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Abstract
The inconsistent fuzzy linear matrix equations (shown as IFLME) of the form AXB = C
for finding its fuzzy least squares solutions is studied in this paper. The AXB = C is
rearranged with the kronecker product that was proposed by Allahviranloo et al. [8].
Then, by using the embedding approach, we extend it into a 2me × 2nr crisp system of
linear equations and found its fuzzy least squares solutions. Also, sufficient condition for
the existence of strong fuzzy least squares solutions are derived, and a numerical procedure
for calculating the solutions is designed.
Keywords: Fuzzy linear matrix equation; Inconsistent fuzzy linear matrix equation; Conditional

inverse; Fuzzy system of linear equation; Fuzzy least squares solution.
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1 Introduction

In many problems in various areas of science, which can be solved by solving a system of
linear equations, some of the system parameters are vague or imprecise, and fuzzy mathe-
matics is better than crisp mathematics for mathematical modeling of these problems, and
hence solving a system of linear equations where some elements of the system are fuzzy
is important. The fuzzy linear system of equation of the form Ax = b has been studied
by many authors [1, 2, 3, 4, 5, 6, 7, 9, 12, 13, 14, 15, 19, 21, 22, 25]. Friedman et al. [14]
proposed a general model for solving such fuzzy linear systems by using the embedding
approach. Also, Allahviranloo et al. [6] have developed a method for solving m× n fuzzy
linear systems for m ≤ n. Based on their work, the fuzzy linear matrix equations of the
form AXB = C is introduced by Allahviranloo et al. [8]. In this paper, we investigate
a class of inconsistent fuzzy linear matrix equations (IFLME) of the form AXB = C
where A ∈ Rm×n and B ∈ Rr×e and A, B and C are given matrices where C is a fuzzy
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matrix, and X is the unknown matrix. We use the embedding method given in [8, 10, 11]
and replace the original fuzzy linear matrix approach by parametric - crisp function - linear
matrix equations. Then, the expression of fuzzy least squares solutions to the inconsistent
fuzzy linear matrix equation is given based on generalized inverses of matrix S. By the
way, we firstly replace fuzzy linear matrix equation AXB = C to the fuzzy linear system
of equation (FSLE) of the form Mx = c with the kronecker product, where (M = A⊗Bt)
is an me × nr matrix. At the next, using the embedding approach in [10, 16] and the
technique applied in [15] by Friedman et al., we rearrange the (A⊗Bt)x = c and extend
it into a 2me×2nr system of linear equations SX = Y. Then, we are computing the fuzzy
least squares solutions with the generalized inverses of matrix S. Moreover, the existence
condition of strong fuzzy least squares solutions is presented.

This paper is organized as follows: In section 2, we recall some basic definitions and
results on fuzzy numbers. We present the concept of the inconsistent fuzzy linear matrix
equations ”IFLME” and the fuzzy least squares solutions for this systems in section 3.
The conclusion is drawn in section 4.

2 Preliminaries

An arbitrary fuzzy number u is represented by an ordered pair of functions (u(r), u(r)); 0 ≤
r ≤ 1 which satisfy the following requirements [16, 17]:

(i) u(r) is a bounded monotonic increasing left continuous function;

(ii) u(r) is a bounded monotonic decreasing left continuous function;

(iii) u(r) ≤ u(r), 0 ≤ r ≤ 1.

A crisp number k is simply represented by u(r) = u(r) = k; 0 ≤ r ≤ 1, and called
singleton. The set of all fuzzy numbers is denoted by E1.

For arbitrary fuzzy numbers u = (u(r), u(r)) , v = (v(r), v(r)) and scalar k we define
addition (u+ v), subtraction and scalar multiplication by k as

Addition:

(u+ v)(r) = u(r) + v(r), (u+ v)(r) = u(r) + v(r),

subtraction:

(u− v)(r) = u(r)− v(r), (u− v)(r) = u(r)− v(r),

Scalar multiplication:

ku =


(ku(r), ku(r)), k ≥ 0,

(ku(r), ku(r)), k < 0.

For two arbitrary fuzzy numbers x = (x(r), x(r)) and y = (y(r), y(r)), x = y if and
only if x(r) = y(r) and x(r) = y(r).

Definition 1. [8] The equation AXB = C is called a fuzzy linear matrix equations (FLME)
if the left coefficient matrix A = (aij) (1 ≤ i ≤ m, 1 ≤ j ≤ n) and the right coefficient
matrix B = (bij) (1 ≤ i ≤ r, 1 ≤ j ≤ e) are crisp matrices and the right-hand side
matrix C = (cij) (1 ≤ i ≤ m, 1 ≤ j ≤ e) is a fuzzy number matrix.
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The ij -th equation of this system is:

r∑
t=1

n∑
k=1

aikxktbtj = cij , 1 ≤ i ≤ m, 1 ≤ j ≤ e.

Definition 2. [8] A fuzzy number matrix X = (xij) (1 ≤ i ≤ m, 1 ≤ j ≤ p) given
by xij = (xij(r), xij(r)) (1 ≤ i ≤ m, 1 ≤ j ≤ p) is called a solution of the fuzzy linear

matrix equation ( FLME ) if :∑r
t=1

∑n
k=1 aikxktbtj(r) =

∑r
t=1

∑n
k=1 aikxktbtj(r) = cij(r),∑r

t=1

∑n
k=1 aikxktbtj(r) =

∑r
t=1

∑n
k=1 aikxktbtj(r) = cij(r).

(2.1)

Definition 3. [18, 20] Let A = (aij) and B = (bij) be m × n and r × e matrices,
respectively. Then the Kronecker product

A⊗B = (aijB)

is a mr× ne matrix expressible as a partitioned matrix with aijB as the (i, j)th partition,
i = 1, · · · ,m; j = 1, · · · , n.

Regarding the theory of generalized inverses, using the Kronecker product of A and
B, Allahviranloo et al. [8] rearrange the equation in X

AXB = C (2.2)

where A is an m×n matrix and B is an r× e matrix in the usual form of linear equations

(A⊗Bt)x = c, (2.3)

where (A⊗Bt), the Kronecker product of A and B is an me × nr matrix, x is the nr
vector obtained by writing the columns of X one below another,[i.e.(i + 1)st following
the i-th ], c is the me vector similarly obtained from C and (.)t denotes the transpose of
matrix(.).

Assume the 2me× 2nr matrix S = (sij) is determined as follows:

aij ≥ 0 and btk ≥ 0 or aij ≤ 0 and btk ≤ 0 → sik,tj = aijbkt, sme+ik,nr+tj = aijbkt

aij ≥ 0 and btk ≤ 0 or aij ≤ 0 and btk ≥ 0 → sik,nr+tj = −aijbkt, sme+ik,tj = −aijbkt
(2.4)

and any sij which is not determined by (2.4) is zero. Using the matrix notation, the
system AXB = C is extended to the following crisp block form

SX = Y (2.5)

where S = (sij) (1 ≤ i ≤ 2me, 1 ≤ j ≤ 2nr) and

X =



x11
...

xnr
−x11
...

−xnr


, Y =



c11
...

cme

−c11
...

−cme


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The structure of S implies that sij ≥ 0 (1 ≤ i ≤ 2me, 1 ≤ j ≤ 2nr) and that

S =

(
E F
F E

)
(2.6)

where E contains the positive entries of A⊗Bt, and F contains the absolute values of
the negative entries of A⊗Bt, and A⊗Bt = E− F, which implies that the rest of the
entries are zero.

Theorem 1. [24]The 2me× 2nr crisp system of linear equations (2.5) exists solution if
and only if the rank of matrix S equals to that of matrix (S,Y(r)), i.e.,

Rank(S) = Rank(S,Y(r)).

When Rank(S) < Rank(S,Y(r)), the system does not have any solution, when Rank(S) =
Rank(S,Y(r)) = 2nr, the system has a unique solution, when Rank(S) = Rank(S,Y(r)) <
2nr, the system has an infinite of solutions.

Theorem 2. [24] The linear system equation SX = Y(r) has solution if and only if that
rows of Y(r) have the same linear relation as rows of the matrix S.

Theorem 3. [20] A general solution of a consistent equations SX = Y is

X = S−Y + (I−H)Z

where H = S−S and Z is an arbitrary vector.

Definition 4. If the fuzzy matrix equation (2.2) does not have solution. The associated
fuzzy matrix equation AXB = C, where the coefficient matrices

A = (aij), 1 ≤ i ≤ m, 1 ≤ j ≤ n,

B = (bks), 1 ≤ k ≤ r, 1 ≤ s ≤ e,

is crisp and right-hand matrix C = (cis) is fuzzy, i.e., cis ∈ E1, 1 ≤ i ≤ m, 1 ≤ s ≤ e is
called an inconsistent fuzzy matrix equation (IFLME).

3 Least squares solution of fuzzy linear matrix equations

In this section, we will investigate (IFLME) and find the fuzzy least squares solutions
for inconsistent fuzzy linear matrix equations.

When the fuzzy matrix equation (2.2) is inconsistent, it is very necessary to seek
their approximation solutions. An approximation solution is the least squares solution of
Eq.(2.5), defined as minimizing the Frobenius norm of (Y(r)− SX(r)):

∥Y (r)− SX(r)∥2F = min ∥Yi(r)− SijXj(r)∥2F , 0 ≤ r ≤ 1,

i.e, minimizing the sum of squares of module of (Y (r)− SX(r)),

∥Y (r)− SX(r)∥2F =
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me∑
i=1

(|y
i
(r)−

nr∑
j=1

[sijxj(r)− si,nr+jxj(r)]|2 + |yi(r)−
nr∑
j=1

[sme+i,jxj(r)− sme+i,nr+jxj(r)]|2,

0 ≤ r ≤ 1.

Remark 1 It is obvious, that if a fuzzy system equation AXB = C is consistent
system, then the fuzzy least squares solutions for this equation are fuzzy vector solu-
tion. So, there are satisfy in the AXB = C. But for a inconsistent equation, we do not
have a fuzzy vector solution. Therefore, it is very necessary to find their approximated so-
lutions for this type of fuzzy linear system equation. Then the fuzzy least squares solution
is an approximation solutions for its.

Lemma 1 Let fuzzy linear matrix equation AXB = C is inconsistent, then the re-
placed system SX = Y is either inconsistent or consistent.

In the rest of paper, we will review some fundamental results about fuzzy least squares
solutions. According to the following lemma and theorem, we have the general least squares
solutions of the system equation (2.5).

Theorem 4. [23] Let S ∈ R2me×2nr. A vector x(r) is a fuzzy least squares solution of the
extended crisp function linear equation Sx = y(r), which converted from the inconsistent
fuzzy linear system (2.2), if and only if

SX = SS(1,3)Y (r).

In this case, the general least squares solutions of the above crisp matrix equation can be
expressed by:

X(r) = S(1,3)Y (r) + (I2nr − S(1,3)S)z(r), (3.7)

where S(1,3) is a least squares generalized inverse of matrix S, I2nr is an 2nr order unit
matrix and z(r) is an arbitrary vector with parameter r.

Remark 2 Allahviranloo et al. [8] presented with an example, that SX = Y may
have no solution or an infinite number of solutions even if AXB = C has a unique so-
lution. With the above analysis, if a fuzzy matrix equation AXB = C is consistent sys-
tem, but the equation SX = Y is not consistent system, we found an approximation
solution for Eq (2.5) that its fuzzy least squares solution. Therefore, it will be an approx-
imation solution from Eq AXB = C.

By the way, we can investigate that, SX = Y may have no solution, and so the system
equation (2.5) is inconsistent or it have an infinite number of solutions even if AXB = C is
inconsistent fuzzy matrix equation.

Now, we discuss the generalized inverses of matrix S in a special structure.

Theorem 5. [6] Let matrix S be in the form introduced in (2.6), then the matrix

S− =
1

2

(
(E+ F)− + (E− F)− (E+ F)− − (E− F)−

(E+ F)− − (E− F)− (E+ F)− + (E− F)−

)
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is a g-inverses of matrix S, where (E+ F)− and (E− F)− are g-inverses of matrices
(E+ F) and (E− F), respectively. In particular, the Moore-Penrose inverse S† and (1,3)-
inverse of matrix S are,respectively:

S† =
1

2

(
(E+ F)† + (E− F)† (E+ F)† − (E− F)†

(E+ F)† − (E− F)† (E+ F)† + (E− F)†

)
, (3.8)

and

S(1,3) =
1

2

(
(E+ F)(1,3) + (E− F)(1,3) (E+ F)(1,3) − (E− F)(1,3)

(E+ F)(1,3) − (E− F)(1,3) (E+ F)(1,3) + (E− F)(1,3)

)
. (3.9)

If A1 and B1 contain the positive entries of A and B, respectively, and A2 and B2 contain
the negative entries of A and B respectively, it is obvious that

A = A1 −A2, B = B1 −B2

and
E = A1 ⊗Bt

1 +A2 ⊗Bt
2, F = A2 ⊗Bt

1 +A1 ⊗Bt
2,

E− F = A⊗Bt, (A⊗Bt)− = A− ⊗Bt− ,

we obtain the following corollary.

Corollary 1. Let matrix S be in the form introduced in (2.6), then the matrix

S− =
1

2(
(A1 +A2)

− ⊗ (B1 +B2)
t− +A− ⊗Bt− (A1 +A2)

− ⊗ (B1 +B2)
t− −A− ⊗Bt−

(A1 +A2)
− ⊗ (B1 +B2)

t− −A− ⊗Bt− (A1 +A2)
− ⊗ (B1 +B2)

t− +A− ⊗Bt−

)
,

is a g-inverse of the matrix S. In particular, the Moore-Penrose inverse and (1,3)-inverse
of matrix S are,respectively:

S† =
1

2

(A1 +A2)
† ⊗ (B1 +B2)

t† +A† ⊗Bt† (A1 +A2)
† ⊗ (B1 +B2)

t† −A† ⊗Bt†

(A1 +A2)
† ⊗ (B1 +B2)

t† −A† ⊗Bt† (A1 +A2)
† ⊗ (B1 +B2)

t† +A† ⊗Bt†
,

(3.10)

S(1,3) =
1

2

(
D C
C D

)
, (3.11)

where
D = (A1 +A2)

(1,3) ⊗ (B1 +B2)
t(1,3) +A(1,3) ⊗Bt(1,3) ,

C = (A1 +A2)
(1,3) ⊗ (B1 +B2)

t(1,3) −A(1,3) ⊗Bt(1,3) .

Remark 3 It will be noted that the least squares solution is unique only when S is
of full rank, i.e., the least squares solution of the system equation (2.5) is

X(r) =

(
(STS)−1STY (r), Rank(S) = 2n,
ST (SST )−1Y (r), Rank(S) = 3m.

)
Otherwise, the Eq. (2.5) has an infinite set of such solutions.
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Theorem 6. Among the general least squares solutions to the system (2.5) ,

X(r) = S†Y (r)

is the one of minimum norm i.e. it is the minimum norm fuzzy least squares solution,
where S† is the Moore-penrose inverse of matrix S. It is well known that S† is unique. So,
the minimum norm fuzzy least squares solution of the system (2.2) is unique.

Using the above result, we provide the necessary and sufficient condition for the exis-
tence of the solution to the system SX = Y and so, in the following theorems, we present
the sufficient condition for the least squares solution matrix and for one solution vector of
(2.5) to be fuzzy number matrix and fuzzy vector solution of (2.3), respectively.

Theorem 7. [8] A necessary and sufficient condition for SX = Y to have a solution
is that (A⊗Bt)x = Z and ((A1 +A2)

− ⊗ (B1 +B2)
t−)x = V should have a solution,

where
V = Y − Y and Z = Y + Y .

Theorem 8. [23] For the inconsistent linear system equation (2.5) and any least squares
inverse S(1,3) of the coefficient matrix S, the expression X(r) = S(1,3)Y (r) is a least
squares solution to the system and therefore it admits a weak or strong fuzzy least squares
solution. In particular, if S(1,3) is nonnegative with the specious structure (3.7), the ex-
pression X(r) = S(1,3)Y (r) admits a strong fuzzy solution for arbitrary fuzzy matrix Y(r).

Theorem 9. [6] The solution X of (2.5) is a fuzzy vector for arbitrary Y if S− is
nonnegative.

Since the g-inverse of matrix S is not unique, our suggested g-inverse of this matrix
might not be nonnegative. Hence, we will give some results for such an S− and S† to be
nonnegative.

Theorem 10. [6, 25] The arbitrary matrix S admits a nonnegative g−inverse if and only

if S has a 1−inverse of the form

(
D1E

tD3 D1F
tD4

D2F
tD3 D2E

tD4

)
where D1, D2, D3 and D4

are nonnegative diagonal matrices.

Theorem 11. [25] S† ≥ 0 if and only if S† =

(
DEt DFt

DFt DEt

)
for some positive diagonal

matrix D. In this case, (E+ F)† = D(E+ F)t, (E− F)† = D(E− F)t.

If the given 2me× 2nr crisp function system SX = Y, does not have such a g-inverse
S− ≥ 0, one can always find some vector Y for which the solution X of (2.5) is not a
fuzzy vector. In this case, any condition which guarantees a fuzzy solution vector must
depend on Y as well as on S. We now define the fuzzy solution to the original system.

Definition 5. Let X = (xij(r),−xij(r)), 1 ≤ i ≤ 2me, 1 ≤ j ≤ 2nr denote the least squares
solution of SX = Y. The fuzzy matrix U = {(uij(r), uij(r)), 1 ≤ i ≤ n, 1 ≤ j ≤ r} defined
by

uij(r) = min{xij(r), xij(r), xij(1), xij(1)},

uij(r) = max{xij(r), xij(r), xij(1), xij(1)},
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is called a fuzzy least squares solution of AXB = C. If (xij(r), xij(r)) (1 ≤ i ≤ n, 1 ≤
j ≤ r) are all fuzzy numbers, then uij(r) = xij(r), uij(r) = xij(r), (1 ≤ i ≤ n, 1 ≤ j ≤ r),
and U is called a strong fuzzy least squares solution. Otherwise, U is a weak fuzzy least
squares solution.

If U is a strong solution, any least squares solution of this system, defined by (3.7),
is a strong solution. If U is a weak solution, any fuzzy least squares solution of this
system, defined by (3.7) is a weak fuzzy least squares solution. Since S(1,3) is not unique,
the obtained S(1,3) might not be nonnegative and hence our might be a weak fuzzy least
squares solution. So, we must use the above theorems to define S(1,3). One possible
scenario is that S(1,3) is never nonnegative and hence, the solution is always a weak fuzzy
least squares one.

Now, we use our method for finding the general set of fuzzy least squares solutions and
minimum norm of fuzzy linear matrix equations. We useMATLAB for the computations.

Example 1. Consider the fuzzy linear matrix equation AXB = C where

A =

(
1

−1

)
, B =

(
1

−1

)
, C =

(
(1 + r, 3− r)
(r, 2− r)

)
.

For finding the original fuzzy least squares solutions and minimum norm fuzzy least squares
solution, first we transform it to (A⊗Bt)x = c, where

A⊗Bt =

(
1 −1

−1 1

)
, Xt =

(
x1
x2

)
, c =

(
(1 + r, 3− r)
(r, 2− r)

)
.

The extended 4× 4 matrix is

S =


1 0 0 1
0 1 1 0
0 1 1 0
1 0 0 1

 ,

by simple calculation, the Moore-Penrose inverse of S is

S† =


1
4 0 0 1

4
0 1

4
1
4 0

0 1
4

1
4 0

1
4 0 0 1

4

 ≥ 0,

hence, the original system has a strong fuzzy solutions and the minimum norm fuzzy least
squares solution is:

X =


x1(r)
x2(r)
−x1(r)
−x2(r)

 = S†Y =


3
4 − 1

2r
1
4 − 1

2r
1
4 − 1

2r
3
4 − 1

2r

 X =

(
x1
x2

)
=

(
(34 − 1

2r,−
1
4 + 1

2r)
(14 + 1

2r,−
3
4 + 1

2r)

)
,

Now, one (1,3)-inverse of S is:

S(1,3) =


1
2 0 0 1

2
0 0 0 0
0 1

2
1
2 0

0 0 0 0

 ≥ 0,

Therefore, We can define the general set of strong fuzzy least squares solutions of this
system of the form:
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X =

(
(32 − r,−1

2 + r)
(0, 0)

)
+


0 0 0 −1
0 1 0 0
0 1 0 0
0 0 0 1

Z(r).

where Z(r) is an arbitrary vector.

4 Conclusion

In this paper, we proposed a model to find least squares solutions of a class of inconsistent
fuzzy linear matrix equations AXB = C by an analytic approach. Using embedding
method, we replaced it with a 2me×2nr crisp matrix equation of the form SX = Y. The
sufficient condition for defining and existence for strong fuzzy least squares of the original
system by solving parametric system was discussed, and so, the strong and weak fuzzy
solutions of original system were defined.
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