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Abstract
In this paper, we propose a novel approach for solving nonlinear interval Volterra inte-
gral equations (NIVIEs) based on the modifying Laplace decomposition method. We find
the exact solutions of NIVIEs with less computation as compared with standard Laplace
decomposition method, even there is no noise in the original problem. Finally, two illus-
trative examples have been solved to show the efficiency of the proposed method.
Keywords: Modified Laplace decomposition method; Nonlinear interval Volterra integral equations;
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1 Introduction

There are many applications in real problems that modeled by Volterra integral equa-
tions, for example, in fluid mechanics, bio-mechanics [16, 24, 26]. There are many methods
both numerical and analytical approaches to solve nonlinear equations like as finite differ-
ence method, finite element method, homotopy analysis method, homotopy perturbation
method and variational iteration method and its modification [1, 2, 3, 6, 5, 8, 9, 10, 12, 25].

One of the efficient tool for solving nonlinear equations is the decomposition method
which was stated in [4, 15]. In this direction, Khan et al. [14, 18] have improved this
method. This improvement has the following main advantageous that we can select initial
guess appropriately without having noise terms. Also, some efforts have been done in
[17, 19, 20].

In order to state nonstatistical and nonprobabilistic uncertainty, interval analysis has
been considered widely. To this end, several papers and monographs have been published
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[21, 22, 23]. Indeed, the interval analysis is the reduced case of the set-valued analysis [11].
If some uncertainties appear due to inexactness (e.g.,in a measurement) or impreciesences
(e.g., in a description), the interval analysis will be suitable for applications. Furthermore,
we cannot model each real fact by mathematical tools without considering the errors in
each part, errors of parameters, errors of modeling, errors of operations and etc. So, mod-
eling with uncertainty is necessary.

Often, some parameters of model described by integral equations contain measurements
errors, or are otherwise uncertain because rounding errors generally exist, and approxi-
mations are made and etc. So, we adopt interval analysis to solve such equations with
uncertainty.

The paper is organized as follows. In Section 2, some basic concepts about interval
arithmetic are stated. In Section 3, the nonlinear interval Volterra integral equations
are introduced, then the new method based on the modification of Laplace decomposi-
tion method in two step is proposed. Section 4 contains some illustrative examples to
demonstrate the accuracy and efficiency of the proposed method. The paper ends with a
conclusion in Section 5.

2 Preliminaries

In this section, we state some basic concepts about interval computations [22, 23].
Let I denote the family of all nonempty, compact and convex subsets of the real line

R. If U and V are two intervals stated by

U = [U1, U2], V = [V1, V2],

then,

U + V = [U1 + V1, U2 + V2] ,

λU = [λU1, λU2] , λ ≥ 0.

Note that the each a ∈ R can be stated as interval denoted by [a, a]. The Hausdorff metric
H in I is stated by

H(U, V ) = max {|U1 − V1|, |U2 − V2|} .

It is well-known that (I,H) is a complete, separable and locally compact metric space.
Also, the following properties hold

H(U + V,M +N) ≤ H(U,M) +H(V,N),

H(λU, λV ) ≤ |λ|H(U, V ),

where U, V,M and N are intervals.

In this paper, we adopt the following operation for division

U

V
=

[
U1

V1
,
U2

V2

]
. (2.1)
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Clearly, using this notation, U
V is not always as interval. But, when we translate each

interval system to two related real-valued systems, all these systems will solve distinctly.
After obtaining solutions of each real-valued system, we finally check that the obtained
solutions create an interval as output of original interval system or not. On the other
hand, we should determine the domain the lower solution is less than or equal to upper
solution for each independent argument of the solution.

Our results demonstrate that using this king of division, some interesting results are
derived. Note that, appearing such unusual computation is not new in the interval theory,
for example, introducing the Hukhara difference and etc. For more details see [13] and
references therein.

Now, we state an interesting result using (2.1).

Theorem 2.1. Let us consider the given interval U . Then, using the mentioned division
formulation, we have U

U = 1.

Proof. Using (2.1), and U = [U1, U2] we have

U

U
=

[U1, U2]

[U1, U2]
=

[
U1

U1
,
U2

U2

]
= [1, 1]

= {1},

which completes the proof. �
Moreover, a function f so-called interval-valued function if f : A ⊆ R −→ I.

3 Nonlinear interval Volterra integral equations

Let us consider the nonlinear interval Volterra integral equation of the form

u(x) = f(x) + µ

∫ x

0
k(x, t)un(t)dt, (3.2)

where f is interval non-homogeneous term with LU-representation f(x) = [f1(x), f2(x)]
, µ is a parameter, k(x, t) is a kernel of the equation belongs to R × R, and un is the
nonlinear interval term, n ∈ N, with un = [u1

n, u2
n], (R,N are the space of all real and

natural numbers, respectively) and x ∈ T = [a, b], a < b.

Moreover, we say that û is the solution of (3.2), if

sup
x∈T

H
(
û(x), f(x) + µ

∫ x

0
k(x, t)ûn(t)dt

)
= 0

Now, we state a characterization theorem for (3.2).
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Theorem 3.1. The nonlinear interval Volterra integral equation (3.2) is equivalent to
real-valued integral systems

u1(x) = f1(x) + µ

∫ x

0
k(x, t)(un)1(t)dt,

u2(x) = f2(x) + µ

∫ x

0
k(x, t)(un)2(t)dt,

where n ∈ N , x ∈ T , k(x, t)(un)1(t) and k(x, t)(u
n)2(t) are equicontinuous functions.

Proof. It is straightforward. �

3.1 The proposed method

Here, we state our proposed method to solve NIVIEs based on the two step Laplace
decomposition method. Applying the Laplace transform on the both sides of the equation
yield

L [u(x)] = L [f(x)] + L

[
µ

∫ x

0
k(x, t)un(t)dt

]
. (3.3)

The lower-upper representation (LU-representation) of Eq. (3.3) is

L [u1(x)] = L [f1(x)] + L

[
µ

∫ x

0
k(x, t)u1

n(t)dt

]
, (3.4)

L [u2(x)] = L [f2(x)] + L

[
µ

∫ x

0
k(x, t)u2

n(t)dt

]
. (3.5)

Then, using the inverse Laplace transform leads to

u1(x) = f1(x) + L−1

[
L

[
µ

∫ x

0
k(x, t)u1

n(t)dt

]]
, (3.6)

and

u2(x) = f2(x) + L−1

[
L

[
µ

∫ x

0
k(x, t)u2

n(t)dt

]]
. (3.7)

Using the assumption of Laplace Decomposition Method (LDM), let us consider the
solution u(x) = [u1(x), u2(x)] is expanded into infinite series as follows:

u1(x) =
∞∑
n=0

(un)1, u2(x) =
∞∑
n=0

(un)2, (3.8)

Also, the nonlinear term un(x) = [(un)1(x), (u
n)2(x)], where

(un)1(x) =

∞∑
n=0

(An)1(x), (3.9)
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and

(un)2(x) =
∞∑
n=0

(An)2(x), (3.10)

such that (An)1 and (An)2 are Adomian polynomials. Then, substituting Eqs. (3.9-
3.10) and Eq. (3.8) in Eqs. (3.6-3.7) yield

∞∑
n=0

(un)1 = f1(x) + L−1

[
L

[
µ

∫ x

0
k(x, t)(An)1(t)dt

]]
, (3.11)

∞∑
n=0

(un)2 = f1(x) + L−1

[
L

[
µ

∫ x

0
k(x, t)(An)2(t)dt

]]
. (3.12)

By using the following Adomian polynomials

(An)1 =
1

n!

dn

dλn

[
N

( ∞∑
i=0

λi(ui)1

)]
λ=0

, n = 0, 1, 2, . . . ,

(An)2 =
1

n!

dn

dλn

[
N

( ∞∑
i=0

λi(ui)2

)]
λ=0

, n = 0, 1, 2, . . . ,

we derive the recursive relation given by

(u0)1 = f1(x),

(un+1)1 = L−1

[
L

[
µ

∫ x

0
k(x, t)(An)1(t)dt

]]
, n ≥ 0,

and

(u0)2 = f2(x),

(un+1)2 = L−1

[
L

[
µ

∫ x

0
k(x, t)(An)2(t)dt

]]
, n ≥ 0,

where f1 and f2 are the source terms. Let

ψ1 = f1(x), ψ2 = f2(x),

then, we decompose f as follows:

ψ1 =

m∑
i=0

f i1(x), (3.13)

ψ2 =

m∑
i=0

f i2(x), (3.14)
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where f i1 and f i2, i = 0, 1, 2, . . ., are the terms arising from applying the inverse Laplace
transform on the source terms f1 and f2, respectively.

Define

(u0)1 = (fk)1(x) + (fk+1)1(x) + . . .+ (fk+s)1(x),

(u0)2 = (fk)2(x) + (fk+1)2(x) + . . .+ (fk+s)2(x),

where k = 0, 1, 2, . . . ,m, s = 0, 1, 2, . . . ,m− k.

Firstly, we verify (u0)1 and (u0)2 satisfy the original problems (3.6) and (3.7). If the
equaltites hold, the exact solution is achieved, otherwise, by setting

(u0)1 = f1, (u0)2 = f2,

and continue the standard Laplace decomposition method, we obtain

(un+1)1 = L−1

[
L

[
µ

∫ x

0
k(x, t)(An)1(t)dt

]]
, n ≥ 0,

(un+1)2 = L−1

[
L

[
µ

∫ x

0
k(x, t)(An)2(t)dt

]]
, n ≥ 0,

the LU-representation of solution will be determined.

4 Illustrative examples

In this section, we apply our proposed method to obtain the exact solutions of the nonlin-
ear interval Volterra integral equations. Indeed, this modification for LDM is about some
ideas to choose the initial values.

Example 4.1. Let us consider the nonlinear interval Volterra integral equation

u(x) + ĉ
x4

4
= ĉ(2x) +

1

4ĉ2

∫ x

0
u3(t)dt, (4.15)

where ĉ = [ĉ1, ĉ2], ĉ1 > 0. The LU-representation of (4.15) is as follows:

u1(x) + ĉ1
x4

4
= ĉ1(2x) +

1

4ĉ21

∫ x

0
(u3)1(t)dt,

u2(x) + ĉ2
x4

4
= ĉ2(2x) +

1

4ĉ22

∫ x

0
(u3)2(t)dt.

Applying Laplace transform yields

L

[
u1(x) + ĉ1

x4

4

]
= L

[
ĉ1(2x) +

1

4ĉ21

∫ x

0
(u3)1(t)dt

]
,

L

[
u2(x) + ĉ2

x4

4

]
= L

[
ĉ2(2x) +

1

4ĉ22

∫ x

0
(u3)2(t)dt

]
.
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Then, applying L−1 and some simplification yield

u1(x) = ĉ1

(
2x− x4

4

)
+ L−1

[
L

[
1

4ĉ21

∫ x

0
(u3)1(t)dt

]]
,

u2(x) = ĉ2

(
2x− x4

4

)
+ L−1

[
L

[
1

4ĉ22

∫ x

0
(u3)2(t)dt

]]
.

Using the fact

u1(x) =

∞∑
n=0

(un)1(x),

u2(x) =
∞∑
n=0

(un)2(x),

we get:

∞∑
n=0

(un)1(x) = ĉ1

(
2x− x4

4

)
+ L−1

[
L

[
1

4ĉ21

∫ x

0
(u3)1(t)dt

]]
,

∞∑
n=0

(un)2(x) = ĉ2

(
2x− x4

4

)
+ L−1

[
L

[
1

4ĉ22

∫ x

0
(u3)2(t)dt

]]
.

By setting

∞∑
n=0

(An)1(t) = (u3)1(t),

∞∑
n=0

(An)2(t) = (u3)2(t),

we obtain the some components of Adomian polynomials as follows:

(A0)1(t) = (u30)1(t),

(A1)1(t) = 3(u20)1(t)(u1)1(t),

...

(An)1(t) =

n∑
i=0

k∑
l=0

(un−k)1(t)(uk−1)1(ul)1(t),

and

(A0)2(t) = (u30)2(t),

(A1)2(t) = 3(u20)2(t)(u1)2(t),

...

(An)2(t) =
n∑

i=0

k∑
l=0

(un−k)2(t)(uk−1)2(ul)2(t),
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So, we obtain

(u0)1(x) = ĉ1

(
2x− x2

4

)
,

(un+1)1(x) = L−1

[
L

[
1

4ĉ21

∫ x

0
(u3)1(t)dt

]]
, n ≥ 0,

and

(u0)2(x) = ĉ2

(
2x− x2

4

)
,

(un+1)2(x) = L−1

[
L

[
1

4ĉ22

∫ x

0
(u3)2(t)dt

]]
, n ≥ 0.

Consequently, some of the first few components of un are given:

u1(x) = ĉ1

(
x4

2
− 3x7

14
+

3x10

80
− x13

410

)
,

u2(x) = ĉ2

(
x4

2
− 3x7

14
+

3x10

80
− x13

410

)
,

....

Now, we apply our new proposed approach. Let

f1(x) = f01 (x) + f11 (x),

f2(x) = f02 (x) + f12 (x),

where

f01 (x) = ĉ1(2x),

f11 (x) = ĉ1

(
−x2

4

)
,

f02 (x) = ĉ2(2x),

f11 (x) = ĉ2

(
−x2

4

)
.

Since f11 and f12 do not satisfy Eq. (4.15), choosing (u0)1(x) = f01 (x) and (u0)2(x) =
f02 (x), the exact solution is derived as follows:

(u0)1(x) = ĉ1(2x),

(u1)1(x) = c1

(
−x2

4

)
+ L−1

[
L

[
1

4ĉ21

∫ x

0
(A0)1(t)dt

]]
= 0,

...

(un+1)1(x) = 0, n ≥ 1,
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and

(u0)2(x) = ĉ2(2x),

(u1)2(x) = c2

(
−x2

4

)
+ L−1

[
L

[
1

4ĉ22

∫ x

0
(A0)2(t)dt

]]
= 0,

...

(un+1)2(x) = 0, n ≥ 1.

Hence, the LU-representation of solution is obtained as follows:

u1(x) =

∞∑
n=0

(un)1(x) = ĉ1(2x),

u2(x) =

∞∑
n=0

(un)2(x) = ĉ2(2x),

or in the closed form, we obtain:

u(x) =
∞∑
n=0

un(x) = ĉ(2x). (4.16)

Indeed, in this case, we obtain asymptotic solution, i.e., it is easy to verify that for
each x ∈ R, u stated in (4.16) provides an interval-valued function. Also,

H
(
ĉ(2x) + ĉ

x4

4
, ĉ(2x) +

1

4ĉ2

∫ x

0
(ĉ(2t))3 (t)dt

)
= 0. (4.17)

Example 4.2. Let us consider the nonlinear interval Volterra integral equation

u(x) + ĉ
x4

4
= ĉ

(
sin(x) +

sin(2x)

8

)
+

1

2ĉ

∫ x

0
u2(t)dt, (4.18)

where ĉ = [ĉ1, ĉ2] is an interval number, ĉ1 ≥ 0. Let u(x) = [u1(x), u2(x)], then applying
the Laplace transform on the both sides of Eq. (4.18) leads to

L [u1(x)] = ĉ1

(
1

s2 + 1
+

1

4(4 + s2)
− 1

4s2

)
+

1

2ĉ1
L

[∫ x

0
(u2)1(t)dt

]
, (4.19)

L [u2(x)] = ĉ2

(
1

s2 + 1
+

1

4(4 + s2)
− 1

4s2

)
+

1

2ĉ2
L

[∫ x

0
(u2)2(t)dt

]
. (4.20)

Then, applying the inverse Laplace transform yields

u1(x) = ĉ1

(
sin(x) +

sin(2x)

8
− x

4

)
+ L−1

[
L

[
1

2ĉ1

∫ x

0
(u2)1(t)dt

]]
,

u2(x) = ĉ2

(
sin(x) +

sin(2x)

8
− x

4

)
+ L−1

[
L

[
1

2ĉ2

∫ x

0
(u2)2(t)dt

]]
,
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Consequently, we obtain the following recursive relation:

∞∑
n=0

(un)1(x) = ĉ1

(
sin(x) +

sin(2x)

8
− x

4

)
+ L−1

[
L

[
1

2ĉ1

∫ x

0
(Bn)1(t)dt

]]
,

∞∑
n=0

(un)2(x) = ĉ2

(
sin(x) +

sin(2x)

8
− x

4

)
+ L−1

[
L

[
1

2ĉ2

∫ x

0
(Bn)2(t)dt

]]
,

where (Bn)1 and (Bn)2 are Adomian polynomials that state nonlinear terms. So, we have

∞∑
n=0

(Bn)1(t) =
(
u2
)
1
(t),

∞∑
n=0

(Bn)2(t) =
(
u2
)
2
(t).

As a consequence, some components of the Adomian polynomials are given by:

(B0)1(t) = (u20)1(t),

(B1)1(t) = 2(u0)1(t)(u1)1(t),

...

(Bn)1(t) =
n∑

i=0

(un−i)1(t)(ui)1(t),

and

(B0)2(t) = (u20)2(t),

(B1)2(t) = 2(u0)2(t)(u1)2(t),

...

(Bn)2(t) =

n∑
i=0

(un−i)2(t)(ui)2(t).

Thus, we obtain the recursive relation by

(u0)1(x) = ĉ1

(
sin(x) +

sin(2x)

8
− x

4

)
,

(un+1)1(x) = L−1

[
L

[
1

2ĉ1

∫ x

0
(Bn)1(t)dt

]]
, n ≥ 0,

and

(u0)2(x) = ĉ2

(
sin(x) +

sin(2x)

8
− x

4

)
,

(un+1)2(x) = L−1

[
L

[
1

2ĉ2

∫ x

0
(Bn)2(t)dt

]]
, n ≥ 0.
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So, we get:

(u1)1(x) = ĉ1

(
65

256
x+

1

96
x3 +

1

4
x cos(x) +

1

64
cos(2x) + . . .

)
,

(u1)2(x) = ĉ2

(
65

256
x+

1

96
x3 +

1

4
x cos(x) +

1

64
cos(2x) + . . .

)
,

....

Although, there are no noise term, applying standard LDM leads to some complexity
in integration. To overcome this, we propose our new method as follows.

Let us consider

f1(x) = f01 (x) + f11 (x) + f21 (x),

f2(x) = f02 (x) + f12 (x) + f22 (x),

where

f01 (x) = ĉ1 sin(x),

f11 (x) = ĉ1

(
sin(2x)

8

)
,

f21 (x) = ĉ1

(
−x
4

)
,

and similarly for upper representation, we have:

f02 (x) = ĉ2 sin(x),

f12 (x) = ĉ2

(
sin(2x)

8

)
,

f22 (x) = ĉ2

(
−x
4

)
.

Since f ij , i = 1, 2, j = i− 1, do not satisfy Eq. (4.18), we choose

(u0)1(x) = ĉ1 sin(x),

(u0)2(x) = ĉ2 sin(x).

Hence, we obtain the exact solution as follows.

(u0)1(x) = ĉ1 sin(x),

(u1)1(x) = c1

(
sin(x)

8
− x

4

)
+

1

2ĉ1
L−1

[
L

[∫ x

0
(B0)1(t)dt

]]
= 0,

...

(un)1(x) = 0, n ≥ 1,
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and

(u0)2(x) = ĉ2 sin(x),

(u1)2(x) = c2

(
sin(x)

8
− x

4

)
+

1

2ĉ2
L−1

[
L

[∫ x

0
(B0)2(t)dt

]]
= 0,

...

(un)2(x) = 0, n ≥ 1.

So, the LU-representation of solution is obtained as follows:

u1(x) =

∞∑
n=0

(un)1(x) = ĉ1 sin(x),

u2(x) =

∞∑
n=0

(un)2(x) = ĉ2 sin(x).

Finally, in the closed form, we get:

u =

∞∑
n=0

un(x) = ĉ sin(x).

Clearly, for x ∈
[
0, π2

]
, u is valid. Also, it is easy to verify that

H

(
ĉ sin(x) + ĉ

x4

4
, ĉ

(
sin(x) +

sin(2x)

8

)
+

1

2ĉ

∫ x

0
(ĉ sin(t))2 (t)dt

)
= 0.

5 Conclusion

In this paper, we have applied the modification of Laplace decomposition method to
solve nonlinear interval Volterra integral equations. To this end, by applying the Laplace
transform on both sides of the original problem, we obtain two related equations involved
Laplace transform and inverse of it. Then, the modified LDM can be applied to derive
the lower and the upper solutions. However, in order to convert original problem to some
related deterministic equations, we have used some new changes in the interval arithmetic
to achieve the correct extension of original problem in the interval framework. At the end,
our results show the enough efficiency of the proposed approach .
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