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Abstract
In this paper, the general Riccati differential equation is solved by using the Adomian’s
decomposition method (ADM) , modified Adomian’s decomposition method (MADM),
variational iteration method (VIM), modified variational iteration method (MVIM), ho-
motopy perturbation method (HPM), modified homotopy perturbation method (MHPM)
and homotopy analysis method (HAM). The existence and uniqueness of the solution and
convergence of the proposed methods are proved in details. A numerical example is stud-
ied to demonstrate the accuracy of the presented methods.
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1 Introduction

The Riccati differential equation is named after the Italian nobleman Count Jacopo
Francesco Riccati (1676-1754). The book of Reid [1] contains the fundamental theories
of Riccati equation, with applications to random processes, optimal control, and diffusion
problems. Besides important engineering science applications that today are considered
classical, such as stochastic realization theory, optimal control, robust stabilization, and
network synthesis, the newer applications include such areas as financial mathematics
[2, 3]. In recent years some works have been done in order to find the numerical solution
of this equation, for example [4, 5, 6, 7, 8, 9]. In this work, we develope the ADM, MADM,
VIM, MVIM, HPM, MHPM and HAM to solve the general Riccati differential equation
as follows:

ut = Q(t)u+R(t)u2 + P (t), (1.1)
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with the initial condition:

u(0) = g(t). (1.2)

Where Q(t), R(t), P(t) and g(t) are scalar functions.
The paper is organized as follows. In Section 2, the mentioned iterative methods are

introduced for solving Eq.(1.1). In Section 3 we prove the existence and uniqueness of
the solution and convergence of the proposed methods. Finally, the numerical example is
shown in Section 4.

In order to obtain an approximate solution of Eq.(1.1) and Eq.(1.2), let us integrate
one time Eq.(1.1) with respect to t using the initial condition we obtain,

u(t) = F (t) +

∫ t

0
F1(u(s)) ds+

∫ t

0
F2(u(s)) ds, (1.3)

where,

F (t) = g(t) +
∫ t
0 P (s) ds,

F1(u(t)) = Q(t)u(t),
F2(u(x, t)) = R(t)u2(t).

In Eq.(1.3), we assume F (t) is bounded for all t in J = [0, T ](T ∈ R).
The terms F1(u(x, t)) and F2(u(x, t)) are Lipschitz continuous with | F1(u)−F1(u

∗) |≤
L1 | u− u∗ | and | F2(u)− F2(u

∗) |≤ L2 | u− u∗ |.

2 The iterative methods

2.1 Description of the MADM and ADM

The Adomian decomposition method is applied to the following general nonlinear equation

Lu+Ru+Nu = g1, (2.4)

where u(t) is the unknown function, L is the highest order derivative operator which is
assumed to be easily invertible, R is a linear differential operator of order less than L,Nu
represents the nonlinear terms, and g1 is the source term. Applying the inverse operator
L−1 to both sides of Eq.(1.3), and using the given conditions we obtain

u(t) = f1(t)− L−1(Ru)− L−1(Nu), (2.5)

where the function f1(t) represents the terms arising from integrating the source term g1.
The nonlinear operator Nu = G1(u) is decomposed as

G1(u) =

∞∑
n=0

An, (2.6)

where An, n ≥ 0 are the Adomian polynomials determined formally as follows :

An =
1

n!
[
dn

dλn
[N(

∞∑
i=0

λiui)]]λ=0. (2.7)
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The first Adomian polynomials (introduced in [10, 11, 12]) are:

A0 = G1(u0),

A1 = u1G
′
1(u0),

A2 = u2G
′
1(u0) +

1

2!
u21G

′′
1(u0), (2.8)

A3 = u3G
′
1(u0) + u1u2G

′′
1(u0) +

1

3!
u31G

′′′
1 (u0), ...

2.1.1 Adomian decomposition method

The standard decomposition technique represents the solution of u(t) in Eq.(2.4) as the
following series,

u(t) =

∞∑
i=0

ui(t), (2.9)

where, the components u0, u1, . . . which can be determined recursively

u0(t) = F (t),

u1(t) =

∫ t

0
A0(s) ds+

∫ t

0
B0(s) ds,

...

un+1(t) =

∫ t

0
An(s) ds+

∫ t

0
Bn(s) ds, n ≥ 0. (2.10)

Substituting Eq.(2.8) into Eq.(2.10) leads to the determination of the components of u(t).

2.1.2 The modified Adomian decomposition method

The modified decomposition method was introduced by Wazwaz [13]. The modified forms
was established on the assumption that the function F (t) can be divided into two parts,
namely f1(t) and f2(t). Under this assumption we set

F (t) = f1(t) + f2(t). (2.11)

Accordingly, a slight variation was proposed only on the components u0(t) and u1(t). The
suggestion was that only the part f1 be assigned to the zeroth component u0(t), whereas
the remaining part f2 be combined with the other terms given in Eq.(2.11) to define u1(t).
Consequently, the modified recursive relation

u0(t) = f1(t),

u1(t) = f2(t)− L−1(Ru0)− L−1(A0), (2.12)

...

un+1(t) = −L−1(Run)− L−1(An), n ≥ 1,

was developed.



392 Sh. S. Behzadi, et al /IJIM Vol. 4, No. 4 (2012) 389-404

To obtain the approximation solution of Eq.(1.1), according to the MADM, we can
write the iterative formula Eq.(2.12) as follows:

u0(t) = f1(t),

u1(t) = f2(t) +
∫ t
0 A0(s) ds+

∫ t
0 B0(s) ds,

...

un+1(t) =
∫ t
0 An(s) ds+

∫ t
0 Bn(s) ds, n ≥ 1.

(2.13)

The operators F1(u(t)) and F2(u(t)) are usually represented by the infinite series of
the Adomian polynomials as follows:

F1(u(t)) =
∞∑
i=0

Ai(t),

F2(u(t)) =
∞∑
i=0

Bi(t),

where Ai and Bi are the Adomian polynomials.
Also, we can use the following formula for the Adomian polynomials [14]:

An = F1(sn)−
∑n−1

i=0 Ai,

Bn = F2(sn)−
∑n−1

i=0 Bi.
(2.14)

Where sn =
∑n

i=0 ui(t) is the partial sum.

2.2 Description of the VIM and MVIM

In the VIM [14, 15, 16, 17, 18], it has been considered the following nonlinear differential
equation:

Lu+Nu = g1, (2.15)

where L is a linear operator, N is a nonlinear operator and g1 is a known analytical
function. In this case, the functions un may be determined recursively by

un+1(t) = un(t) +

∫ t

0
λ(τ){L(un(τ)) +N(un(τ))− g1(τ)}dτ, n ≥ 0, (2.16)

where λ is a general Lagrange multiplier which can be computed using the variational the-
ory. Here the function un(τ) is a restricted variations which means δun = 0. Therefore, we
first determine the Lagrange multiplier λ that will be identified optimally via integration
by parts. The successive approximation un(t), n ≥ 0 of the solution u(t) will be readily
obtained upon using the obtained Lagrange multiplier and by using any selective function
u0(t). The zeroth approximation u0(t) may be selected any function that just satisfies at
least the initial and boundary conditions. With λ determined, then several approximation
un(t), n ≥ 0 follow immediately. Consequently, the exact solution may be obtained by
using

u(t) = lim
n→∞

un(t). (2.17)

The VIM has been shown to solve effectively, easily and accurately a large class of
nonlinear problems with approximations converge rapidly to accurate solutions.
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To obtain the approximation solution of Eq.(1.1), according to the VIM, we can write
Eq.(2.16) as follows:

un+1(t) = un(t) + L−1
t (λ[un(s)− F (s)−

∫ t
0 (F1(un(s)) ds−

∫ t
0 F2(un(s)) ds]), n ≥ 0.

(2.18)

Where,

L−1
t (.) =

∫ t

0
(.) dτ.

To find the optimal λ, we proceed as

δun+1(t) = δun(t) + δL−1
t (λ[un(s)− F (s)−

∫ t
0 F1(un(s)) ds−

∫ t
0 F2(un(s)) ds]).

(2.19)

From Eq.(2.19), the stationary conditions can be obtained as follows:

λ
′
= 0 and 1 + λ = 0.

Therefore, the Lagrange multipliers can be identified as λ = −1 and by substituting
in Eq.(2.18), the following iteration formula is obtained.

u0(t) = F (t),

un+1(t) = un(t)− L−1
t (un(s)− F (s)−

∫ t
0 F1(un(s)) ds−

∫ t
0 F2(un(s)) ds), n ≥ 0.

(2.20)

To obtain the approximation solution of Eq.(1.1), based on the MVIM [19, 20], we can
write the following iteration formula:

u0(t) = F (t),

un+1(t) = un(t)− L−1
t (−

∫ t
0 F1(un(s)− un−1(s)) ds−

∫ t
0 F2(un(s)− un−1(s)) ds), n ≥ 0.

(2.21)

Relations Eq.(2.20) and Eq.(2.21) will enable us to determine the components un(t)
recursively for n ≥ 0.

2.3 Description of the HAM

Consider

N [u] = 0,

where N is a nonlinear operator, u(t) is an unknown function and t is an independent
variable. let u0(t) denote an initial guess of the exact solution u(t), h ̸= 0 an auxiliary
parameter, H1(t) ̸= 0 an auxiliary function, and L an auxiliary linear operator with the
property L[s(t)] = 0 when s(t) = 0. Then using q ∈ [0, 1] as an embedding parameter, we
construct a homotopy as follows:

(1− q)L[ϕ(t; q)− u0(t)]− qhH1(t)N [ϕ(t; q)] = Ĥ[ϕ(t; q);u0(t),H1(t), h, q]. (2.22)
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It should be emphasized that we have great freedom to choose the initial guess u0(t),
the auxiliary linear operator L, the non-zero auxiliary parameter h, and the auxiliary
function H1(t).

Enforcing the homotopy Eq.(2.22) to be zero, i.e.,

Ĥ1[ϕ(t; q);u0(t),H1(t), h, q] = 0, (2.23)

we have the so-called zero-order deformation equation

(1− q)L[ϕ(t; q)− u0(t)] = qhH1(t)N [ϕ(t; q)]. (2.24)

When q = 0, the zero-order deformation Eq.(2.24) becomes

ϕ(t; 0) = u0(t), (2.25)

and when q = 1, since h ̸= 0 and H1(t) ̸= 0, the zero-order deformation Eq.(2.24) is
equivalent to

ϕ(t; 1) = u(t). (2.26)

Thus, according to Eq.(2.25) and Eq.(2.26), as the embedding parameter q increases
from 0 to 1, ϕ(t; q) varies continuously from the initial approximation u0(t) to the exact
solution u(t). Such a kind of continuous variation is called deformation in homotopy
[20, 21, 22, 23].

Due to Taylor’s theorem, ϕ(t; q) can be expanded in a power series of q as follows

ϕ(t; q) = u0(t) +

∞∑
m=1

um(t)qm, (2.27)

where,

um(t) =
1

m!

∂mϕ(t; q)

∂qm
|q=0 .

Let the initial guess u0(t), the auxiliary linear parameter L, the nonzero auxiliary
parameter h and the auxiliary function H1(t) be properly chosen so that the power series
Eq.(2.27) of ϕ(t; q) converges at q = 1, then, we have under these assumptions the solution
series

u(t) = ϕ(t; 1) = u0(t) +
∞∑

m=1

um(t). (2.28)

From Eq.(2.28), we can write Eq.(2.25) as follows

(1− q)L[ϕ(t, q)− u0(t)] = (1− q)L[
∑∞

m=1 um(t) qm] = q h H1(t)N [ϕ(t, q)]⇒
L[
∑∞

m=1 um(t) qm]− q L[
∑∞

m=1 um(t)qm] = q h H1(t)N [ϕ(t, q)]
(2.29)

By differentiating Eq.(2.29) m times with respect to q, we obtain

{L[
∑∞

m=1 um(t) qm]− q L[
∑∞

m=1 um(t)qm]}(m) = {q h H1(t)N [ϕ(t, q)]}(m) =

m! L[um(t)− um−1(t)] = h H1(t) m
∂m−1N [ϕ(t;q)]

∂qm−1 |q=0 .
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Therefore,

L[um(t)− χmum−1(t)] = hH1(t)ℜm(um−1(t)), (2.30)

where,

ℜm(um−1(t)) =
1

(m− 1)!

∂m−1N [ϕ(t; q)]

∂qm−1
|q=0, (2.31)

and

χm =

{
0, m ≤ 1
1, m > 1

Note that the high-order deformation Eq.(2.30) is governing the linear operator L, and
the term ℜm(um−1(t)) can be expressed simply by Eq.(2.31) for any nonlinear operator
N .

To obtain the approximation solution of Eq.(1.1), according to HAM, let

N [u(t)] = u(t)− F (t)−
∫ t
0 F1(u(s)) ds−

∫ t
0 F2(u(s)) ds,

so,

ℜm(um−1(t)) = um−1(t)− F (t)−
∫ t
0 F1(um−1(s)) ds−

∫ t
0 F2(um−1(s)) ds. (2.32)

Substituting Eq.(2.32) into Eq.(2.30)

L[um(t)− χmum−1(t)] = hH1(t)[um−1(t)−
∫ t
0 F1(um−1(s)) ds

−
∫ t
0 F2(um−1(s)) ds+ (1− χm)F (t)].

(2.33)

We take an initial guess u0(t) = F (t), an auxiliary linear operator Lu = u, a nonzero
auxiliary parameter h = −1, and auxiliary function H1(t) = 1. This is substituted into
Eq.(2.33) to give the recurrence relation

u0(t) = F (t),

un+1(t) =
∫ t
0 F1(un(s)) ds+

∫ t
0 F2(un(s)) ds, n ≥ 0.

(2.34)

Therefore, the solution u(t) becomes

u(t) =
∑∞

n=0 un(t)

= F (t) +
∑∞

n=1

( ∫ t
0 F1(un(s)) ds+

∫ t
0 F2(un(s)) ds

)
.

(2.35)

Which is the method of successive approximations. If

| un(t) |< 1,

then the series solution Eq.(2.35) convergence uniformly.
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2.4 Description of the HPM and MHPM

To explain HPM [24, 25], we consider the following general nonlinear differential equation:

Lu+Nu = f(u), (2.36)

with initial conditions
u(0) = f(t).

According to HPM, we construct a homotopy which satisfies the following relation

H(u, p) = Lu− Lv0 + p Lv0 + p [Nu− f(u)] = 0, (2.37)

where p ∈ [0, 1] is an embedding parameter and v0 is an arbitrary initial approximation
satisfying the given initial conditions.

In HPM, the solution of Eq.(2.37) is expressed as

u(t) = u0(t) + p u1(t) + p2 u2(t) + ... (2.38)

Hence the approximate solution of Eq.(2.36) can be expressed as a series of the power of
p, i.e.

u = lim
p→1

u = u0 + u1 + u2 + ...

where,

u0(t) = F (t),
...

um(t) =
∑m−1

k=0

∫ t
0 F1(um−k−1(s)) ds+

∫ t
0 F2(um−k−1(s)) ds, m ≥ 1.

(2.39)

To explain MHPM [26, 27, 28, 29], we consider Eq.(1.1) as

L(u) = u(t)− F (t)−
∫ t

0
F1(u(s)) ds−

∫ t

0
F2(u(s)) ds.

Where F1(u(t)) = g1(t)h1(t) and F2(u(t)) = g2(t)h2(t). We can define homotopy
H(u, p,m) by

H(u, 0,m) = f(u), H(u, 1,m) = L(u),

where, m is an unknown real number and

f(u(t)) = u(t)− f(t).

Typically we may choose a convex homotopy by

H(u, p,m) = (1− p)f(u) + p L(u) + p (1− p)[m(g1(t) + g2(t))] = 0, 0 ≤ p ≤ 1. (2.40)

Where m is called the accelerating parameters, and for m = 0 we define H(u, p, 0) =
H(u, p), which is the standard HPM.

The convex homotopy Eq.(2.40) continuously trace an implicity defined curve from a
starting point H(u(t) − f(u), 0,m) to a solution function H(u(t), 1,m). The embedding
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parameter p monotonically increase from 0 to 1 as trivial problem f(u) = 0 is continuously
deformed to original problem L(u) = 0.

The MHPM uses the homotopy parameter p as an expanding parameter to obtain

v =
∞∑
n=0

pnun, (2.41)

when p→ 1, Eq.(2.37) corresponds to the original one and Eq.(2.41) becomes the approx-
imate solution of Eq.(1.1), i.e.,

u = lim
p→1

v =

∞∑
m=0

um.

Where,

u0(t) = F (t),

u1(t) =
∫ t
0 F1(u0(s)) ds+

∫ t
0 F2(u0(s)) ds−m(g1(t) + g2(t)),

u2(t) =
∫ t
0 F1(u1(s)) ds+

∫ t
0 F2(u1(s)) ds+m(g1(t) + g2(t)),

...

um(t) =
∑m−1

k=0

∫ t
0 F1(um−k−1(s)) ds+

∫ t
0 F2(um−k−1(s)) ds, m ≥ 3.

(2.42)

3 Existence and convergency of iterative methods

We set,

α1 := T (L1 + L2),

β1 := 1− T (1− α1), γ1 := 1− Tα1.

Theorem 3.1. Let 0 < α1 < 1, then Riccati equation, has a unique solution.
Proof. Let u and u∗ be two different solutions of Eq.(1.3) then

| u− u∗ |=|
∫ t
0 [F1(u(s))− F1(u

∗(s))] ds+
∫ t
0 [F2(u(s))− F2(u

∗(s))] ds |
≤

∫ t
0 | F1(u(s))− F1(u

∗(s)) | ds+
∫ t
0 | F2(u(s))− F2(u

∗(s)) | ds
≤ T (L1 + L2) | u− u∗ |= α1 | u− u∗ | .

From which we get (1−α1) | u−u∗ |≤ 0. Since 0 < α1 < 1, then | u−u∗ |= 0. Implies
u = u∗ and completes the proof. 2

Theorem 3.2. The series solution u(t) =
∑∞

i=0 ui(t) of Eq.(1.1) using MADM convergence
when

0 < α1 < 1, | u1(t) |<∞.
Proof. Denote as (C[J ], ∥ . ∥) the Banach space of all continuous functions on J with

the norm ∥ F (t) ∥= max | F (t) |, for all t in J . Define the sequence of partial sums sn,
let sn and sm be arbitrary partial sums with n ≥ m. We are going to prove that sn is a
Cauchy sequence in this Banach space:

∥ sn − sm ∥= max∀t∈J | sn − sm |= max∀t∈J |
∑n

i=m+1 ui(t) |=
max∀t∈J |

∫ t
0 (
∑n−1

i=mAi(s)) ds+
∫ t
0 (
∑n−1

i=mBi(s)) ds | .
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From [14], we have ∑n−1
i=mAi = F1(sn−1)− F1(sm−1),∑n−1
i=mBi = F2(sn−1)− F2(sm−1),

So,

∥ sn − sm ∥= max∀t∈J |
∫ t
0 [F1(sn−1)− F1(sm−1)] ds+

∫ t
0 [F2(sn−1)− F2(sm−1)] ds |≤∫ t

0 | F1(sn−1)− F1(sm−1) | ds+
∫ t
0 | F2(sn−1)− F2(sm−1) | ds ≤ α1 ∥ sn − sm ∥ .

Let n = m+ 1, then

∥ sn − sm ∥≤ α1 ∥ sm − sm−1 ∥≤ α2
1 ∥ sm−1 − sm−2 ∥≤ ... ≤ αm

1 ∥ s1 − s0 ∥ .

From the triangle inquality we have

∥ sn − sm ∥≤∥ sm+1 − sm ∥ + ∥ sm+2 − sm+1 ∥ +...+ ∥ sn − sn−1 ∥
≤ [αm

1 + αm+1
1 + ...+ αn−m−1

1 ] ∥ s1 − s0 ∥
≤ αm

1 [1 + α1 + α2
1 + ...+ αn−m−1

1 ] ∥ s1 − s0 ∥≤ αm
1 [

1−αn−m
1

1−α1
] ∥ u1(t) ∥ .

Since 0 < α1 < 1, we have (1− αn−m
1 ) < 1, then

∥ sn − sm ∥≤
αm
1

1− α1
max∀t∈J | u1(t) | .

But | u1(t) |< ∞ , so, as m → ∞, then ∥ sn − sm ∥→ 0. We conclude that sn is a
Cauchy sequence in C[J ], therefore the series is convergence and the proof is complete.
2

Theorem 3.3. The solution un(t) obtained from the Eq.(2.20) using VIM converges to
the exact solution of the Eq.(1.1) when 0 < α1 < 1 and 0 < β1 < 1.

Proof.

un+1(t) = un(t)− L−1
t ([un(s)− F (s)−

∫ t
0 F1(un(s)) ds−

∫ t
0 F2(un(s))) ds]), (3.43)

u(t) = u(t)− L−1
t ([u(s)− F (s)−

∫ t
0 F1(u(s)) ds−

∫ t
0 F2(u(s))) ds]), (3.44)

By subtracting relation Eq.(3.44) from Eq.(3.43),

un+1(t)− u(t) = un(t)− u(t)− L−1
t (un(s)− u(s)

−
∫ t
0 [F1(un(s))− F1(u(s))] ds−

∫ t
0 [F2(un(s))− F2(u(s))] ds),

if we set, en+1(t) = un+1(t)− un(t), en(t) = un(t)− u(t),| en(t∗) |= maxt | en(t) | then
since en is a decreasing function with respect to t from the mean value theorem we can
write,
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en+1(t) = en(t) + L−1
t (−en(t)−

∫ t
0 [F1(un(s))− F1(u(s))] ds

−
∫ t
0 [F2(un(s))− F2(u(s))] ds)

≤ en(t) + L−1
t [−en(t) + L−1

t | en(s) | (T (L1 + L2)]

≤ en(t)− Ten(η) + T (L1 + L2)L
−1
t L−1

t | en(t) |
≤ (1− T (1− α1) | en(t∗) |,

where 0 ≤ η ≤ t. Hence, en+1(t) ≤ β1 | en(t∗) | .
Therefore,

∥en+1∥ = max∀t∈J | en+1 |≤ β1 max∀t∈J | en |≤ β1∥en∥.

Since 0 < β1 < 1, then ∥en∥ → 0. So, the series converges and the proof is complete.
2

Theorem 3.4. The solution un(t) obtained from the Eq.(2.22) using MVIM for the
Eq.(1.1) converges when 0 < α1 < 1 , 0 < γ1 < 1.

Proof. The Proof is similar to the previous theorem.

Theorem 3.5. If the series solution Eq.(2.34) of the Eq.(1.1) using HAM convergent then
it converges to the exact solution of the Eq.(1.1).

Proof. We assume:
u(t) =

∑∞
m=0 um(t),

F̂1(u(t)) =
∑∞

m=0 F1(um(t)),

F̂2(u(t)) =
∑∞

m=0 F2(um(t)).

Where,

lim
m→∞

um(t) = 0.

We can write,

n∑
m=1

[um(t)− χmum−1(t)] = u1 + (u2 − u1) + ...+ (un − un−1) = un(t). (3.45)

Hence, from Eq.(3.45),

lim
n→∞

un(t) = 0. (3.46)

So, using Eq.(3.46) and the definition of the linear operator L, we have

∞∑
m=1

L[um(t)− χmum−1(t)] = L[

∞∑
m=1

[um(t)− χmum−1(t)]] = 0.

Therefore from the Eq.(2.30), we can obtain that,

∞∑
m=1

L[um(t)− χmum−1(t)] = hH1(t)
∞∑

m=1

ℜm−1(um−1(t)) = 0.

Since h ̸= 0 and H1(t) ̸= 0 , we have
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∞∑
m=1

ℜm−1(um−1(t)) = 0. (3.47)

By substituting ℜm−1(um−1(t)) into the Eq.(3.47) and simplifying it , we have

∞∑
m=1

ℜm−1(um−1(t)) =

∑∞
m=1[um−1(t)−

∫ t
0 F1(um−1(s)) ds−

∫ t
0 F2(um−1(s)) ds+ (1− χm)F (t)]

= u(t)− F (t)−
∫ t
0 F̂1(u(s)) ds−

∫ t
0 F̂2(u(s)) ds.

(3.48)

From Eq.(3.47) and Eq.(3.48), we have

u(t) = F (t)−
∫ t
0 F̂1(u(s)) ds−

∫ t
0 (F̂2(u(s)) ds.

Therefore, u(t) must be the exact solution. 2

Theorem 3.6. If | um(t) |≤ 1, then the series solution u(t) =
∑∞

i=0 ui(t) of the Eq.(1.1)
converges to the exact solution by using HPM.

Proof. We set,

ϕn(t) =

n∑
i=1

ui(t),

ϕn+1(t) =

n+1∑
i=1

ui(t).

| ϕn+1(t)− ϕn(t) |= D(ϕn+1(t), ϕn(t)) = D(ϕn + un, ϕn)

= D(un, 0) ≤
∑m−1

k=0

∫ t
0 | F1(um−k−1(s)) | ds+

∫ t
0 | F2(um−k−1(s)) | ds.

→
∞∑
n=0

∥ ϕn+1(t)− ϕn(t) ∥≤ mα1 | F (t) |
∞∑
n=0

(mα1)
n.

Therefore,

lim
n→∞

un(t) = u(t).

Theorem 3.7. If | um(t) |≤ 1, then the series solution u(t) =
∑∞

i=0 ui(t) of the Eq.(1.1)
converges to the exact solution by using MHPM.

Proof.The Proof is similar to the previous theorem.
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4 Numerical example

In this section, we compute a numerical example which is solved by the ADM, MADM,
VIM, MVIMm HPM, MHPM and HAM. The program has been provided with Mathe-
matica 6 according to the following algorithm where ε is a given positive value.

Algorithm 1:
Step 1. Set n← 0.
Step 2. Calculate the recursive relations (10) for ADM , (13) for MADM, (34) for

HAM, (39) for HPM and (42) for MHPM .
Step 3. If | un+1 − un |< ε then go to step 4,
else n← n+ 1 and go to step 2.
Step 4. Print u(t) =

∑n
i=0 ui(t) as the approximate of the exact solution.

Algorithm 2:
Step 1. Set n← 0.
Step 2. Calculate the recursive relations (20) for VIM and (21) for MVIM.
Step 3. If | un+1 − un |< ε then go to step 4,
else n← n+ 1 and go to step 2.
Step 4. Print un(t) as the approximate of the exact solution.

Example 4.1. Consider the Riccati equation as follows:

ut = −u(t)2 + 1,

subject to the initial condition:

u(0) = 0

Table 1. Numerical results for Example 1
t Errors

ADM(n=17) MADM(n=14)VIM(n=9) MVIM(n=8)

0.1 0.071506 0.063254 0.043442 0.033295
0.2 0.072623 0.064617 0.045325 0.034238
0.3 0.074114 0.065309 0.046357 0.034708
0.4 0.075478 0.065631 0.047123 0.035734
0.5 0.076253 0.066158 0.048273 0.035844
0.7 0.077806 0.066529 0.049346 0.036107

t Errors

HPM(n=10) MHPM(n=8) HAM(n=5)

0.1 0.053415 0.034728 0.022347
0.2 0.054571 0.035502 0.022895
0.3 0.055018 0.036147 0.023203
0.4 0.055622 0.037639 0.024328
0.5 0.056236 0.038085 0.025185
0.7 0.056786 0.038653 0.026069
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Table 1, shows that, approximate solution of the Riccati equation is convergence with
5 iterations by using the HAM . By comparing the results of Table 1 , we can observe
that the HAM is more rapid convergence than the ADM, MADM, VIM, MVIM, HPM
and MHPM.

5 Conclusion

The HAM has been shown to solve effectively, easily and accurately a large class of nonlin-
ear problems with the approximations which are convergent are rapidly to exact solutions.
In this work, the HAM has been successfully employed to obtain the approximate solution
to analytical solution of the comparing the results of Table 1 , we can observe that the
HAM is more rapid convergence than the ADM, MADM, VIM, MVIM, HPM and MHPM..
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