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Abstract

This paper presents a class of theoretical and iterative method for linear partial differential equations.
An algorithm and analytical solution with a initial condition is obtained using the reduced differential
transform method. In this technique, the solution is calculated in the form of a series with easily com-
putable components. There test modeling problems from mathematical mechanic, physic, electronic
and so on, and are discussed to illustrate the effectiveness and the performance of the our method.
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1 Introduction

L
inear partial differential equations (LPDEs)
arise in the formulation of fundamental laws

of nature and in the mathematical analysis of a
wide variety of problems in applied mathematics,
mathematical physic, mechanic and engineering
science. For instance,

1- The heat or diffusion equation: this equation
describes the diffusion of thermal energy in a
medium. It can be used to model the flow of
a quantity, such as heat, or a concentration
of particles. It is also used as a model equa-
tion for growth and diffusion, in general, and
growth of a solid tumor, in particular.

2- The wave equation: this equation describes
the propagation of a wave (or disturbance),
and it arises in a wide variety of physical
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problems. Some of these problems include
a vibrating string, longitudinal vibrations of
an elastic rod or beam, transmission of elec-
tric signals along a cable.

3- The telegraph equation: this equation arises
in the study of propagation of electrical sig-
nals in a cable of a transmission line.

4- And so on [15].

Many problems of physical are described
by LPDEs with appropriate initial and/or

boundary conditions. In this paper, the reduced
differential transformation method (RDTM) is
presented for LPDEs with initial conditions in a
general form. Also, a recursive formula of the
RDTM is introduced that is applied for a wide
variety of LPDEs specially of the types parabolic
and hyperbolic equations.
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2 Differential transform
method (DTM)

The DTM was first proposed by Zhou [16], who
solved linear and nonlinear initial value problems
in electric circuit analysis, and was used heav-
ily in the literature successfully applied to eigen-
value problems [7], one-dimensional planar Bratu
problem [1], higher-order initial value problems
[2, 8], systems of ordinary and partial differential
equations [3, 5], high index differential-algebraic
equations [14], integro-differential equations [4].

2.1 Two dimensional the differential
transform method

The basic definitions and fundamental operations
of the two-dimensional differential transform are
introduced in [9] as the following

W (k, h) =
1

k!h!

[
∂k+h

∂xk∂th
w(x, t)

]
(0,0)

, (2.1)

where w(x, t) is the original function andW (k, h)
is the transformed function. The differential in-
verse transform of W (k, h) is

w(x, t) =
∞∑
k=0

∞∑
h=0

W (k, h)xkth, (2.2)

and from Eqs. (2.1) and (2.2) can be concluded

w(x, t) =∑∞
k=0

∑∞
h=0

1
k!h!

[
∂k+h

∂xk∂th
w(x, t)

]
(0,0)

xkth.

(2.3)
In Table 1 has listed the fundamental mathe-
matical operations of two-dimensional differential
transform. The proofs of Table 1 are available in
[6].

2.2 The reduced differential transform
method

The basic definitions and operations of the
RDTM [11, 12, 13] are defined as follows:

Definition 2.1 If function u(x, t) is analytic
and differentiated continuously with respect to
time t and space x in the domain of interest, then
let

Uk(x) =
1

k!

[
∂k

∂tk
u(x, t)

]
t=0

, (2.4)

where the t-dimensional spectrum function Uk(x)
is the transformed function. In this paper, the
lowercase u(x, t) represent the original function
while the uppercase Uk(x) stand for the trans-
formed function.

Definition 2.2 The reduced differential trans-
form of a sequence {Uk(x)}∞k=0 is introduced as
follows:

u(x, t) =

∞∑
k=0

Uk(x)t
k. (2.5)

To combining equation (2.4) and (2.5), we have

u(x, t) =
∞∑
k=0

1

k!

[
∂k

∂tk
u(x, t)

]
t=0

tk. (2.6)

Some basic properties of the reduced differential
transformation obtained from definitions (2.4)
and (2.6) are summarized in Table 2. The proofs
of Table 2 and the basic definitions of the RDTM
are available in [10].

3 The RDTM for LPDE

Our main result is an application of the RDTM
for LPDE. Consider the following LPDE∑N−1

n=0 an(x, t)Gnu(x, t) +GNu(x, t) =∑M
m=1 bm(x, t)Hmu(x, t) + f(x, t),

(3.7)

with the initial conditions

Gnu(x, 0) = gn(x), 0 ≤ n ≤ N − 1, (3.8)

where
Gn = ∂n

∂tn , 0 ≤ n ≤ N,

Hm = ∂m

∂xm , 1 ≤ m ≤M.

The approximate solution using the t partial so-
lution is given by

u(x, t) = ψ +G−1
N (f(x, t))+

G−1
N

(∑M
m=1 bm(x, t)Hmu(x, t)

)
−G−1

N

(∑N−1
n=0 an(x, t)Gnu(x, t)

)
,

(3.9)
where

ψ = u(x, 0) + tut(x, 0) + · · ·

+tN−1 ∂
N−1u(x,0)
∂tN−1 = g0(x) + tg1(x) + · · ·

+ 1
(N−1)! t

N−1gN−1(x) =
∑N−1

l=0
1
l! t

lgl(x),
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Table 1: Two dimensional differential transformation

Orig. Fun. Transformed Fun.

u(x, t)± v(x, t) U(k, h)± V (k, h)

cu(x, t) cU(k, h)

∂u(x,t)
∂x (k + 1)U(k + 1, h)

∂u(x,t)
∂t (h+ 1)U(k, h+ 1)

∂r+su(x,t)
∂xr∂ts

(k+r)!
k!

(h+s)!
h!

U(k + r, h+ s)

u(x, t)v(x, t)

∑k
r=0

∑h
s=0

U(r, h− s)V (k − r, s)

Table 2: Basic operations of RDTM

Orig. Fun. Transformed Fun.

u(x, t) Uk(x)

u(x, t)± v(x, t) Uk(x)± Vk(x)

cu(x, t) cUk(x) c is a cons.

xmtn xmδ(k − n)

xmtnu(x, t) xmUk−n(x)

∂
∂xu(x, t)

∂
∂xUk(x)

∂r

∂tr u(x, t)
(k+r)!

k! Uk+r(x)

u(x, t)v(x, t)
∑k

r=0 Ur(x)Vk−r(x)

and

G−1
N =

∫ t

0

∫ t

0
· · ·

∫ t

0
(.) dtdt · · · dt︸ ︷︷ ︸

Ntimes

. (3.10)

According to the RDTM, we consider the
transformations of the functions u(x, t), f(x, t),
an(x, t) and bm(x, t) as the following

u(x, t) =
∑∞

k=0 Uk(x)t
k,

f(x, t) =
∑∞

k=0 Fk(x)t
k,

an(x, t) =
∑∞

k=0An,k(x)t
k,

bm(x, t) =
∑∞

k=0Bm,k(x)t
k,

where

Uk(x) =
1
k!

[
∂k

∂tk
u(x, t)

]
t=0

,

Fk(x) =
1
k!

[
∂k

∂tk
f(x, t)

]
t=0

,

An,k(x) =
1
k!

[
∂k

∂tk
an(x, t)

]
t=0

,

Bm,k(x) =
1
k!

[
∂k

∂tk
bm(x, t)

]
t=0

,

(3.11)

and 0 ≤ n ≤ N − 1, 1 ≤ m ≤ M . To substitute
the relations (3.11) into Eq. (3.9), we have

∑∞
k=0 Uk(x)t

k =
∑N−1

l=0
1
l! t

lgl(x)+

G−1
N

(∑∞
k=0 Fk(x)t

k
)

+G−1
N

(∑M
m=1

∑∞
k=0Ωm,k(x)t

k
)

−G−1
N

(∑N−1
n=0

∑∞
k=0Φn,k(x)t

k
)
,

(3.12)

where by Table 2, Ωm,k(x) and Φn,k(x) are as
follows

Ωm,k(x) =
∑k

r=0Bm,r(x)HmUk−r(x),

Φn,k(x) =
∑k

r=0
(k−r+n)!
(k−r)! An,r(x)Uk−r+n(x).
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We now perform the integrations (3.10) on the
Eq. (3.12) to write∑∞

k=0 Uk(x)t
k =∑N−1

l=0
tl

l! gl(x) +
∑∞

k=0
k! tk+N

(k+N)!Fk(x)

+
∑∞

k=0

∑k
r=0

∑M
m=1

k! tk+N

(k+N)!

Bm,r(x)HmUk−r(x)

−
∑∞

k=0

∑k
r=0

∑N−1
n=0

(k−r+n)! k! tk+N

(k−r)!(k+N)!

An,r(x)Uk−r+n(x).
(3.13)

Let k → k −N on the right side, then∑∞
k=0 Uk(x)t

k =∑N−1
l=0

tl

l! gl(x) +
∑∞

k=N
(k−N)! tk

k! Fk−N (x)

+
∑∞

k=N

∑k−N
r=0

∑M
m=1

(k−N)! tk

k!

Bm,r(x)HmUk−N−r(x)

−
∑∞

k=N

∑k−N
r=0

∑N−1
n=0

(k−N−r+n)! (k−N)! tk

(k−r)!k!

An,r(x)Uk−N−r+n(x).
(3.14)

At last, equation coefficients of the same powers
of t, we obtain the recursive formula for coeffi-
cients as the following

U0(x) = g0(x), U1(x) = g1(x), . . . ,

UN−1(x) =
1

(N−1)!gN−1(x),
(3.15)

and

Uk+N (x) = k!
(k+N)!Fk(x)+∑k

r=0

∑M
m=1

k!
(k+N)!Bm,r(x)HmUk−r(x)

−
∑k

r=0

∑N−1
n=0

(k−r+n)! k!
(k−r)!(k+N)!

An,r(x)Uk−r+n(x),

k = 0, 1, 2, . . . .

(3.16)

Substituting (3.15) into (3.16) and by a straight
forward iterative calculations, we obtain the fol-
lowing Uk(x) values. So, the inverse transforma-
tion of the set of values {Uk(x)}pk=0 give approx-
imate solution as

up(x, t) ≈
p∑

k=0

Uk(x)t
k,

where p is order of approximation solution. In
result,the exact solution of problem is given by

u(x, t) = lim
p→∞

up(x, t).

Let us consider the error functional for p-order
approximate solution as the following

Error(x, t) =

|
∑N−1

n=0 an(x, t)Gnup(x, t) +GNup(x, t)

−
∑M

m=1 bm(x, t)Hmup(x, t)− f(x, t)|.

(3.17)

4 Applications

The recursive formula (3.16) with (3.15) applies
for a rather wide class of the LPDEs to the ini-
tial conditions. As application, we consider the
examples of parabolic and hyperbolic equations.

4.1 The parabolic equations

Example 4.1 A parabolic equation that de-
scribes heat transfer in a quiescent medium (solid
body) in the case where thermal diffusivity is an
exponential function of the coordinate as the fol-
lowing

∂u

∂t
= a(eβx

∂2u

∂x2
+ βeβx

∂u

∂x
), (4.18)

where a and β are constant. By attention to (3.7),
we have

N = 1,M = 2, a0(x, t) = 0, f(x, t) = 0,

b1(x, t) = aβeβx, b2(x, t) = aeβx,

and assume that the initial condition is u(x, 0) =
e−x. Therefore, from (3.16) we obtain

U0(x) = e−x,

Uk+1(x) =
∑k

r=0
1

k+1(B1,r(x)
∂
∂xUk−r(x)

+B2,r(x)
∂2

∂x2Uk−r(x))

−
∑k

r=0
1

k+1A0,r(x)Uk−r(x),

k = 0, 1, 2, . . . ,
(4.19)

where B1,r(x), B2,r(x) and A0,r(x) are deter-
mined by (3.11). We consider

a = 0.05, β = −1, p = 15,

and obtain the approximate solution by (4.19).
The approximate solution and error functional
have been shown in figures 1 and 2, respectively.
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Figure 1: Plot of u(x, t) in Example 4.1.
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Figure 2: Plot of Error(x, t) in Example 4.1.

Example 4.2 Another parabolic equation is con-
taining trigonometric function and arbitrary pa-
rameters as the following

∂u

∂t
= a

∂2u

∂x2
+ b

∂u

∂x
+ (c cosh ωt+ s)u, (4.20)

where a, b, c, h, s and ω are constant. From (3.7),
we have

N = 1, M = 2, a0(x, t) = c cosh ωt+ s,

b1(x, t) = b, b2(x, t) = a, f(x, t) = 0,

and suppose that the initial condition is u(x, 0) =
sin t. Hence, by (3.16) we obtain

U0(x) = sin t,

Uk+1(x) =
∑k

r=0
1

k+1(B1,r(x)
∂
∂xUk−r(x)

+B2,r(x)
∂2

∂x2Uk−r(x))

−
∑k

r=0
1

k+1A0,r(x)Uk−r(x),

k = 0, 1, 2, . . . ,
(4.21)

where B1,r(x), B2,r(x) and A0,r(x) are deter-
mined by (3.11). Let us consider

a = 0.5, b = 0.5, c = 0.1, s = −0.5,

h = 2, ω = π, p = 10.

By attention to (4.21), the approximate solution
and error functional have been shown in figures
(3) and (4), respectively.
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Figure 3: Plot of u(x, t) in Example 4.2.
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Figure 4: Plot of Error(x, t) in Example 4.2.

4.2 The hyperbolic equations

Example 4.3 Let consider the hyperbolic equa-
tion

∂2u

∂t2
= α2∂

2u

∂x2
− β

∂u

∂t
, (4.22)

where α and β are constant. This equation gov-
erns free transverse vibration of a string, and
also longitudinal vibration of a rod in a resisting
medium with a velocity-proportional resistance
coefficient. By attention to (3.7), we have

N = 2,M = 2, a0(x, t) = 0, a1(x, t) = β,

b1(x, t) = 0, b2(x, t) = α2, f(x, t) = 0,

and also assume that the initial conditions are

u(x, 0) = sinx2,

ut(x, 0) = ex
2
.
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So, from (3.16) we obtain

U0(x) = sinx2,

U1(x) = ex
2
,

Uk+2(x) =∑k
r=0

1
(k+1)(k+2)B2,r(x)

∂2

∂x2Uk−r(x)

−
∑k

r=0
k−r+1

(k+1)(k+2)A1,r(x)
∂
∂tUk−r+1(x),

k = 0, 1, 2, . . . ,
(4.23)

where B2,r(x) and A1,r(x) are determined by
(3.11). We consider

α = 1, β = 1, p = 10,

and obtain the approximate solution by (4.23).
The approximate solution and error functional
have been shown in figures (5) and (6), respec-
tively.
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Figure 5: Plot of u(x, t) in Example 4.3.
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Figure 6: Plot of Error(x, t) in Example 4.3.

Example 4.4 We consider the second hyperbolic
equation as the following

∂2u

∂t2
+ c

∂u

∂t
= a2

∂2u

∂x2
− bu+ f(x, t), (4.24)

where c, a and b are constant. If c > 0, b < 0 and
f(x, t) = 0, then this equation is called the tele-
graph equation where u can be voltage or current
through the wire. From (3.7), we have

N = 2, M = 2, a0(x, t) = b, a1(x, t) = c,

b1(x, t) = 0, b2(x, t) = a2, f(x, t) = ext
2
,

and consider the initial conditions as follows

u(x, 0) = cosx2,

ut(x, 0) = x sinx2.

Therefore, from (3.16) we obtain

U0(x) = cosx2,

U1(x) = x sinx2,

Uk+2(x) =
1

(k+1)(k+2)Fk(x)

+
∑k

r=0
1

(k+1)(k+2)B2,r(x)
∂2

∂x2Uk−r(x)

−
∑k

r=0
1

(k+1)(k+2)A0,r(x)Uk−r(x)

−
∑k

r=0
k−r+1

(k+1)(k+2)A1,r(x)
∂
∂tUk−r+1(x),

k = 0, 1, 2, . . . ,
(4.25)

where Fk(x), B2,r(x), A0,r(x) and A1,r(x) are de-
termined by (3.11). We consider

a = 0.5, b = −1, c = 0.8, p = 10,

and obtain the approximate solution by (4.25).
The approximate solution and error functional
have been shown in figures (7) and (8), respec-
tively.
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Figure 7: Plot of u(x, t) in Example 4.4.

5 Conclusion

We introduced the RDTM for a rather wide class
of the LPDEs with initial conditions in a general



H. Rouhparvar /IJIM Vol. 8, No. 4 (2016) 339-346 345

-1.0

-0.5

0.0

0.5

1.0

x

0.0

0.2

0.4

t

0.000

0.002

0.004

Figure 8: Plot of Error(x, t) in Example 4.4.

form and obtained a recursive formula, i.e. (3.16)
with (3.15), that can be used in another science
and engineering by a software code of the Mathe-
matica or Matlab software. The recursive formula
is a rapidly method because it uses of differenti-
ation that this operator consume the little time
of computer at computations. Also, by attention
to examples, is saw where the method has much
carefulness.
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