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Abstract

In this paper, first, a numerical method is presented for solving a class of linear Fredholm integro-
differential equation. The operational matrix of derivative is obtained by introducing hybrid third
kind Chebyshev polynomials and Block-pulse functions. The application of the proposed operational
matrix with tau method is then utilized to transform the integro-differential equations to the alge-
braic equations. Finally, show the efficiency of the proposed method is indicated by some numerical
examples.
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1 Introduction

I
n recent years, there has been a growing inter-
est in the integro-differential equations, which

provide an important tool for modeling numer-
ous real world problem in engineering, mechan-
ics, physics, chemistry, astronomy, biology, eco-
nomics, potential theory and electrostatics. The
kinds of equations are usually difficult to solve an-
alytically, so it is required to obtain an efficient
approximate solution. Therefore, many different
methods are used to obtain the solution of the
linear and nonlinear Integro-differential equations
such as: the successive approximations, Adomian
decomposition, Homotopy perturbation method,
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Chebyshev and taylor collocation, Hybrid func-
tion, Cas and Haar wavelet, Tau and Walsh series
methods [1]-[8].

In this paper, a numerical method using hybrid
of third kind Chebyshev polynomials and Block-
pulse functions (HTKCPBPF) is presented for
the following linear Fredholm integro-differential
equations of the type: u′(x) = f(x) + u(x) + λ

∫ 1
0 K(x, t)u(t)dt,

u(0) = a,
(1.1)

where λ, a, are constants, f(x)) and K(x, t) are
Known and u(t) is the unknown function to be
determined. This method reduces the integral
equation to a set of algebraic equations by ex-
panding u(x) as (HTKCPBPF) with unknown
coefficients. The paper is organized as follows:
In Section 2, we review briefly about Block-pulse
functions and third kind Chebyshev polynomials
and hybrid of them. Section 3 is devoted to func-
tion approximation. In Sections 4, we construct
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the operational matrices of derivative based on
the (HTKCPBPF). Convergence analysis of the
proposed method is done in Section 5. In Section
6 and 7, we show the validity and efficiency of
the proposed method, we present some numerical
examples. Finally, Section 8 concludes the paper.

2 Function and hybrid function

2.1 Block-pulse functions

A set of Block-pulse functions bi(x), i =
1, 2, ..., N , on the interval [0, 1) are defined as [9]:

bi(x) =


1, i−1

N ≤ x < i
N

0, otherwise,
(2.2)

These functions satisfy in the following proper-
ties:

i- disjointness

bi(x)bj(x) =


bi(x), fori = j

0, fori ̸= j

ii- orthogonality∫ 1

0
bi(x)bj(x)dt =

1

N
δij

where i, j = 1, 2, ..., N, and δij is the Kronecker
delta,

iii- completeness

for every f ∈ L2[0, 1) when m approach to the
infinity, parsevals identity hold:

∫ 1

0
f2(x)dx =

∞∑
0

(f2
i ∥bi(x)∥2),

where fi = N
∫ 1
0 f(x)bi(x)dx.

2.2 Third kind of Chebyshev polyno-
mials

The third kind of Chebyshev polynomial Vn(x) is
a polynomial of degree n in x defined by [9] :

Vn(x) =
cos(n+ 1

2)θ

cos(12)θ
, (2.3)

where x = cos θ. clearly from 2.2, fundamental
recurrence relation as follows:

Vn(x) = 2xVn−1(x)− Vn−2(x), n = 2, 3, ...,

where

V0(x) = 1, V1(x) = 2x− 1,

These polynomials are orthogonal on [−1, 1] with

respect to the weight function ω(x) =
√

1+x
1−x , that

is ∫ 1

−1
Vi(x)Vj(x)w(x)dx = πδij .

2.3 Hybrid functions

For n = 1, ..., N and m = 0, ...,M − 1, the
HTKCPBPF are defined as follows [13]:

φnm(x) =


√

2
N Vm(2Nx− 2n+ 1), n−1

N ≤ x < n
N

0, otherwise,

(2.4)

with the following weight function

ωn(x) = ω(2Nx− 2n+ 1).

3 Function approximation

A function f(x) ∈ L2[0, 1) may be expanded as:

f(x) =

∞∑
n=1

∞∑
m=0

cnmφnm(x), (3.5)

where

cnm =
⟨f(x), φnm(x)⟩

⟨φnm(x), φnm(x)⟩
(3.6)

=
N2

π

∫ 1

0
ωn(x)φnm(x)f(t)dx.
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In 3.6, ⟨., .⟩L2
ω [0,1)

denotes the inner product in
L2
ω[0, 1), with weight function wn(x). If the infi-

nite series in 3.5 is truncated, then equation 3.5
can be written as:

f(x) ≃
N∑

n=1

M−1∑
m=0

cnmφnm(x) = CTφ(x), (3.7)

where C and φ(x) are NM×1 matrices given by:

C = [c10, c11, c12, ..., c1,M−1, c20, ..., cN,M−1]
T ,
(3.8)

φ(x) = [φ10(x), φ11(x), ..., φ1,M−1(x), φ20(x)
(3.9)

..., φN,M−1(x)]
T .

The differentiation of vector φ(x) can be ob-
tained by:

dφ(x)

dx
= Dφ(x). (3.10)

We derive the matrix D in the following section
for some particular values of N and M .

4 Operational matrix of deriva-
tive

In this section, we figure out the precise derivative
of the HTKCPBPF with N = 2 and M = 3 . In
this case, the six basis functions are given by :

φ1 = φ10(x) = 1,

φ2 = φ11(x) = 8x− 3,

φ3 = φ12(x) = 64x2 − 40x+ 5, (4.11)

for t ∈ [0, 12), and

φ4 = φ20(x) = 1,

φ5 = φ21(x) = 8x− 7,

φ6 = φ22(x) = 64x2 − 104x+ 41, (4.12)

for t ∈ [12 , 1) . Let φ6(t) =
(φ10(t) φ11(t) φ12(t) φ20(t) φ21(t) φ22(t)).
By differentiation 4.12, 4.13 from 0 to t, and

representing them in the matrix form, we obtain

dφ1

dx
= 0,

dφ2

dx
= 8 = 8φ10,

dφ3

dx
= 128x− 40 = 16φ11 + 8φ10,

dφ4

dx
= 0,

dφ5

dx
= 8 = 8φ20,

dφ6

dx
= 128x− 104 = 16φ21 + 8φ20.

Thus, we have

dφ(x)

dx
= D6×6φ(x). (4.13)

Where

D6×6 = 2



0 0 0 0 0 0
4 0 0 0 0 0
4 8 0 0 0 0
0 0 0 0 0 0
0 0 0 4 0 0
0 0 0 4 8 0


The matrix D6×6 can be written as

D6×6 = 2

[
F3×3 03×3

03×3 F3×3

]
where

F3×3 =

0 0 0
4 0 0
4 8 0


In general, for M ≥ 4, we have

dφ(x)

dx
= Dφ(x), (4.14)

where φ(x) is given in 3.10 and D is a NM×NM
matrix given by

D = N


F 0 0 · · · 0
0 F 0 · · · 0
0 0 F · · · 0
...

...
...

. . .
...

0 0 0 · · · F

 ,

where F = a(ij) is M × M matrices, whose the
elements are given explicitly by:

aij =


2(i+ j − 1), i > j, (i+ j)odd,

2(i− j), i > j, (i+ j)even,

0, otherwise.
(4.15)
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For example if M = 7 as follows:

F =



0 0 0 0 0 0 0
4 0 0 0 0 0 0
4 8 0 0 0 0 0
8 4 12 0 0 0 0
8 12 4 16 0 0 0
12 8 16 4 20 0 0
12 16 8 20 4 24 0


7×7

,

Using the above procedure, the operational ma-
trix of nth derivative can be derived as:

dnφ(x)

dxn
= Dnφ(x), (4.16)

The integration of two HTKCPBPF vectors is ob-
tained as

E =

∫ 1

0
φ(t)φ(t)Tdt, (4.17)

where E is a NM ×NM symmetric matrix. For
example if N = 1 and M = 6 as follows:

E =
1

N2
·



2 −2 2
3 −2

3
2
5 −2

5
−2 14

3 −10
3

26
15 −22

15
38
35

2
3 −10

3
86
15 −62

15
254
105 −214

105
−2

3
26
15 −62

15
674
105 −494

105
922
315

2
5 −22

15
254
105 −494

105
2182
315 −1622

315
−2

5
38
35 −214

105
922
315 −1622

315
25402
3465

2
7 −34

35
502
315 −782

315
11542
3465 −19102

3465


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Figure 1: The exact and Presented method solu-
tion of Example 7.2

5 Convergence analysis

The following theorem gives the convergence and
accuracy estimation of HTKCPBPF.
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Figure 2: The exact and Presented method solu-
tion of Example 7.3
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Figure 3: The exact and Presented method solu-
tion of Example 7.4

Theorem 5.1 Let f(x) be a second-order
derivative square-integrable function defined on
[0, 1) with bounded second-order derivative, say
|f ′′(x)|≤ A for some constant A, then

(i) f(x) can be expanded as an infinite sum
of the HTKCPBPF and the series converges to
f(x) uniformly, that is

f(x) =

∞∑
n=1

∞∑
m=0

cnmφnm(t),

where cnm = ⟨f(x), φnm(x)⟩L2
ω [0,1)

.
(ii)

βf,n,M ≤ πA2

8

∞∑
n=N+1

∞∑
m=M

1

n5(m− 1)4
,

where

βf,n,M =

[

∫ 1

0
|f(x)−

N∑
n=1

M−1∑
m=0

cnmφnm(x)|2ωn(x)dx]
1
2 .
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Table 1: shows some valuse of the solutions and absolute errors

x Hybrid function Exact solution Absolute error

0.0 1.11022× 10−16 0.0000000000 1.11022× 10−16

0.1 0.1195898162 0.1105170918 0.00907270
0.2 0.2556578961 0.2442805516 0.01137730
0.3 0.4147980500 0.4049576422 0.00984041
0.4 0.6036040883 0.5967298790 0.00687421
0.5 0.8286698212 0.8243606353 0.00430919
0.6 1.0965890592 1.0932712802 0.00331778
0.7 1.4139556126 1.4096268952 0.00432872
0.8 1.7873632916 1.7804327427 0.00693055
0.9 2.2234059067 2.2136428000 0.00976311
1 2.7286772681 2.7182818284 0.01039540

Table 2: shows some valuse of the solutions and absolute errors

x Hybrid function Exact solution Absolute error

0.0 1 1 0
0.2 1.7471755121 1.8221188003 0.074943679
0.4 3.3022086903 3.3201169222 0.017908232
0.6 5.9881829326 6.0496474644 0.061464531
0.8 10.917173846 11.023176380 0.106002533
1 19.990251205 20.085536923 0.095285717

Table 3: shows some valuse of the solutions and absolute errors

x Hybrid function Exact solution Absolute error

0.0 1.14492× 10−16 0.0000000000 1.4492× 10−16

0.2 0.1820778778 0.1823215567 0.000243679
0.4 0.3363045784 0.3364722366 0.000167658
0.6 0.4696357572 0.4700036292 0.000367872
0.8 0.5872265339 0.5877866642 0.000560131
1 0.6924314924 0.6931471805 0.000715688

Proof. To prove (i), we have:

(i)cnm = ⟨f(x), φnm(x)⟩L2
ω [0,1)

=
N2

π

∫ 1

0
ωn(x)φnm(x)f(x)dx

=
N2

π

∫ n
N

n−1
N

f(x)

√
2

N
Vm(2Nx− 2n+ 1)

ω(2Nx− 2n+ 1)dx.

Let t = (2Nx− 2n+1) then dt = 2Ndx. Clearly,
we have

cnm =
N

2π

√
2

N

∫ 1

−1
f(

t+ 2n− 1

2N
)Vm(t)

√
1 + t

1− t
dt.

By letting t = cosθ and the definition of the
HTKCPBPF, it follows that

cnm =
N

2π

√
2

N

∫ π

0
f(

cosθ + 2n− 1

2N
)

(cos mθ + cos(m+ 1)θ)dθ

=
N

2π

√
2

N
[

∫ π

0
f(

cosθ + 2n− 1

2N
)cos mθ

+

∫ π

0
f(

cosθ + 2n− 1

2N
)cos(m+ 1)θdθ].

Using the integration by parts, we have

cnm =

√
2

N

1

4π
[
1

m

∫ π

0
f ′(

cosθ + 2n− 1

2N
)

(sin mθsinθ)dθ+
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1

m+ 1

∫ π

0
f ′(

cosθ + 2n− 1

2N
)

(sin(m+ 1)θsinθ)dθ] =

√
2

N

1

4π
[I1 + I2],

(5.18)

where

I1 =

1

m

∫ π

0
f ′(

cosθ + 2n− 1

2N
)

(sin mθsinθ)dθ,

and

I2 =

1

m+ 1

∫ π

0
f ′(

cosθ + 2n− 1

2N
)

(sin(m+ 1)θsinθ)dθ.

Now, we estimate I1 and I2, respectively. A sim-
ple computation shows that

I1 =
1

2m

∫ π

0
f ′(

cosθ + 2n− 1

2N
)

[cos(m− 1)θ − cos(m+ 1)θ]dθ

=
1

2m

∫ π

0
f ′(

cosθ + 2n− 1

2N
)

[cos(m− 1)θdθ − 1

2m

∫ π

0
f ′(

cosθ + 2n− 1

2N
)

cos(m+ 1)θ]dθ = I11 − I12,

where

I11 = [
1

2m

∫ π

0
f ′(

cosθ + 2n− 1

2N
)

cos(m− 1)θdθ,

and

I12 =
1

2m

∫ π

0
f ′(

cosθ + 2n− 1

2N
)

cos(m+ 1)θdθ.

By using the integration by parts, and for m > 1,
we get

I11 =
1

4mN(m− 1)

∫ π

0
f ′′(

cosθ + 2n− 1

2N
)

[sin(m− 1)θsinθ]dθ

=
1

8mN(m− 1)

∫ π

0
f ′′(

cosθ + 2n− 1

2N
)

[cos(m− 2)θdθ − cos mθ]dθ,

I12 =
1

4mN(m+ 1)

∫ π

0
f ′′(

cosθ + 2n− 1

2N
)

[sin(m+ 1)θsinθ]dθ

=
1

8mN(m+ 1)

∫ π

0
f ′′(

cosθ + 2n− 1

2N
)

[cos mθ − cos(m+ 2)θ]dθ.

Thus, for m > 1,we conclude that

I1 =
1

8mN

∫ π

0
f ′′(

cosθ + 2n− 1

2N
)

[
cos(m− 2)θ − cos mθ

(m− 1)
−

cos mθ − cos(m+ 2)θ

(m+ 1)
]dθ,

and hence

|I1|2= | 1

8mN

∫ π

0
f ′′(

cosθ + 2n− 1

2N
)

[
cos(m− 2)θ − cos mθ

(m− 1)
−

cos mθ − cos(m+ 2)θ

(m+ 1)
]dθ|2

=
1

64m2N2
|
∫ π

0
f ′′(

cosθ + 2n− 1

2N
)

[
cos(m− 2)θ − cos mθ

(m− 1)
−

cos mθ − cos(m+ 2)θ

(m+ 1)
]dθ|2.
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By the fact that |f ′′(x)|≤ A and Schwartz in-
equality, it follows that

|I1|2≤
πA2

64m2N2(m− 1)2(m+ 1)2

∫ π

0
|(m+ 1)cos(m− 2)θ + 2mcos mθ+

(m− 1)cos(m+ 2)θ|2dθ

=
πA2

64m2N2(m− 1)2(m+ 1)2
×

[

∫ π

0
(m+ 1)2cos2(m− 2)θdθ+

∫ π

0
4m2cos2mθdθ+

∫ π

0
(m− 1)2cos2(m+ 2)θdθ]

=
πA2

64m2N2(m− 1)2(m+ 1)2

[
π

2
(m+ 1)2 +

π

2
4m2 +

π

2
(m− 1)2]

=
π2A2(3m2 + 1)

64m2N2(m− 1)2(m+ 1)2

≤ π2A2

4N2(m− 1)4
.

For m > 2, we obtain

|I1|≤
πA

2N(m− 1)2
(5.19)

In a similar way, we will have

|I2|≤
πA

2N(m− 1)2
(5.20)

Therefore, for m > 2, we conclude that

|cnm|=| 1

4π

√
2

N
[I1 + I2] |

≤ 1

4π

√
2

N

πA

N(m− 1)2
≤ A

2
√
2

1

n
3
2 (m− 1)2

(5.21)

Note that f ′(x) is bounded on [0, 1) due to the
fact that |f ′′(x)|≤ A, indeed, by the Differential
Mean Value Theorem and for any t ∈ (0, 1), there
exists some γx ∈ (0, x) such that

f ′(x)− f ′(0) = f ′′(γx)x,

So

|f ′(x)|≤ |f ′(0)|+A,

for x ∈ (0, 1). Thus f ′(x) is bounded on [0, 1),say
|f ′(x)|≤ Ã for some constant Ã. Hence, by 5.18,
we have

|cn,1|≤
√

2

N

1

4π
[

∫ π

0
|f ′(

cosθ + 2n− 1

2N
)|dθ

+
1

2

∫ π

0
|f ′(

cosθ + 2n− 1

2N
)|dθ]

=

√
2

N

1

4π

3

2

∫ π

0
|f ′(

cosθ + 2n− 1

2N
)|dθ

≤
√

2

N

1

4π

3πÃ

2
=

3Ã

4
√
2n

1
2

(5.22)

and

|cn,2|≤
√

2

N

1

4π
[
1

2

∫ π

0
|f ′(

cosθ + 2n− 1

2N
)|dθ

+
1

3

∫ π

0
|f ′(

cosθ + 2n− 1

2N
)|dθ]

=

√
2

N

1

4π

5

6

∫ π

0
|f ′(

cosθ + 2n− 1

2N
)|dθ

≤
√

2

N

1

4π

5πÃ

6
=

5Ã

12
√
2n

1
2

(5.23)

Relations 5.21-5.23 show that the
series

∑∞
n=1

∑∞
m=0 cnm is absolutely convergent.

For m = 0 and according to the definition of
φn,0(x), the series

∑∞
n=1 cn,0φn,0(x) is convergent.

Therefore, the series
∑∞

n=1

∑∞
m=0 cnmφnm(x) con-

verges to f(x) uniformly.
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(ii)

β2
f,n,M =∫ 1

0
|f(x)−

N∑
n=1

M−1∑
m=0

cnmφnm(x)|2ωn(x)dx

=

∫ 1

0
|

∞∑
n=N+1

∞∑
m=M

ynmφnm(x)|2ωn(x)dx

=

∞∑
n=N+1

∞∑
m=M

|ynm|2·

(

√
2

N
)2
∫ n

N

n−1
N

Vm(2Nx− 2n+ 1)2·√
1 + (2Nx− 2n+ 1)

1− (2Nx− 2n+ 1)
dx.

Let t = 2Nx− 2n+ 1 then dt = 2ndx.

Therefore

β2
f,n,M =
∞∑

n=N+1

∞∑
m=M

|cnm|2 1

N2

∫ 1

−1
V 2
m(t)

√
1 + t

1− t
dt,

we have ∫ 1

−1
V 2
m(t)

√
1 + t

1− t
dt = π,

where the last equality follows due to the orthog-
onality of φnm(x). Together with 5.21 we get

β2
f,n,M ≤ πA2

8

∞∑
n=N+1

∞∑
m=M

1

n5(m− 1)4
.

6 Solution of Fredholm integro-
differential equation

Consider the linear Fredholm integro-differential
equation given by 1.1. We approximate
u(x),K(x, t) ,f(x) by the way mentioned in sec-
tion 2 as:

u(x) = CTφ(x), K(x, t) = φT (x)Kφ(t),

f(x) = F Tφ(x), (6.24)

by using 4.14 we have

u′(x) = CTDφ(x). (6.25)

With substituting in 1.1 we have

CTDφ(x) = F Tφ(x) + CTφ(x)+∫ 1

0
φT (x)Kφ(t)φT (t)Cdt. (6.26)

Applying 4.16, the residual R(x) for 1.1 can be
written as:

R(x) = CTDφ(x)− F Tφ(x)− CTφ(x)−
φT (x)KEC. (6.27)

As in a typical Tau method, we generate NM −1
linear equations by applying∫ 1

0
ω(x)R(x)φi(x)dx = 0, ı = 0, 1, ..., NM − 1.

(6.28)
Also, by substituting initial conditions 1.1 we
have

u(0) = CTφ(0) = a, (6.29)

Eqs. 6.28-6.29 generate NM set of linear equa-
tions. These linear equations can be solved for
unknown coefficients of the vector C.

7 Numerical Examples

In this Section, linear Fredholm integro-
differential equation have been solved using the
proposed method.

Example 7.1 Consider the integro-differential
equation u′(x) = 1− 1

3x+
∫ 1
0 xtu(t)dt,

u(0) = 0.

(7.30)

with the exact solution u(x) = x. We apply the
method that was explained in Section 6 for N =
1,M = 3. After performing some manipulations,
the components of the vector C are given by

u(x) = CTφ(x).

c0 =
3

4
√
2
, c1 =

1

4
√
2
, c2 = 0.

Thus

u(x) = c0φ0(x) + c1φ1(x) + c2φ2(x) (7.31)

=
(

3
4
√
2

1
4
√
2

0
)
·

√
2√

2(4x− 3)√
2(16x2 − 20x+ 5)

 = x, (7.32)

which is the exact solution.
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Example 7.2 Consider the integro-differential
equation u′(x) = xex + ex − x+

∫ 1
0 xu(t)dt,

u(0) = 0.

(7.33)

with the exact solution u(x) = xex. We apply the
method that was explained in Section 6 for N =
1,M = 4. After performing some manipulations,
the components of the vector C are given by

c0 = 1.24557, c1 = 0.564918,

c2 = 0.106836, c3 = 0.012142,

Thus

u(x) = 1.11022× 10−16+

1.13549x+ 0.494223x2 + 1.09897x3. (7.34)

Table 1 shows some values of the solutions and
absolute errors at some x, and plot of the exact
and approximate solutions are shown in Figure 1.

Example 7.3 Consider the integro-differential
equation u′(x) = 3e3x − 1

3(2e
3 + 1)x+

∫ 1
0 3xtu(t)dt,

u(0) = 1.
(7.35)

with the exact solution u(x) = e3x. We apply the
method that was explained in Section 6 for N =
1,M = 5. After performing some manipulations,
the components of the vector C are given by

c0 = 8.27245, c1 = 4.1692,

c2 = 1.32412, c3 = 0.312728,

c4 = 0.0567528.

Thus

u(x) =1 + 1.26846x+ 15.1003x2−
17.9252x3 + 20.5467x4. (7.36)

Table 2 shows some values of the solutions and
absolute errors at some x, and plot of the exact
and approximate solutions are shown in Figure 2.

Example 7.4 Consider the integro-differential
equation


u′(x) = u(x)− 1

2x+ 1
1+x − ln(1 + x)+

1
(ln2)2

∫ 1
0

x
1+ty(t)dt,

u(0) = 0,

(7.37)

with the exact solution u(x) = ln(1 + x). We
apply the method that was explained in Section
6 for N = 1,M = 5. After performing some
manipulations, the components of the vector C
are given by

c0 = 0.38715, c1 = 0.110789,

c2 = −0.00924358, c3 = 0.00105708,

c4 = −0.000129514.

Thus

u(x) = 1.14492× 10−16 + 0.993861x−
0.455717x2 + 0.201176x3 − 0.046889x4.

(7.38)

Table 3 shows some values of the solutions and
absolute errors at some x, and plot of the exact
and approximate solutions are shown in Figure 3.

8 Conclusion

In this paper, we constructed operational matrix
of derivative of hybrid the third kind Chebyshev
polynomials and Block-pulse functions. Also,
we applied these matrices to convert Fredholm
integro-differential equations to system of linear
algebraic equations. As to validity and efficiency
of the proposed method, we presented some nu-
merical examples.
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