is either fixed relative to the fluid or to the
moving porous plate. In case of both the small
permeable regime and pure fluid regime Hall
current tends to reduce shear stress at the mov-
ing porous plate in the secondary flow direction

whereas ion-slip tends to enhance shear stress
at the moving porous plate in the secondary
flow direction when magnetic field is either fixed
relative to the fluid or to the moving porous plate.
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