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Abstract

In this paper, we present a method for ranking decision making units (DMUs) with interval
data in data envelopment analysis that is different from the other methods. In this method
we use a new pair of interval DEA models that are constructed on the basis of interval
arithmetic, which differ from the existing DEA models that work with interval data in fact
it is a linear CCR model without a need for extra variable alternations and uses a fixed
and unified production frontier (i.e. the same constraint set) to measure the efficiencies
of decision making units (DMUs) with interval input and output data. This methodology
exerts an appropriate minimum weight restriction on all input and output weights which
is called maxmin weight. New linear programming (LP) model constructs proportion
with each efficient unit for determining maximin weight. Choosing a maxmin weight, all
efficient units put in order as fully or partially. One numerical example is inspected using
the proposed ranking methodology to illustrate its ability in discriminating between DEA
efficient unit with interval data.

Keywords : Data envelopment analysis ; DEA ranking ; Interval data ; Maximin weights ; Minimum
weight restriction.

1 Introduction

Data envelopment analysis (DEA) was originally developed to measure the relative effi-
ciency of peer decision making units (DMUs) in multiple input-multiple output settings
[1, 2]. The standard DEA models assume that all data are known exactly without any
variation. However, this assumption may not be true. Due to the existence of uncertainty,
DEA sometimes faces the situation of imprecise data, especially when a set of decision-
making units (DMUSs) contains missing data, judgment data, forecasting data or ordinal
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preference information, Generally speaking, uncertain information or imprecise data can
be expressed in interval or fuzzy numbers.

Cooper et al. [3, 4, 5] were the first, to the best of our knowledge, to study how to deal
with imprecise data such as bounded data, ordinal data and ratio bounded data in DEA.
The resulting DEA model was called imprecise DEA (IDEA), which transformed a non-
linear programming problem into a linear programming problem (LP) equivalent through
a series of scale transformations and variable alternations. The final efficiency score for
each DMU was derived as a deterministic numerical value less than or equal to unity.

In the begining Wang et al. [7], proposed a procedure for ranking efficient units with
precise data by imposing a minimum weight restriction on all input and output weights
in DEA. In this paper, we present a new method for ranking decision making units with
interval data, also use a new pair of interval DEA models that recommended by Wang et
al. [8], to measure the efficiencies of decision-making units (DMUs) with interval data.The
methodology puts in order DMUs by imposing an appropriate minimum weight restriction
on all inputs and outputs. For determining minimum weight, restrictions of new linear
programming models construct proportionate with each efficient unit. Through exerting
a minimum weight restriction on all inputs and outputs, all efficient units can be fully or
partially distinguished from the other one.

The paper is organized as follows. In Section 2, we present a new pair of interval DEA
models [8]. In Section 3, we develop a maximin weight model for each efficient unit with
interval data to determine a maximin weight for each of them. Section 4 presents a new
efficiency model with a minimum weight restriction for all efficient units with interval data
to reevaluate their efficiencies. Numerical example is provided in Section 5 to illustrate
the ability of the proposed ranking methodology in distinguishing between DEA efficient
units. The paper concludes in Section 6.

2 Interval models of DEA based on interval arithmetic

Suppose that there are n DMUs to be evaluated. Each DMU;(j = 1,...,n) produces s
different outputs y,;(r = 1,...,s) utilizing m different inputs z;;(¢ = 1,...,m). Without
loss of generality, we assume that all the input and output data y,; and z;;(i = 1,...,m;r =
1,...,8;7 = 1,...,n) cannot be exactly obtained due to the existence of uncertainty. They

are known and lie within the upper and lower bounds represented by the intervals [mf}, xg
and [yTLj, yT,Uj], where lower and upper bounds are known exactly, positive and finite.
New interval models of DEA are made as follows [8]:
Let
0. = 2op=1 UrYrj
T viwij
be the efficiency of DMU;. According to the operation rules on interval data, we have
0. — P Ur[yfj’yyﬂ _ [Z::1 “Tyfj  Dret “ryrUj N DI “rerj P “ryrUj
I S el el [Smawel . Sl | Sl S ek
17=1..,n
It is obvious that §; should also be an interval number, which we denote by [QJ-L, GJU] (j

1,...n).
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U Zr:1 UrY,.; .
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In order to assess the upper and lower bounds of the efficiency of DMU,, we develop

the following pair of fractional programming models for DMU,:

s U
l _1Uu

max 0, = 72’;;1 rYro

=1 Uirio

s U
1 UrYr;

s.t. e <1 j=1..n
=1 "5

Uy >0 r=1,..5

v; >0 r=1,...m

QL — Dot uryky

max 0, T ol

s.t. E%ﬁﬁégl j=1,..,n
i=1 YTy

ur >0 r=1,..s

v; >0 1=1,...m

(2.1)

(2.2)

Using Charnes - Cooper transformation, the above pair of fractional programming

models can be made as the following equivalent LP models:

max 0 =300 wy,

st S vk =1
P urygj - vlaclL] <0 j=1,..,n
ur >0 r=1,...,s

vi >0 i=1,...,m

(2.3)
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L _ 5 L
max 00 - ZT:I UrYro

m U _
st. Yo viag, =1

Yooy uTygj ->n lelg <0 j=1,...,n (2.4)
ur >0 r=1,...,s
v; >0 1=1,...m

Where 07 stands for the best possible relative efficiency achieved by DMU, when all
the DMUs are in the state of the best production activity. Also 62 stands for the lower
bound of the best possible relative efficiency of DM U,. The possible best relative efficiency
interval [#L, 6Y] is constructed by 8L and 6Y.

0’70

Definition 2.1. DMU,, is DEA efficient if 0" = 1 and it is DEA inefficient if 0¥ < 1.

Totally the LP model (2.3) is solved n times for each DMU. As a result, at least one
DMU is evaluated as DEA efficient, but very often more than one DMU is assessed as DEA
efficient. Therefore we cannot distinguish the difference between their performance. In the
following sections, we will construct a maximin weight model for each DEA efficient unit
and a new efficiency model with a minimum weight restriction to reassess the efficiencies
of DEA efficient units.

3 Maximin weight model for DEA efficient units

Assume that DMU, is a DEA efficient unit identified by model (2.3). There are the
following equations and inequalities:

s U m L
Zr:l UrYro — Zi:l leio =0
s U m L .
Zr:l uTyrj - Zi:l lez] <0 J = ]-7 ey TV

up >0 r=1,..5s

(3.5)

v; >0 r=1,...m

There are an infinite number of input and output weights that can satisfy the above
conditions because ku, and kv; for any & > 0 will be solutions of (3.5) as much as
u, (r=1,..,s)and v; (i =1,...,m). To avoid this arbitrariness, we need an equation
such as Yot vial =100 31 vi(3oh aclL]) =1 to be added to (3.5) to form a bench-
mark for comparison of input and output weights of different DMUs. Since the equation
oy v;rk =1 changes from one DEA efficient unit to another, this causes that the input
and output weights of different DMUs somewhat be incomparable. Then the equation
i v lej) = 1 must be added.

Let €* be the maximin weight proportionate with DMU,, i.e.

n n

€ = mawxy, », § Min minr(ur(z y%)), mml(vl(z lej))
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The following LP model is constructed to determine the value of ¢* for each DEA

efficient unit:
max e

st Yot ui(X0io :UZ) =1

s U m L
Z’I":l uTyT'O - Zl:l /Ulwio - 0

) v . . _ (3.6)
Dorg el = 2 virp S0 j=1,..n
ur(E?:1 %{JJ) > € r=1,..,s
v al) > e i=1,..,m

The €* in the above LP model is a decision variable rather than a constant and is
not necessarily very small. It also is the maximin weight that can keep the DMU, as
efficient. However, the maximin weight determined by the above LP model is independent
of the units of measurement of lower and upper bounds of inputs and outputs intervals.
By solving LP model (3.6) for each DEA efficient unit, we can obtain a set of maximin
weights, € ,...,ef for all DEA efficient units, respectively, where 41, ..., i, are the labels of

217" i

k DEA efficient units.

4 New efficiency model for ranking efficient units

For making new efficiency model, we are emposing a minimum weight restriction w on all
inputs and outputs weights so that efficient units can be distinguished by adjusting its
magnitud and as shown below :

s U
Z’r:l U‘T’yro

YLy vix,
st 3o IZLJ) =1

max

E:: Ury,[,]-

ﬁso j=1..n (4.7)
ur (D=1 yl) > w r=1,..s

vl(z?:lxl[}) Zw i:l,“‘jm

This efficiency model is different from CCR model (2.1). An essential difference be-
tween them is the minimum weight restriction w, which is not required to CCR model
(2.1).

Now consider the following transformation:

1

2 =<m T
2oy i,
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With the mentioned transformations, the model (4.7) can be transformed into an
equivalent model, which as shown below:

s~ U
max » o, UrYr,

m ~ [ _
st. Yo v =1

Y B w) =2

(4.9)
Sy gl = S i <0 G = Ln
ar(Z?:1y,[njj) Zw-z r=1,...,s
ﬁl(Z?:pTl[}) >w-z t=1,..m

For any efficient unit the LP model (4.9) is solved for k times. By setting an appropriate
value for the minimum weight restriction w, all efficient units can be expected to be fully
or partially ranked in terms of their new efficiency scores.

We first arrange the maximin weights of all DEA efficient units. Suppose that the maximin

weights € ,...,€;, of kK DEA efficient units have already been ordered from the smallest to

€l
the largest, i.e. efl < 62‘2 <. < ez‘k.

If we put the minimum weight restriction of w equal to €, and apply the model
(4.9) for efficient units, the new efficiency score of DMU;, will be obtained equal to 1
and for the other DMUs , it will be less than one. The reason is that the equation
S ueyS — S vizk = 0 in model (3.6) and the constraints of model (4.7) are hold
at the same time, for w = €/ proportionate with DMU;, . As we decrease the value of
w in model (4.7) from w = ¢}, to w =€ _, the new efficiency score of DMU;, _, will be
equal to one. In other words, DMU;, _, add to new set of DEA efficient units. This reduce
process can be continued same as the value of w. Finally , by setting w = ¢, , the new
efficiency score for each & DEA efficient unit will be one.Therefore, the efficient units rank
their new efficiency score, which are obtained by model (4.9). In other words, in model
(4.7) by choosing the largest maximin weigh, i.e. € , for minimum weight restriction w,
all DEA efficient units can be ranked.

Remark 1. In some extreme cases, the largest maximin weight may occasionally be
achieved by two or more DEA efficient units. In such cases, these DEA efficient units
should be considered as good as each other.

In summary, the proposed ranking methodology for efficient units can be performed
by the following steps:
Step 1. Perform model (2.3) for each DMU to identify DEA efficient units.
Step 2. Solving maximin weight model (3.6) for each DEA efficient unit to find its
maximin weight.
Step 3. Set an appropriate value as a minimum weight restriction on input and output
weights and perform new efficiency model (4.9) to reevaluate the efficiencies of efficient
units .
Step 4. Rank efficient units by their new efficiency scores.
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5 Numerical example

Example 5.1. We now apply this new ranking approach to some commercial bank branches
in Iran. There are 10 branches in this district. Each branch uses 3 inputs to produce 5
outputs. Table 1 shows the kind of these inputs and outputs.

Table 1
Inputs Output
Payable interest The total sum of four main deposits
Personnel Other deposits

Non-Performing loans Loans granted

Received interest
Fee

Tables 2 , 3 and 4 records the interval inputs and interval outputs of the tem commer-
cial bank branches taken from Hosseinzadeh Lotfi et al. [6].

Table 2
Input-data for the 10 bank branches.
DMU; xfi 95[1]7 952Lj 952U7 xgj acg]
1 45007.37 | 9613.37 36.29 36.86 872483 87243
2 2926.81 5961.55 18.8 2016 9945 12120
3 8732.7 17752.5 25.74 25.74 47575 50013
4 945.93 1966.39 20.81 22.54 19292 19753
5 8487.07 | 17521.66 | 14.16 14.8 3428 3911
6 18759.35 | 27359.36 | 19.46 19.46 13929 15657
7 587.69 1205.47 27.29 27.48 27827 29005
8 4646.39 | 9559.61 24.52 25.07 9070 9983
9 1554.29 | 3427.89 20.47 21.59 412036 413902
10 17528.31 | 86297.54 | 14.84 15.05 8638 10229
Table 8
Output-data for the 10 bank branches.
DMU; | i vi; v3; Vs v3; vy
1 2696995 | 3126798 | 2636453 | 382545 | 1675519 | 1853365
2 340377 | 440855 | 95978 | 117659 | 377309 | 390203
3 1027546 | 1061260 | 37911 | 503089 | 468520 | 1822028
4 1145285 | 1213541 | 229646 | 268460 | 19292 542101
5 390902 | 395241 492/ 12136 | 129751 142873
6 988115 | 1087392 | 74133 | 111324 | 507502 | 574355
7 144906 | 165818 | 180530 | 180617 | 288513 | 323721
8 408163 | 416416 | 405396 | 486431 | 1044221 | 1071812
9 335070 | 410427 | 337971 | 449336 | 1584722 | 1802942
10 700842 768593 | 14378 | 15192 | 2290745 | 2573512



IJIM JOURNAL
Text Box


340

F. Rezai Balf et al. / IJIM Vol. 1, No. 4 (2009) 333-342

Table 4
Output-data for the 10 bank branches.
DMU; | i vi; v5; v5;

1 108634.76 | 125740.28 | 965.97 | 6957.33
2 32396.65 | 37836.56 304.67 749.4
3 96842.33 | 108080.01 | 2285.03 317
4 32362.8 39273.37 | 207.98 | 510.93
5 12662.71 14165.44 63.32 92.3
6 53591.3 72257.28 | 480.16 | 869.52
7 40507.97 | 45847.48 176.58 | 870.81
8 56260.09 78948.09 | 4654.71 | 5882.53
9 176436.81 | 189006.12 | 560.26 | 2506.67
10 662725.21 | 791463.08 58.89 86.86

Table 5

Upper bounds efficiency.

DMU; |1 2 S 141516 |78 ]9 |10
HJU* 1106959 | 1|11 |1 |1|1]1 1
Table 6
Mazximin weights for DEA efficient units.
DMU; 1 3 4 5 6 7 8 9 10
€; 0.1292 | 0.0727 | 0.01010 | 0.0046 | 0.0070 | 0.0289 | 0.1278 | 0.0722 | 0.1292

We first solve LP model (2.3) for each DMU, which the results are presented in Table
5. It is observed that DMUs 1, 8, 4 ,5,6, 7,8, 9 and 10 are DEA efficient and
cannot distinguish between them any further. Then the results of solving model (3.6) to
find mazimin weights are given in Table 6, it is seen that DMU, and DMUyy have the
biggest maximin weight therefore they are the bests.

Table 7
Efficiencies under different minimum weight restrictions.
DMU; Minimum  weight restriction w
0.0046 | 0.0070 | 0.0289 | 0.0722 | 0.0727 | 0.1010 | 0.1278 | 0.1292

1 1 1 1 1 1 1 1 1
3 1 1 1 1 1 0.9064 | 0.8011 | 0.7860
4 1 1 1 1 1 1 0.6862 | 0.6632
5 1 0.9121 | 0.4785 | 0.2737 | 0.2718 | 0.1875 | 0.1351 | 0.1328
6 1 1 0.7889 | 0.5483 | 0.5459 | 0.4351 | 0.3611 | 0.3575
7 1 1 1 0.5886 | 0.5852 | 0.4219 | 0.2638 | 0.2550
8 1 1 1 1 1 1 1 0.9656
9 1 1 1 1 0.9950 | 0.7327 | 0.5660 | 0.5543
10 1 1 1 1 1 1 1 1

Then we solve the model (4.9) for each DEA efficient unit by specifying a value for
the minimum weight restriction w to generate a partial or full ranking of the nine efficient
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units 1, 8,4 ,5,6,7,8,9and 10. Table 7 shows the efficiency score of the nine
efficient units measured by model (4.9) with different minimum weight restriction. If we
impose a minimum weight restriction w = 0.0046 on input and output weights, then DM U,
, DMU3 to DMUyg will be DEA efficient. If a minimum weight restriction w = 0.0070 1s
exerted on inputs and output, then DMUs will not be efficient any more. If a minimum
weight restriction w = 0.0289 is applied on inputs and output weights, then DMUs5 and
DMUg will not be efficient any more. This removal process can be continued by constantly
increasing the value of w. If a minimum weight restriction w = 0.1292 is imposed on
input and output weights, DMU; and DMUyy will be the only units to remain efficient
and therefore a full ranking will be achieved. Apparently, by choosing an appropriate value
for the minimum weight restriction on input and output weights, the DM or assessor can
give a partial or full ranking of the nine DMUs.

6 Conclusions

In this paper, we presented a ranking methodology for DEA efficient units with interval
data, also used a new pair of interval DEA models that recommended by Wang et al.
[8], to measure the efficiencies of decision-making units (DMUs) with interval data. The
methodology ranks DMUs by imposing an appropriate minimum weight restriction on
input and output weights. All efficient units can be partially or fully put in order by
exerting an appropriate minimum weight restriction on input and output weights. We also
developed an LP model for DEA efficient units to find their maximin weights that can
keep them efficient to the best possible extent. The maximin weights provide very useful
information for the DM or assessor to decide that a minimum weight restriction should
be imposed on input and output weights. Also in this paper, new efficiency model was
developed for reevaluating of the efficiencies of the efficient units with interval data. And
one numerical example was tested and inspected using the proposed ranking methodology.
It was shown that the proposed ranking methodology as successfully distinguish the best
units among all efficient units with interval data.
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