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Abstract

The objective of this paper is applying the well-known exact operational matrices (EOMs) idea for
solving the Emden-Fowler equations, illustrating the superiority of EOMs over ordinary operational
matrices (OOMs). Up to now, a few studies have been conducted on EOMs ; but the solved differential
equations did not have high-degree nonlinearity and the reported results could not strongly show the
excellence of this new method. So, we chose Emden-Fowler type differential equations and solved
them utilizing this method. To confirm the accuracy of the new method and to show the preeminence
of EOMs over OOMs, the norm 1 of the residual and error function for both methods are evaluated
for multiple m values, where m is the degree of the Bernstein polynomials. We report the results by
some plots to illustrate the error convergence of both methods to zero and also to show the primacy
of the new method versus OOMs. The obtained results demonstrate the increased accuracy of the
new method.

Keywords : Exact operational matrices; Bernstein polynomials; Emden-Fowler equation; Lane-Emden
equation.

—————————————————————————————————–

1 Introduction

I
n 1915, Galerkin [22] introduced a broad gen-
eralization of the Ritz [60] method to be used

primarily for the approximate solution of varia-
tional and boundary value problems, including
problems that cannot be reduced to variational
problems [50]. His method was highly appreci-
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ated and thousands of problems have been solved,
using the Galerkin method, since 1915.

For understanding the basic idea behind the
Galerkin method, suppose that we have to find a
solution (defined in domain U) for the following
(nonlinear) differential equation which does not
have any exact analytical solution

N [u(x)] = 0, x ∈ U, (1.1)

B (u(s)) = 0, s ∈ ∂U,

where the solution, at the boundary B (u(s)) of
U , satisfies the homogeneous boundary condi-
tions. Now, suppose ym(x) as an approximation
for u(x), which is made by the so-called trial func-
tions βi(x)

u(x) ≈ ym(x) =

∞∑
i=0

ciβi(x), (1.2)

B (ym(s)) = 0, s ∈ ∂U. (1.3)
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As we mentioned, N [u(x)] does not have any ex-
act analytical solution; so, we are sure that y(x)
cannot satisfy the equation (1.1). Therefore, we
attempt to minimize the residual function

Rm(x) = N [ym(x)] ̸= 0. (1.4)

The main idea of the Galerkin method for mini-
mizing the residual function is finding the coeffi-
cients ci so that the following weighted means of
the residual function becomes zero

(Rm, βj(x))ω =

∫
U
Rmβj(x)ω(x)dx = 0, (1.5)

x ∈ U,

where ω(x) is a weight function.
However, an old and efficient technique for sim-

plifying the computations in the residual function
is using the operational matrices. In 1975, Chen
and Hsiao [15] introduced an operational matrix
to perform integration of Walsh functions. Chen
[16] continued his work to introduce some oper-
ational matrices to do fractional calculus opera-
tions. In 1977, Sannuti et al. introduced oper-
ational matrix of integration for Block-Pulse ba-
sis functions. Based on Mouroutsos [62] state-
ments, these studies continued at that time with
the determination of integrating operational ma-
trices for miscellaneous basis functions like the
Laguerre, the Legendre, the Chebyshev and the
Fourier trial functions. In 1988-1989, Razzaghi et
al. [55, 57, 56] presented the integral and prod-
uct operational matrices of Fourier series, time
function Taylor series, and shifted-Jacobi series.
In 1993, Bolek [9] presented a direct method for
deriving an operational matrix of differentiation
for Legendre polynomials. In 2000-2012, Yousefi
et al. [58, 30, 34, 73, 72, 74], presented Legendre
wavelets and Bernstein operational matrices for
solving the variational problems and differential
equations. In 2012, Kazem et al. [32], presented
a general formulation for d-dimensional orthog-
onal functions, and their derivative and product
matrices was presented. In 2013, the authors of
[63] presented a modified form of the homotopy
analysis method, based on Chebyshev operational
matrices. In 2013, Kazem [31] derived the Ja-
cobi integral operational matrix for the fractional
calculus. In 2013-14, Toutounian and Tohidi et
al. [66][67] introduced the derivative and inte-
gration matrices of Bernoulli basis function. In
2014, Saadatmandi [61] proposed Bernstein op-
erational matrix for fractional derivative of order

in the Caputo sense. In 2015, Borhanifar [10] et
al. proposed shifted Jacobi operational matrix of
derivative, utilizing spectral tau, and collocation
methods.

The Galerkin method can be implemented for
solving differential equations by low-cost compu-
tations. However, we implement computations of
the (1.4) residual functions by means of the cor-
responding operational matrices. But, the cus-
tomary idea for derivation of the operational ma-
trices does not guarantee the exactitude of the
performed operations. For a more detailed de-
scription, suppose Θm to be the set of the base
functions and the known functions f(x) and g(x)
to be

Θm = {β1(x), β2(x), · · · , βm(x)},

f(x) =
m∑
i=1

κiβi(x) = kT bm(x),

g(x) =
m∑
i=1

λiβi(x) = lT bm(x),

where

bm(x) =
[
β1(x) β2(x) · · · βm(x)

]T
,

k =
[
κ1(x) κ2(x) · · · κm(x)

]T
,

l =
[
λ1(x) λ2(x) · · · λm(x)

]T
.

Ordinary operational matrices (OOMs) employ
the differentiation, integration and product of the
basis vector(s) as∫ x

0
f(x)dx = kT

∫ x

0
bm(x)

.
= kTP1bm(x),

d

dx
f(x) = kT

d

dx
bm(x)

.
= kTD1bm(x),

f(x)g(x) = (kT bm(x))(bm(x)
T l)

.
= kT L̂1bm(x),

where P1, D1 and L̂1 are integration, differenti-
ation and product matrices related to the basis
Θm and the symbol (

.
=) stands for definition.

Although both of the functions f(x) and the g(x)
are located in the Span(Θm), it is quite probable
that their integration or product do not remain in
that space. In other words, operational matrices
do not guarantee exactitude of the operations.

Recently, Parand et al. [43], have presented a
solution for this problem. They introduced exact
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operational matrices (EOMs) P2, D2 and L̂2 so
that

∫ x

0
f(x)dx = kT

∫ x

0
bm(x)

= kTP2bn1(x),

d

dx
f(x) = kT

d

dx
bm(x) = kTD2bn2(x),

f(x)g(x) = (kT bm(x))(bm(x)
T l)

= kT L̂2bn3(x).

As it can be seen, all of the approximations have
been removed and also the basis vector has been
changed. bni(x) depends on the bm(x) and the
respective operational matrix.

Parand et al. [43] implemented their idea to
introduce exact operational matrices of the Bern-
stein polynomials and solved some simple differ-
ential equations by them. However, the solved
problems did not show the real potential of the
introduced method in improving the answer ac-
curacy. The potency of the new method becomes
clear, only if it solves nonlinear problems with
high-degree nonlinearity. In this paper, we solve
the Emden-Fowler type differential equations by
the Bernstein polynomials to present a stronger
proof for EOMs performance.

In section 2, we briefly introduce the Emden-
Fowler equations. Section 3 presents a brief intro-
duction to the EOMs introduced by [43]; EOMs
like differentiation matrix D, integration matrix
P , product matrix Ĉ, and the Galerkin matrix
Q. The section, also, introduces the new ”series
operational matrices” for achieving the best ap-
proximation of g (y(x)) by the Bernstein polyno-
mials, where g(x) is a given function and y(x) is
the unknown function of the differential equation.
At the end of the section, a summary of the solu-
tion error analysis proposed in [43] is presented,
when the solutions are approximated by the Bern-
stein polynomials. In section 4, 7 Emden-Fowler
type equations are solved by the EOM approach.
Also, the results are compared with the results
of OOM approach to prove the validity and ap-
plicability of EOMs and to show their superiority
over OOMs. Finally, section 5, provides a conclu-
sion, alongside some new suggestions for further
studies.

2 Emden-Fowler equations

2.1 Introduction to the equations

Several problems in mathematical physics and as-
trophysics, occurring on semi-infinite interval are
related to the diffusion of heat perpendicular to
the parallel planes. They can be modeled by the
heat equation [21, 14, 26]:

x−k
d

dx

(
xk

d

dx

)
+ f(x)g (y(x)) = h(x) ,

x > 0, k > 0 ,

or equivalently

y′′(x) +
k

x
y′(x) + f(x)g (y(x)) = h(x) ,

x > 0, k > 0 ,

where y(x) represents the temperature. For the
steady-state case and when k = 2 and h(x) = 0,
this equation is called generalized Emden-Fowler
equation [21, 14, 26, 13, 18, 59]

y′′(x) +
2

x
y′(x) + f(x)g (y(x)) = 0 ,

x > 0 , (2.6)

subject to the conditions

y(0) = a , y′(0) = b ,

where f(x) and g (y(x)) are two given functions.
By setting f(x) = 1, Eq. (2.6) will be reduced

to the Lane-Emden equation by which several
phenomena in mathematical physics and astro-
physics are modeled (for different g (y(x)) values).
It is used in theory of stellar structure, theory of
thermionic currents, modeling the thermal behav-
ior of a spherical cloud of gas, modeling isother-
mal gas sphere, and so on.

y′′(x) +
2

x
y′(x) + g (y(x)) = 0 ,

x > 0 , (2.7)

y(0) = a, y′(0) = b .

For g (y(x)) = yp(x), a = 1 and b = 0, the equa-
tion (2.7) yields the standard Lane-Emden equa-
tion which is used to model thermal behavior of
a spherical cloud of gas, acting under the mu-
tual attraction of its molecules, and subject to
the classical laws of thermodynamics [13, 2, 1].

y′′(x) +
2

x
y′(x) + yp(x) = 0 ,

x > 0 , (2.8)

y(0) = 1 , y′(0) = 0 ,
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where p > 0 is a constant. By substituting the
p value by 0, 1, and 5 in Eq. (2.8), the following
equations will be, respectively, the exact solutions
of y(x)

y(x) = 1− 1

3!
x2 , y(x) =

sin (x)

x
,

y(x) =

(
1 +

x2

3

)− 1
2

. (2.9)

For other p values, there is no analytical exact
solution for the standard Lane-Emden equation.

In this paper, we are going to solve the fol-
lowing Emden-Fowler equations whose f(x) and
g (y(x)) functions are given as

f(x) = 1 , g (y(x)) = y
p
(x) , p ∈ N ,[

a, b
]
=
[
1, 0

]
, (2.10)

f(x) = 1 , g (y(x)) = y
p
(x) , p /∈ N ,[

a, b
]
=
[
1, 0

]
, (2.11)

f(x) = 1 , g (y(x)) = e
y(x)

,[
a, b

]
=
[
0, 0

]
, (2.12)

f(x) = 1 , g (y(x)) = sinh (y(x)) ,[
a, b

]
=
[
1, 0

]
, (2.13)

f(x) = 1 , g (y(x)) = sin (y(x)) ,[
a, b

]
=
[
1, 0

]
, (2.14)

f(x) = 1 , g (y(x)) = 4

(
2e

y(x)
+ e

y(x)
2

)
,

[
a, b

]
=
[
0, 0

]
, (2.15)

f(x) = −2
(
2x

2
+ 3

)
, g (y(x)) = y(x) ,[

a, b
]
=
[
1, 0

]
. (2.16)

It is notable that except the 3 above-mentioned
equations and the equations (2.15) and (2.16) for
which the exact analytical solutions are respec-
tively

y(x) = −2 ln (1 + x2), (2.17)

y(x) = ex
2
, (2.18)

none of the above-listed equations has analytical
exact solution.

Several researchers have studied these equa-
tions. In 1989, Bender [4] presented a pertur-
bative method to solve some nonlinear differ-
ential equations like the Lane Emden equation.
In 1993, Shawagfeh[64] used an approximate an-
alytical approach for solving this equation, by
employing the Adomian Decomposition Method
(ADM). In 2001, Mandelzweig et al [38] used the
quasi-linearization approach for the solution of
this equation. To conquer the difficulty of the
singular point, Wazwaz [68] applied ADM with
an alternative framework and solved the above-
mentioned equations. After that, he applied the
[69] modified decomposition method for analytic

treatment of such equations to speed up the quick
convergence of the series and reduce the work
size and present the solution after few iterations,
without requiring any Adomian polynomial. In
2003, Liao [35] presented an analytic algorithm
for the above equations which logically contained
ADM. In that research, unlike its previous ana-
lytical techniques, the algorithm itself presented a
convenient way to adjust convergence regions for
the researcher, even without Padé technique. Us-
ing the method of semi-inverse, J. He [27] reached
a variational principle for the above equations.
it gave much convenience in numerical compu-
tations by applying finite element or the Ritz
methods. In 2004, Razzaghi and Parand [47]
provided a numerical technique on the basis of
a rational Legendre Tau method to solve higher
ODEs such as the above equations. In that study,
the derivative and product operational matrices
of the Legendre functions together with the Tau
method were applied for reducing the solution of
some physical problems to the solution of an al-
gebraic equations system. Ramos, in his studies
[52, 54, 53], solved the equations applying differ-
ent methods. He presented linearization meth-
ods for singular IVPs, in second order ODEs
such as the above equations. Those methods
provided linear constant-coefficient ODEs which
were analytically integrable; thus, the methods
resulted in piecewise analytical solutions and
globally smooth solutions[52]. Then, in [53], the
writer provided a series solutions of the above
equations on the basis of either a formulation of
Volterra integral equation or dependent variable
expansion in the main ODE. Moreover, he devel-
oped piecewise-adaptive decomposition methods
to solve nonlinear ODEs [54]. Those methods pre-
sented series solutions in intervals that were sub-
ject to continuity conditions at each end point.
In 2006, Yousefi [71] converted the above equa-
tions to integral equations using integral opera-
tor. Then he applied Legendre wavelet approx-
imations. In that study, the Legendre wavelet
alongside the Gaussian integration method were
applied for reducing the integral equations to
some algebraic equations. In 2008, Aslanov [2]
presented a recurrence relation for the approx-
imate solution components. Then, he sought
for convergence conditions for the Emden-Fowler
type equations and improved the final results on
the series solution convergence radius. Dehghan
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and Shakeri [19] studied the above equations, ap-
plying the variational iteration method, and il-
lustrated the effectiveness and the applicability of
their procedure in solution of this equation. Their
technique did not need discretization, lineariza-
tion or small perturbations; so, it reduced the
computations volume. In 2009, Chowdhury et al.
[17] achieved the analytical solutions of the gener-
alized Emden-Fowler in the second order ODEs,
by using homotopy-perturbation method (HPM).
It was a mixture of the perturbation and the ho-
motopy method. The HPM primary property is
deforming difficult problems into a set of easier
solvable problems. In 2009, Bataineh et al. [3]
gained the analytical solutions of singular IVPs
of the above equations, using homotopy analysis
method (HAM). Their solutions included an aux-
iliary parameter providing a simple way to con-
trol the series solutions convergence region. They
showed that the obtained solutions by ADM and
HPM, are only special cases of the solutions of
HAM. Parand et al. [49] presented a pseudospec-
tral technique for solving the above equations on
a semi-infinite domain. It was based on the ratio-
nal Legendre functions and Gauss-Radau integra-
tion. That method reduced the nonlinear ODE
solution to the solution of a system of nonlinear
algebraic equations.

Moreover, recently, a great couple of studies
have been performed on the above equations; the
interested reader is referred to the following pa-
pers including the authors’ recent studies [45, 29,
23, 42, 41, 48, 46, 33, 24, 25, 40, 11, 39, 28].

3 Bernstein polynomials (B-
polynomials)

3.1 Overview of B-polynomials

The Bernstein polynomials (B-polynomials) [74],
are widely used polynomials defined on [0, 1].
Bernstein polynomials of degree m form a basis
for the power polynomials of the same degree [70].
They are continuous over the domain. They sat-
isfy the symmetry

Bi,m(x) = Bm−i,m(1− x),

positivity

∀x ∈ [0, 1], Bi,m(x) ≥ 0,

and normalization or unity of partition [70]

m∑
i=0

Bi,m(x) = 1.

Also, Bi,m(x) in which i /∈ {0,m} has a single
unique local maximum of

iim−m(m− i)m−i
(
m

i

)
occurring at t = i

m . All of the B-polynomial bases
take 0 value at x = 0 and x = 1, except the first
polynomial at x = 0 and the last one at x = 1,
which are equal to 1. It can provide the flexibility,
applicable to impose boundary conditions at the
end points of the interval.

We are going to present the solutions of the dis-
cussed equations, by a linear combination of these
polynomials P (x) =

∑m
i=0 ciBi,m(x) in which the

coefficients ci are determined using the Galerkin
method. In recent years, the B-polynomials
have attracted the attention of many researchers.
These polynomials have been utilized for solv-
ing different equations by taking advantage of
various approximate methods. B-polynomials
have been used for solving the Fredholm inte-
gral equations [12, 37], Volterra integral equa-
tions [7], Volterra-Fredholm-Hammerstein inte-
gral equations [36], differential equations [74, 65,
5, 8], integro-differential equations [6], parabolic
equation subject to specification of mass [73] and
so on. Singh et al. [65] and Yousefi et al. [74]
have proposed operational matrices in different
ways for solving differential equations. In [65],
the B-polynomials have been firstly orthonor-
malized using Gram-Schmidt orthonormalization
process and then the operational matrix of inte-
gration has been obtained. By the expansion of
B-polynomials in terms of Taylor basis, Yousefi
and Behroozifar [74] have found the operational
matrices of differentiation, integration and prod-
uct for B-polynomials.

3.2 EOM-related matrices

3.2.1 B-polynomials

As we mentioned, m-degree B-polynomials[8] are
a set of polynomials defined on [0, 1]:

Bi,m(x) =

(
m

i

)
xi(1− x)m−i , 0 ≤ i ≤ m ,
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where
(
m
i

)
means

m!

i! (m− i)!
.

In this paper, we use the ψm(x) notation to show

ψm(x) =
[
B0,m(x) B1,m(x) · · · Bm,m(x)

]T
.

We should remind that [74]:

ψm(x) = Am × Tm(x), (3.19)

where

Tm(x) =
[
x0 x1 · · · xm

]T
, (3.20)

and the (i+ 1)th row of matrix A is

Ai+1 = i times︷ ︸︸ ︷
0 · · · 0 (−1)0

(
m
i

)
· · · (−1)m−i

(
m
i

)(
m−i
m−i

)  .

(3.21)

Matrix A is an upper triangular matrix and
det(A) =

∏m
i=0

(
m
i

)
. So, A is an invertible matrix.

The writers of [43] have presented the following
relation for A−1.

{A−1}mi,j=0 =


(m−i
j−i )
(mj )

, j ≥ i ,

0 , j < i .
(3.22)

Here, we propose a short introduction to exact
operational matrices [43], which is the backbone
of this paper.

3.2.2 A general formula for xi

The term xi is a very common term in differential
equations. So, [43] proposed a general formula
for xi to be written as linear combination of the
Bernstein polynomials

xi = dTi,mψm(x) , m ≥ i , (3.23)

di,m =

([
i︷ ︸︸ ︷

0 0 · · · 0 1

m−i︷ ︸︸ ︷
0 0 · · · 0

]
A−1

m

)T

.

3.2.3 K matrices

For the future applications, we consider the two
following simple matrices (called K-matrices),
proposed in [43]:

Km,i =
[
Im 0m×i

]
m×m+i

, (3.24)

K ′
m,i =

[
0m×i Im

]
m×m+i

. (3.25)

3.2.4 The increaser matrix

Suppose that we are going to solve the differential
equation (1.1), using the Galerkin method. To
implement (1.4) by EOMs, we apply EOMs on
the equation and sum all of the terms to reach the
residual function. For becoming able to factor out
a base vector from all of the different bn(x)-sized
terms in the residual function, [43] introduced the
so-called increaser matrix Ei,j , by which:

bi(x) = Ei,j .bj(x).

Using this matrix, we can convert the basis vector
(existing in each term) to the largest bmaxNum(x).
By factoring out the bmaxNum(x), we can write
the residual function as RmaxNumbmaxNum(x).
So, solving the problem, will be reduced to solv-
ing the following equation

RmaxNumbmaxNum(x) = 0, maxNum ≥ m.
(3.26)

Also, [43] has proposed the increaser matrix of
the Bernstein basis vector

ψm(x) = Em,iψm+i(x) , (3.27)

Em,i = AmKm+1,iA
−1
m+i .

The Em,i matrix size is (m+ 1)× (m+ 1 + i).

3.2.5 The differentiation matrix

Dm is the operational matrix of differentiation for
the Bernstein basis vector, introduced in [43]

d

dx
ψm(x) = Dmψm−1(x) , (3.28)

Dm = m

(
K ′T

m,1 −KT
m,1

)
.

3.2.6 The integration Matrix

[43] has introduced the Bernstein polynomials in-
tegration operational matrix Pm as∫ x

0
ψm(x)dx = Pmψm+1(x) , (3.29)

where

Pm =
[
p0,m · · · pm,m

]T
(m+1)×(m+2)

,

pi,m =
1

m+ 1

[
i+1︷ ︸︸ ︷

0 · · · 0

m+1−i︷ ︸︸ ︷
1 · · · 1

]T
.
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3.2.7 The product matrix

For an arbitrary vector c, we can write:

cTψm(x)ψ
T
n (x) = ψTm+n(x)× C̃m,n , (3.30)

where C̃m,n, introduced in [43], is an (m + n +
1) × (n + 1) product operational matrix, for the
vector c

[
C̃m,n

]
i,j

=

{
0 , i ̸∈ [j, j +m] ,

ci−ja(i−j),(j−1),m,n , o.w.

Moreover, by transposing (3.30), we have

ψn(x)ψ
T
m(x)c = Ĉn,mψm+n(x) , (3.31)

Ĉn,m = C̃Tm,n ,

Ĉn,m is, also, called the product operational ma-
trix for the vector c [43].

3.2.8 The power matrix

Suppose that y(x) = cTψm(x); [43] has intro-
duced Cm,p operational matrix by which yp(x) =
Cm,pϕp·m(x) and named it the power operational
matrix for the Bernstein polynomials

Cm,p = cT
p−1∏
i=1

Ĉi·p,m , p ≥ 2 . (3.32)

3.2.9 The Series matrix

Suppose that y(x) = cTψm(x); here, we propose
a matrix to approximate f (y(x)) function, where
power series of f(x) can be written as

f(x) =

∞∑
i=0

eix
i,

in which |x|< R and R is the convergence radius
of the power series. So, we can write

f(x) ≃
N∑
i=0

eix
i.

Substituting y(x) by x, we have

f (y(x)) ≃
N∑
i=0

ei
(
cTψm(x)

)i
,

where |y(x)| < R. Using the equation (3.32), we
can write

f (y(x)) ≃ e0 · dT0,m·Nψm·N + e1 · cTψm(x)

+
N∑
i=2

eiCm,iψm·i(x),

where N ≥ 2. Also, applying the equation (3.27),
we have

f (y(x)) ≃

(
e0 · dT0,m·N + e1 · cTEm,m(N−1)

+
N∑
i=2

eiCm,iEm·i,m(N−i)

)
ψm·N (x),

and finally

f (y(x)) ≃
︷ ︸︸ ︷
Cei,m,N ψm·N (x), (3.33)

where ︷ ︸︸ ︷
Cei,m,N = e0 · dT0,m·N + e1 · cTEm,m(N−1)

+

N∑
i=2

eiCm,iEm·i,m(N−i),

and |y(x)| < R and N ≥ 2.
Up to now, we have obtained a relation for ap-
proximating the function f (y(x)). In the next
part, we seek for the optimal ei coefficients.

3.2.10 Truncated Taylor series

In the previous part, we based the series matrix
on the power series. However, although we know

that f(x) =
∑∞

i=0 cix
i, ci =

f (i)

i! , after truncat-
ing the series to N terms, not only the truncated
series will not be exactly equal to f(x), but also
the cis would not be, necessarily, the best coeffi-
cients for approximating f(x). To reach the best
coefficients, the following theorem is required.

Theorem 3.1 Consider the Hilbert space H =
L2[a, b] and one of its finite-dimensional sub-
spaces:

F = Span{f0(x), f1(x), · · · , fN (x)},

with inner product defined by

⟨f(t), g(t)⟩ =
∫ b

a
f(t)g(t)dt.
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1. For any arbitrary function q(x) ∈ H, there
exists a unique best approximation p(x) (in
respect to the defined inner product) for the
q(x) function

2.

⟨(q(x)− p(x)) , f⟩ = 0,

f =
[
f0(x) f1(x) · · · fN (x)

]T
,

where

⟨f(x), f⟩ =
[
⟨f(x), f0(x)⟩ · · · ⟨f(x), fN (x)⟩

]
.

Refer to [74] Consider the Hilbert space H =
L2[a, b]. Approximating the function f(x) ∈ H
by a truncated series in the interval

[
a b

]
is

equal to approximating it by a function g(x) in
the Tm subspace of H:

Tm = Span{1, x, · · · , xN},

where

g(x) = eT tN ,

e =
[
e0 e1 · · · eN

]T
,

tN =
[
1 x x2 · · · xN

]T
.

Using the theorem, we have

⟨
(
f(x)− eT tN

)
, tN ⟩ = 0,

eT ⟨tN , tN ⟩ = ⟨f(x), tN ⟩,

where ⟨tN , tN ⟩ is an (N+1)×(N+1) matrix and
is said dual matrix of tN . Let

UtN = ⟨tN , tN ⟩ =
∫ b

a
tN t

T
Ndx,

then,

eT =

(∫ b

a
f(x)tTN (x)dx

)
U−1
tN
. (3.34)

So, the best approximation for f(x) (in Tm) will
be

f(x) =
N∑
i=0

eix
i,

where eis are the elements of the vector e, ob-
tained above.

3.2.11 The Q Matrix

In the subsection 3.2.4, we converted the solu-
tion of the differential equation (1.1) to the solu-
tion of the algebraic equations system (3.26). In
(3.26), bmaxNum(x) is a basis vector and its ele-
ments (functions) are linearly-independent. So,
we can solve the following equation, instead

RmaxNum = 0, maxNum ≥ m.

To overcome the problems of solving a system
with maxNum-equations and m unknown vari-
ables, [43] has introduced the Galerkin matrix
QmaxNum,m, which reduces the number of equa-
tions to m, based on the Galerkin method:

R1×(maxNum+1) ×Q (maxNum,m) = 0 ,

(3.35)

where Q (maxNum,m) is an (maxNum + 1) ×
(m+ 1) matrix

Q (maxNum,m) = [qij ]maxNum+1×m+1,

i ≤ maxNum, j ≤ m ,

qij =(
maxNum

i−1

)(
m

j−1

)
(maxNum +m + 2 − (i + j)) ! + (i + j − 2) !

(maxNum +m + 1) !
.

Then, using Eq. (3.35), we solve

R∗
m = 0 , (3.36)

where

R∗
m = R1×(maxNum+1) ×Q (maxNum,m) .

By solving the resulting algebraic system, we will
find the m + 1 unknown coefficients ci, in (1.2),
and, finally, find the ym(x).

3.3 The solution error bound

For analyzing the solution error bound of their
method; For this purpose, [43] has discussed
about the solution analysis of the Bernstein poly-
nomials EOMs in detail. Here, we present the gist
of that discussion and refer the interested reader
to that paper.

Definition 3.1 Let f(x) ∈ C[0, 1] and ϕ :
[0, 1] → R be an admissible step-weight func-
tion (for details see [20]), the Ditzian-Totik mod-
ulus of second order smoothness of f(x) on [0, 1],
w2
ϕ(δ), is defined by

w
2
ϕ(δ) = sup|h|≤δ supx±hϕ(x)∈[0,1]

|f (x− ϕ(x)h) − 2f(x) + f(x + ϕ(x)h)| , δ > 0 .
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Theorem 3.2 Let φ(x) =
√
x(1− x) and ϕ :

[0, 1] → R (ϕ ̸= 0) be an admissible step-weight
function of the Ditzian-Totik modulus of smooth-
ness such that ϕ2 and φ2/ϕ2 are concave. Sup-
pose the two functions f : [a, b] → R and Y =
Span{B0,m(x), B1,m(x), ..., Bm,m(x)}, if cTψm(x)
is the best approximation to f(x) in Y , then the
mean error bound will be

||f(x)− cTψm(x)||2≤ Cw2
ϕ(

1√
m

φ(x)

ϕ(x)
) ,

x ∈ [0, 1] .

4 Applications

To show the efficiency and accuracy of the present
method on ordinary differential equations, seven
examples are presented. The exact solution is
not available for most of them; therefore, we
solved them using a seventh-eighth order continu-
ous Runge-Kutta method as an almost exact so-
lution, using the Maple c⃝ dverk78 function, for
checking the accuracy of the EOM method re-
sults. For achieving the approximate solutions,
we applied the present method for different m
valued ym(x)s in (1.2). Then, we compared them
with the almost exact solutions and computed the
norm1 for the residual and the error function of
each one.

The numerical implementation and all
of the executions are performable by
maplesoft c⃝.maple.16.x64, 64-bit Microsoft c⃝

Windows7 Ultimate Operating System, along-
side hardware configuration: Laptop 64-bit Core
i3 M380 CPU, 8 GBs of RAM.

4.1 Solution of the Emden Fowler
equations

In the subsection 2.1 we got familiar with
the Emden-Fowler equations. Multiplying the
Emden-Fowler equation (2.6) in x, we would have

N [y(x)] = xy′′(x) + 2y′(x)+

xf(x)g (y(x)) = 0,

(4.37)

0 ≤ x ≤ lim
M→∞

M,

y(0) = a, y′(0) = b.

Neglecting the large values of M , we can solve
the equation for 0 ≤ x ≤ M . So, we solve the

problem in the domain [0,M ]. But the domain of
Bernstein polynomials is [0,1] and are not appli-
cable directly for solving this problem. One ap-
proach for overcoming this difficulty is changing
variables. We use the following mapping relations

s =
x

M
, v(s) =

y(x)

M
.

Applying the above-mentioned mapping, we have

y(x) =Mv(s), (4.38)

d

dx
y(x) =

d

ds
v(s),

d2

dx2
y(x) =

1

M

d2

ds2
v(s),

v(0) =
a

M
,

v′(0) = b.

Now, substituting the mapped function v(s) by
the function y(x) in the equation (4.37), we have

N [y(x)] = sv′′(s) + 2v′(s)

+ sMf (sM) g (Mv(s)) = 0,

(4.39)

0 ≤ s ≤ 1, s =
x

M
,

v(0) =
a

M
, v′(0) = b.

So, we can start solving the above equation, us-
ing the Bernstein functions. To estimate the first
term of the equation (4.39) suppose that

z′′(s) ≃ v′′(s), (4.40)

where

z′′(s) = cTψm(s). (4.41)

Then, using equations (3.23) and (3.31) we can
write

sz′′(s) = cTψm(s)ψ
T
1 (s)d1,1

= cT ̂(D1,1)m,1ψm+1(s),

z′(s)− z′(0) = cTPmψm+1(s).

Also, for estimating the second term of the equa-
tion (4.39), by integrating the equation (4.41) and
applying (3.23), we will have

z′(s) = gTψm+1(s), (4.42)

g = P Tmc+ b · d0,m+1. (4.43)
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Finally, to estimate the last equation, we re-
quire estimation of the functions z(s), f (sM) and
g (Mv(s)). For approximating z(s), we integrate
the equation (4.42)

z(s)− z(0) = gTPm+1ψm+2(s).

Then, using the equation (3.23) we can write

z(s) = hTψm+2(s), (4.44)

h = P Tm+1g +
a

M
· d0,m+2.

Now, it only remains estimating the functions
f (sM) and g (Mv(s)). Depending on the type
of the Emden-Fowler problem ((2.10) to (2.16)),
there exist two vectors k and s(c), (elements of
the vector s(c) depend on the elements of the
vector c) and integers i0 and j0 by which we can
express sMf(sM) ≃ kTψi0(s) and g (Mz(s)) ≃
sT (c)ψj0(s). So, utilizing the equation (3.31), we
can write

g (Mz(s)) · sMf(sM)

= sT (c)ψj0(s)ψ
T
i0(s)k

= sT (c)K̂j0,i0ψi0+j0(s).

(4.45)

Using (4.37), we can write the Residual(s) as

Residual(s) = N [z(s)] = sz′′(s) + 2z′(s)

+ sMf(sM)g (Mz(s)) .

Then, applying the equation (4.45), we can write

Residual(s) = cT ̂(D1,1)m,1ψm+1(s)

+ 2gTψm+1(s) + sT (c)K̂j0,i0ψi0+j0(s).

By factoring out the entire ψ(s) functions, we will
have

Residual(s) = R1×maxNumψmaxNum(s),

wheremaxNum = max(m+1, i0+j0). The value
of the vector R, above, depends on the values of
i0 and j0. Applying the equation (3.27), we will
have

R =



cT ̂(
D1,1

)
m,1

Em+1,i0+j0−(m+1)

+ 2gTEm+1,i0+j0−(m+1) + sT (c)K̂j0,i0
, i0 + j0 > m + 1,

cT ̂(
D1,1

)
m,1

+ 2gT

+ sT (c)K̂j0,i0
Ei0+j0,m+1−(i0+j0), i0 + j0 < m + 1,

cT ̂(
D1,1

)
m,1

+ 2gT + sT (c)K̂j0,i0
, i0 + j0 = m + 1.

(4.46)

Using (3.36), we solve the following system to find
the unknown cis (elements of the vector c)

R∗
m = R×Q (maxNum,m) = 0. (4.47)

Still, we are not able to solve the R∗
m. Because

(as it is obvious from (4.46)) the vectors s(c)
and k are unknown. As it was declared, the
value of these two vectors depend on the type of
the Emden-Fowler equation and the related f(x)
and g (y(x)) functions, all of which are listed in
(2.10)-(2.16). The f(x) function, in the equations
(2.10)-(2.15), is the constant function 1, whereas,
in (2.16), f(x) is equal to −2

(
2x2 + 3

)
. So, using

the equation (3.23), we can write

sMf(sM) =

{
M · dT1,1ψ1(s), (2.10) − (2.15),

−2M
(
2M2dT3,3 + 3dT1,3

)
ψ3(x), for Eq. (2.16).

By means of the above equations, all of the k
vectors will be found. Now, we have to find the
s(c) vectors. For the equations (2.10) and (2.16),
g (Mz(s)) can be found by using (4.44) and (3.32)

g (Mz(s)) =


Mpzp(s) = MpHm+2,pψ(m+2)p(s),

p ∈ N, for Eq. (2.10),

Mz(s) = MhTψm+2(s),

for Eq. (2.16),

and for the other g (Mz(s)) functions
((2.11)− (2.15)), using (4.44) besides (3.33), we
can write

g (y(x)) ≃
︷ ︸︸ ︷
Hei,m,N ψ(m+2)N (x).

Regarding the equations (3.33) and (3.34), we
know that for estimating the function g (y(x)),
the best coefficients eis are the elements of the
following vector

e(N+1)×1 =
(
U−1
ψN (x)

)T ∫ b

a
g(x)ψN (x)dx.

Now, we are able to solve the system (4.47) and
find the elements of the vector c. Finding the
vector c, results in finding the vector h in (4.44)
and the vector h, alongside the equations (4.38)
(4.40) and (4.44), outputs the function y(x)

y(x) =Mv(s)

≃Mz(s)

=MhTψm+2(s).

It is, also, worth mentioning that solving the
(4.47) system of nonlinear equations has several
difficulties (even by using the Newton’s method)
when the number of algebraic equations grows up.
The main difficulty with such systems is choosing
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the initial guess to manage the Newton method
for sufficing to low-order computations. So, we
applied a technique, introduced in [43], to choose
an appropriate initial guess.

However, we solved the entire (2.10)-(2.16)
Emden-Fowler equations and the results are de-
picted in the figures (1)-(17). All of the problems,
except the (2.12) are solved for varying m values

m ∈ {2, 3, · · · , E},

where, E is the largest m for which the results
are reported. To evaluate the solution accuracy
for each m, it is not needed to check them one by
one; reporting the norm of the residual and the
error functions is enough for evaluation. So, we
present two categories of figures. The first cate-
gory contains the figures which report the norm
of the residual or the error function for the entire
m values, and the second category includes the
plots of the error or the residual function for the
largest m value (E).

Looking at the first category plots, we find
out that both of the residual and the error func-
tion values decreases by increasing the m value
and it confirms the convergence of both methods.
Also, these plots demonstrate the absolute prior-
ity of EOMs. The second category of plots shows
that, almost for all x values, both of the resid-
ual and the error functions, related to the EOM
method, takes less values than those related to
OOM. Meanwhile, the second category plots are
semi-logarithmic because, according to the high
superiority of EOMs over OOMs, the error of the
EOM method results can not, obviously, be seen
in non-logarithmic plots. It is also worth to men-
tion that, for having appropriate approximations
of g(y(x)), we have chosen some large N values
(e.g. 8, 10, 12, and 15) and the acceptable accu-
racy of the result reveals the efficient selection of
N .

However, before explaining the figures, we
should remind that the problem is solved in the
interval x ∈ [0,M ] and we have not selected the
value ofM , yet. However, in the conducted stud-
ies about these problems (e.g. [42]), only the
positive y(x) values were the matter of interest.
Therefore, since all of our problems have posi-
tive y(0) initial values, M should be chosen as
y(M) = 0. Remember that we have access to this
value because we have the (almost) exact solu-
tions of our entire problems. Nevertheless, when
M > 5, we set it to be 5.

Now, it is the turn of explaining the results,
one by one. The analytical solution of the equa-
tion (2.10), for p = 0, is so that we can ex-
actly write the solution as a linear combination
of the Bernstein polynomials; so, we do not re-
port the related figures. However, for p = 1 and
p = 5 the results are depicted in the figures (1)-
(4). Looking at the figure (5), we see less ac-
curacy, in comparison with other problems. It
shows that the related N value is not sufficiently
large to approximate g(y(x)) well. However, it
can be considered as a good example for indi-
cating the performance of the truncated series,
in function approximation. In the figure (8) (re-
lated to (2.16)), the analytical solution is com-
pared with both EOM and OOM solutions and
the results show the preeminence of the former
over the latter. About the problem (2.11), it has

been solved twice, once for g(y(x)) = y
3
2 (x) and

once for g(y(x)) = y
5
2 (x). The figures (10) and

(12) show the ineligible results for the residual
function of the OOM method. As an example,
in x = 0, the error is even more than 1, whereas
even in those points, the EOM method presents
some acceptable results. The interesting point in
the solution of the problem (2.12), for m = 2
(figure (13)), is the capability of the method to
reach such high accuracy approximations, even
for this small m value, when the N value is cho-
sen large-enough (in this case, we set it to 15).
The figures (15) and (17) (problems (2.13) and
(2.14)), again, show some almost ineligible re-
sults for OOM method, whereas EOM has some
acceptable results.

5 Concluding Remarks and sug-
gestions for further study

In this paper, we implemented the recently
introduced exact operational matrices (EOMs)
[43] of the Bernstein polynomials to solve the
well-known Emden-Fowler equations, using the
Galerkin method. For the sake of reaching
more accurate results, we proposed a relation for
finding the best coefficients ei for approximat-
ing a function g(x) in the form of

∑N
i=1 eix

i.
Then, we introduced the new so-called ”series
operational matrix” for finding the coefficients
si to write the function g (y(x)) in the form
of
∑m·N

i=0 siBi,m·N (x), where Bi,m·N (x)s are the
Bernstein polynomials of degree m ·N .
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(a) ∥Error (ym(x))∥1

(b) ∥Residual (ym(x))∥1

Figure 1: The norm1 of the residual and error func-
tion plots for several m values and f(x) = 1, g(x) =
y(x), N = 8

(a) ∥Error (yM (x))∥1

(b) ∥Residual (yM (x))∥1

Figure 2: The norm1 of the residual and error func-
tion plots for the largest m value (E) of the figure (1)
for f(x) = 1, g(x) = y(x), N = 8
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(a) ∥Error (ym(x))∥1

(b) ∥Residual (ym(x))∥1

Figure 3: The norm1 of the residual and error func-
tion plots for several m values and f(x) = 1, g(x) =
y5(x), N = 8

(a) ∥Error (yM (x))∥1

(b) ∥Residual (yM (x))∥1

Figure 4: The norm1 of the residual and error func-
tion plots for the largest m value (E) of the figure (3)
for f(x) = 1, g(x) = y5(x), N = 8
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(a) ∥Error (ym(x))∥1

(b) ∥Residual (ym(x))∥1

Figure 5: The norm1 of the residual and error func-
tion plots for several m values a f(x) = 1, g(x) =

4
(
2ey(x) + e

y(x)
2

)
, N = 10

(a) ∥Error (yM (x))∥1

(b) ∥Residual (yM (x))∥1

Figure 6: The norm1 of the residual and error func-
tion plots for the largest m value (E) of the figure (5)

for f(x) = 1, g(x) = 4
(
2ey(x) + e

y(x)
2 , N = 10

)
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(a) ∥Error (ym(x))∥1

(b) ∥Residual (ym(x))∥1

Figure 7: The norm1 of the residual and error
function plots for several m values and f(x) =
−2
(
2x2 + 3

)
, g(x) = y(x), N = 8

(a) ∥Error (yM (x))∥1

(b) ∥Residual (yM (x))∥1

Figure 8: The norm1 of the residual and error func-
tion plots for the largest m value (E) of the figure (7)
for f(x) = −2

(
2x2 + 3

)
, g(x) = y(x), N = 8
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(a) ∥Error (ym(x))∥1

(b) ∥Residual (ym(x))∥1

Figure 9: The norm1 of the residual and error func-
tion plots for several m values and f(x) = 1, g(x) =

y
3
2 (x), N = 12

(a) ∥Error (yM (x))∥1

(b) ∥Residual (yM (x))∥1

Figure 10: The norm1 of the residual and error func-
tion plots for the largest m value (E) of the figure (9)

for f(x) = 1, g(x) = y
3
2 (x), N = 12



S. A. Hossayni et al, /IJIM Vol. 7, No. 4 (2015) 351-374 367

(a) ∥Error (ym(x))∥1

(b) ∥Residual (ym(x))∥1

Figure 11: The norm1 of the residual and error func-
tion plots for several m values and f(x) = 1, g(x) =

y
5
2 (x), N = 12

(a) ∥Error (yM (x))∥1

(b) ∥Residual (yM (x))∥1

Figure 12: The norm1 of the residual and error func-
tion plots for the largestm value (E) of the figure (11)

for f(x) = 1, g(x) = y
5
2 (x), N = 12
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(a) ∥Error (yM (x))∥1

(b) ∥Residual (yM (x))∥1

Figure 13: The norm1 of the residual and error func-
tion for M = 2 and f(x) = 1, g(x) = ey(x), N = 15

(a) ∥Error (ym(x))∥1

(b) ∥Residual (ym(x))∥1

Figure 14: The norm1 of the residual and error func-
tion plots for several m values and f(x) = 1, g(x) =
sinh(y(x)), N = 10
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(a) ∥Error (yM (x))∥1

(b) ∥Residual (yM (x))∥1

Figure 15: The norm1 of the residual and error func-
tion plots for the largestm value (E) of the figure (14)
for f(x) = 1, g(x) = sinh(y(x)), N = 10

(a) ∥Error (ym(x))∥1

(b) ∥Residual (ym(x))∥1

Figure 16: The norm1 of the residual and error func-
tion plots for several m values and f(x) = 1, g(x) =
sin(y(x)), N = 12
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(a) ∥Error (yM (x))∥1

(b) ∥Residual (yM (x))∥1

Figure 17: The norm1 of the residual and error func-
tion plots for the largestm value (E) of the figure (16)
for f(x) = 1, g(x) = sin(y(x)), N = 12

The differential equations on which the EOM
idea were applied to solve, hitherto, were either
linear or low-order nonlinear problems and the re-
ported results in [43] did not indicate, completely,
the potential superiority of the new method.
Therefore, we chose Emden-Fowler type equa-
tions, which have a high-order nonlinearity (for
presence of the g (y(x)) ≃

∑m·N
i=0 eiBi,m·N (x)), to

be solved by EOMs.

For solving the differential equations by the
Galerkin method, using the EOMs, we reached
an almost exact residual function (Residual(x))
which was never obtainable by the old ”ordi-
nary operational matrices” (OOMs) in most of
the problems. We converted the residual func-
tion to a system of algebraic equations, using the
Galerkin operational matrix [43] and solved them
to find the unknown function y(x). To have an
appropriate criterion for the results accuracy of
the problems without exact solution, we solved
them, taking advantage of a seventh-eighth order
continuous Runge-Kutta method (as an almost
exact solution), using the Maple c⃝ dverk78 func-
tion.

To see the convergence of the resulting errors
to zero, we applied the Galerkin method repeat-
edly, each new step with a larger ψm(x). Then,
using the (almost) exact solution, we reported the
norm1 of the errors of both methods for each m
value and showed the descending/converging be-
havior of error norm plot. However, the conver-
gence speed was faster, in EOMs. We did, also,
the same for residual functions. Moreover, we re-
ported the norm and the error of the results for
the largest m value in which the superiority of
EOMs over OOMs was evident.

However, the Emden-Fowler problem domain is
[0,∞). Therefore, for solving it by the Bernstein
polynomials which are defined on the domain
[0, 1], we firstly truncated the problem domain
to [0,M ] and then used a mapping technique to
change its variable and solved it. However, the
limited domain of the Bernstein EOMs can be
considered as a disadvantage, in applying them
for solving problems with semi-infinite/infinite
domains. To overcome this limitation, we sug-
gest extracting EOMs of other basis functions,
with semi-infinite or infinite domains, for future
works. Moreover, solving differential equations
which have closer solutions to the vector space
(made by the Bernstein polynomials and a spe-
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cific norm) can illustrate the EOM efficiency,
more clearly.
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