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Ranking of DMUs on Interval Data by Imposinga Minimum Weight Restriction in DEAF. Rezai Balf, R.Shahverdi�, K. Kamalgharibi MofradDepartment of Mathematics, Islamic Azad University, Qaemshahr branch, IranReceived 22 September 2009; accepted 20 November 2009.|||||||||||||||||||||||||||||||-AbstractIn this paper, we present a method for ranking decision making units (DMUs) with intervaldata in data envelopment analysis that is di�erent from the other methods. In this methodwe use a new pair of interval DEA models that are constructed on the basis of intervalarithmetic, which di�er from the existing DEA models that work with interval data in factit is a linear CCR model without a need for extra variable alternations and uses a �xedand uni�ed production frontier (i.e. the same constraint set) to measure the e�cienciesof decision making units (DMUs) with interval input and output data. This methodologyexerts an appropriate minimum weight restriction on all input and output weights whichis called maxmin weight. New linear programming (LP) model constructs proportionwith each e�cient unit for determining maximin weight. Choosing a maxmin weight, alle�cient units put in order as fully or partially. One numerical example is inspected usingthe proposed ranking methodology to illustrate its ability in discriminating between DEAe�cient unit with interval data.Keywords : Data envelopment analysis ; DEA ranking ; Interval data ; Maximin weights ; Minimumweight restriction.||||||||||||||||||||||||||||||||{1 IntroductionData envelopment analysis (DEA) was originally developed to measure the relative e�-ciency of peer decision making units (DMUs) in multiple input-multiple output settings[1, 2]. The standard DEA models assume that all data are known exactly without anyvariation. However, this assumption may not be true. Due to the existence of uncertainty,DEA sometimes faces the situation of imprecise data, especially when a set of decision-making units (DMUs) contains missing data, judgment data, forecasting data or ordinal�Corresponding author. Email address: shahverdi 592003@yahoo.com, Tel: +98-123-2253216333



preference information, Generally speaking, uncertain information or imprecise data canbe expressed in interval or fuzzy numbers.Cooper et al. [3, 4, 5] were the �rst, to the best of our knowledge, to study how to dealwith imprecise data such as bounded data, ordinal data and ratio bounded data in DEA.The resulting DEA model was called imprecise DEA (IDEA), which transformed a non-linear programming problem into a linear programming problem (LP) equivalent througha series of scale transformations and variable alternations. The �nal e�ciency score foreach DMU was derived as a deterministic numerical value less than or equal to unity.In the begining Wang et al. [7], proposed a procedure for ranking e�cient units withprecise data by imposing a minimum weight restriction on all input and output weightsin DEA. In this paper, we present a new method for ranking decision making units withinterval data, also use a new pair of interval DEA models that recommended by Wang etal. [8], to measure the e�ciencies of decision-making units (DMUs) with interval data.Themethodology puts in order DMUs by imposing an appropriate minimumweight restrictionon all inputs and outputs. For determining minimum weight, restrictions of new linearprogramming models construct proportionate with each e�cient unit. Through exertinga minimum weight restriction on all inputs and outputs, all e�cient units can be fully orpartially distinguished from the other one.The paper is organized as follows. In Section 2, we present a new pair of interval DEAmodels [8]. In Section 3, we develop a maximin weight model for each e�cient unit withinterval data to determine a maximin weight for each of them. Section 4 presents a newe�ciency model with a minimumweight restriction for all e�cient units with interval datato reevaluate their e�ciencies. Numerical example is provided in Section 5 to illustratethe ability of the proposed ranking methodology in distinguishing between DEA e�cientunits. The paper concludes in Section 6.2 Interval models of DEA based on interval arithmeticSuppose that there are n DMUs to be evaluated. Each DMUj(j = 1; :::; n) produces sdi�erent outputs yrj(r = 1; :::; s) utilizing m di�erent inputs xij(i = 1; :::;m). Withoutloss of generality, we assume that all the input and output data yrj and xij(i = 1; :::;m; r =1; :::; s; j = 1; :::; n) cannot be exactly obtained due to the existence of uncertainty. Theyare known and lie within the upper and lower bounds represented by the intervals [xLij ; xUij ]and [yLrj; yUrj], where lower and upper bounds are known exactly, positive and �nite.New interval models of DEA are made as follows [8]:Let �j = Psr=1 uryrjPmi=1 vixijbe the e�ciency of DMUj. According to the operation rules on interval data, we have�j = Psr=1 ur[yLrj;yUrj ]Pmi=1 vi[xLij ;xUij ] = [Psr=1 uryLrj ; Psr=1 uryUrj][Pmi=1 vixLij ; Pmi=1 vixUij] = �Psr=1 uryLrjPmi=1 vixUij ; Psr=1 uryUrjPmi=1 vixLij �j = 1; :::; nIt is obvious that �j should also be an interval number, which we denote by [�Lj ; �Uj ] (j =1; :::n). 334
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Let �j = [�Lj ; �Uj ] = �Psr=1 uryLrjPmi=1 vixUij ; Psr=1 uryUrjPmi=1 vixLij � � (0; 1] j = 1; :::; nThen �Uj = �Psr=1 uryUrjPmi=1 vixLij � � 1 j = 1; :::; n�Lj = �Psr=1 uryLrjPmi=1 vixUij � > 0 ; j = 1; :::; nIn order to assess the upper and lower bounds of the e�ciency of DMUo, we developthe following pair of fractional programming models for DMUo:max �Uo = Psr=1 uryUroPmi=1 vixLios:t: Psr=1 uryUrjPmi=1 vixLij � 1 j = 1; :::; nur � 0 r = 1; :::; svi � 0 i = 1; :::;m (2.1)
max �Lo = Psr=1 uryLroPmi=1 vixUios:t: Psr=1 uryUrjPmi=1 vixLij � 1 j = 1; :::; nur � 0 r = 1; :::; svi � 0 i = 1; :::;m (2.2)Using Charnes - Cooper transformation, the above pair of fractional programmingmodels can be made as the following equivalent LP models:max �Uo =Psr=1 uryUros:t: Pmi=1 vixLio = 1Psr=1 uryUrj �Pmi=1 vixLij � 0 j = 1; :::; nur � 0 r = 1; :::; svi � 0 i = 1; :::;m (2.3)

335

F. Rezai Balf et al. / IJIM Vol. 1, No. 4 (2009) 333-342 335

IJIM JOURNAL
Text Box



max �Lo =Psr=1 uryLros:t: Pmi=1 vixUio = 1Psr=1 uryUrj �Pmi=1 vixLij � 0 j = 1; :::; nur � 0 r = 1; :::; svi � 0 i = 1; :::;m (2.4)
Where �Uo stands for the best possible relative e�ciency achieved by DMUo when allthe DMUs are in the state of the best production activity. Also �Lo stands for the lowerbound of the best possible relative e�ciency ofDMUo. The possible best relative e�ciencyinterval [�Lo ; �Uo ] is constructed by �Lo and �Uo .De�nition 2.1. DMUo, is DEA e�cient if �U�o = 1 and it is DEA ine�cient if �U�o < 1.Totally the LP model (2.3) is solved n times for each DMU. As a result, at least oneDMU is evaluated as DEA e�cient, but very often more than one DMU is assessed as DEAe�cient. Therefore we cannot distinguish the di�erence between their performance. In thefollowing sections, we will construct a maximin weight model for each DEA e�cient unitand a new e�ciency model with a minimum weight restriction to reassess the e�cienciesof DEA e�cient units.3 Maximin weight model for DEA e�cient unitsAssume that DMUo is a DEA e�cient unit identi�ed by model (2.3). There are thefollowing equations and inequalities:Psr=1 uryUro �Pmi=1 vixLio = 0Psr=1 uryUrj �Pmi=1 vixLij � 0 j = 1; :::; nur � 0 r = 1; :::; svi � 0 i = 1; :::;m (3.5)There are an in�nite number of input and output weights that can satisfy the aboveconditions because kur and kvi for any k > 0 will be solutions of (3.5) as much asur (r = 1; :::; s) and vi (i = 1; :::;m). To avoid this arbitrariness, we need an equationsuch as Pmi=1 vixLio = 1 or Pmi=1 vi(Pnj=1 xLij) = 1 to be added to (3.5) to form a bench-mark for comparison of input and output weights of di�erent DMUs. Since the equationPmi=1 vixLio = 1 changes from one DEA e�cient unit to another, this causes that the inputand output weights of di�erent DMUs somewhat be incomparable. Then the equationPmi=1 vi(Pnj=1 xLij) = 1 must be added.Let �� be the maximin weight proportionate with DMUo, i.e.�� =maxur;vi8<:min0@minr(ur( nXj=1 yUrj));mini(vi( nXj=1 xLij))1A9=;336
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The following LP model is constructed to determine the value of �� for each DEAe�cient unit: max �s:t: Pmi=1 vi(Pnj=1 xLij) = 1Psr=1 uryUro �Pmi=1 vixLio = 0Psr=1 uryUrj �Pmi=1 vixLij � 0 j = 1; :::; nur(Pnj=1 yUrj) � � r = 1; :::; svi(Pnj=1 xLij) � � i = 1; :::;m (3.6)
The �� in the above LP model is a decision variable rather than a constant and isnot necessarily very small. It also is the maximin weight that can keep the DMUo ase�cient. However, the maximin weight determined by the above LP model is independentof the units of measurement of lower and upper bounds of inputs and outputs intervals.By solving LP model (3.6) for each DEA e�cient unit, we can obtain a set of maximinweights, ��i1 ; :::; ��ik for all DEA e�cient units, respectively, where i1; :::; ik are the labels ofk DEA e�cient units.4 New e�ciency model for ranking e�cient unitsFor making new e�ciency model, we are emposing a minimumweight restriction ! on allinputs and outputs weights so that e�cient units can be distinguished by adjusting itsmagnitud and as shown below :max Psr=1 uryUroPmi=1 vixLios:t: Pmi=1 vi(Pnj=1 xLij) = 1Psr=1 uryUrjPmi=1 vixLij � 0 j = 1; :::; nur(Pnj=1 yUrj) � ! r = 1; :::; svi(Pnj=1 xLij) � ! i = 1; :::;m (4.7)
This e�ciency model is di�erent from CCR model (2.1). An essential di�erence be-tween them is the minimum weight restriction !, which is not required to CCR model(2.1).Now consider the following transformation:z = 1Pmi=1 vixLio~ur = ur � z; (r = 1; :::s)~vi = vi � z; (i = 1; :::;m) (4.8)
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With the mentioned transformations, the model (4.7) can be transformed into anequivalent model, which as shown below:max Psr=1 ~uryUros:t: Pmi=1 ~vixLio = 1Pmi=1 ~vi(Pnj=1 xLij) = zPsr=1 ~uryUrj �Pmi=1 ~vixLij � 0 j = 1; :::; n~ur(Pnj=1 yUrj) � ! � z r = 1; :::; s~vi(Pnj=1 xLij) � ! � z i = 1; :::;m (4.9)
For any e�cient unit the LPmodel (4.9) is solved for k times. By setting an appropriatevalue for the minimum weight restriction !, all e�cient units can be expected to be fullyor partially ranked in terms of their new e�ciency scores.We �rst arrange the maximin weights of all DEA e�cient units. Suppose that the maximinweights ��i1 ; :::; ��ik of k DEA e�cient units have already been ordered from the smallest tothe largest, i.e. ��i1 � ��i2 � ::: � ��ik .If we put the minimum weight restriction of ! equal to ��ik and apply the model(4.9) for e�cient units, the new e�ciency score of DMUik will be obtained equal to 1and for the other DMUs , it will be less than one. The reason is that the equationPsr=1 uryUrk �Pmi=1 vixLik = 0 in model (3.6) and the constraints of model (4.7) are holdat the same time, for ! = ��ik proportionate with DMUik . As we decrease the value of! in model (4.7) from ! = ��ik to ! = ��ik�1 , the new e�ciency score of DMUik�1 will beequal to one. In other words, DMUik�1 add to new set of DEA e�cient units. This reduceprocess can be continued same as the value of !. Finally , by setting ! = ��i1 , the newe�ciency score for each k DEA e�cient unit will be one.Therefore, the e�cient units ranktheir new e�ciency score, which are obtained by model (4.9). In other words, in model(4.7) by choosing the largest maximin weigh, i.e. ��ik , for minimum weight restriction !,all DEA e�cient units can be ranked.Remark 1. In some extreme cases, the largest maximin weight may occasionally beachieved by two or more DEA e�cient units. In such cases, these DEA e�cient unitsshould be considered as good as each other.In summary, the proposed ranking methodology for e�cient units can be performedby the following steps:Step 1. Perform model (2.3) for each DMU to identify DEA e�cient units.Step 2. Solving maximin weight model (3.6) for each DEA e�cient unit to �nd itsmaximin weight.Step 3. Set an appropriate value as a minimum weight restriction on input and outputweights and perform new e�ciency model (4.9) to reevaluate the e�ciencies of e�cientunits .Step 4. Rank e�cient units by their new e�ciency scores.338
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5 Numerical exampleExample 5.1. We now apply this new ranking approach to some commercial bank branchesin Iran. There are 10 branches in this district. Each branch uses 3 inputs to produce 5outputs. Table 1 shows the kind of these inputs and outputs.Table 1 Inputs OutputPayable interest The total sum of four main depositsPersonnel Other depositsNon-Performing loans Loans grantedReceived interestFeeTables 2 , 3 and 4 records the interval inputs and interval outputs of the ten commer-cial bank branches taken from Hosseinzadeh Lot� et al. [6].Table 2Input-data for the 10 bank branches.DMUj xL1j xU1j xL2j xU2j xL3j xU3j1 45007.37 9613.37 36.29 36.86 87243 872432 2926.81 5961.55 18.8 2016 9945 121203 8732.7 17752.5 25.74 25.74 47575 500134 945.93 1966.39 20.81 22.54 19292 197535 8487.07 17521.66 14.16 14.8 3428 39116 13759.35 27359.36 19.46 19.46 13929 156577 587.69 1205.47 27.29 27.48 27827 290058 4646.39 9559.61 24.52 25.07 9070 99839 1554.29 3427.89 20.47 21.59 412036 41390210 17528.31 36297.54 14.84 15.05 8638 10229Table 3Output-data for the 10 bank branches.DMUj yL1j yU1j yL2j yU2j yL3j yU3j1 2696995 3126798 263643 382545 1675519 18533652 340377 440355 95978 117659 377309 3902033 1027546 1061260 37911 503089 468520 18220284 1145235 1213541 229646 268460 19292 5421015 390902 395241 4924 12136 129751 1428736 988115 1087392 74133 111324 507502 5743557 144906 165818 180530 180617 288513 3237218 408163 416416 405396 486431 1044221 10718129 335070 410427 337971 449336 1584722 180294210 700842 768593 14378 15192 2290745 2573512
339
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Table 4Output-data for the 10 bank branches.DMUj yL4j yU4j yL5j yU5j1 108634.76 125740.28 965.97 6957.332 32396.65 37836.56 304.67 749.43 96842.33 108080.01 2285.03 31744 32362.8 39273.37 207.98 510.935 12662.71 14165.44 63.32 92.36 53591.3 72257.28 480.16 869.527 40507.97 45847.48 176.58 370.818 56260.09 73948.09 4654.71 5882.539 176436.81 189006.12 560.26 2506.6710 662725.21 791463.08 58.89 86.86Table 5Upper bounds e�ciency.DMUj 1 2 3 4 5 6 7 8 9 10�U�j 1 0.6959 1 1 1 1 1 1 1 1Table 6Maximin weights for DEA e�cient units.DMUj 1 3 4 5 6 7 8 9 10��j 0.1292 0.0727 0.01010 0.0046 0.0070 0.0289 0.1278 0.0722 0.1292We �rst solve LP model (2.3) for each DMU, which the results are presented in Table5. It is observed that DMUs 1 , 3 , 4 , 5 , 6 , 7 , 8 , 9 and 10 are DEA e�cient andcannot distinguish between them any further. Then the results of solving model (3.6) to�nd maximin weights are given in Table 6, it is seen that DMU1 and DMU10 have thebiggest maximin weight therefore they are the bests.Table 7E�ciencies under di�erent minimum weight restrictions.DMUj Minimum weight restriction !0.0046 0.0070 0.0289 0.0722 0.0727 0.1010 0.1278 0.12921 1 1 1 1 1 1 1 13 1 1 1 1 1 0.9064 0.8011 0.78604 1 1 1 1 1 1 0.6862 0.66325 1 0.9121 0.4785 0.2737 0.2718 0.1875 0.1351 0.13286 1 1 0.7889 0.5483 0.5459 0.4351 0.3611 0.35757 1 1 1 0.5886 0.5852 0.4219 0.2638 0.25508 1 1 1 1 1 1 1 0.96569 1 1 1 1 0.9950 0.7327 0.5660 0.554310 1 1 1 1 1 1 1 1Then we solve the model (4.9) for each DEA e�cient unit by specifying a value forthe minimum weight restriction ! to generate a partial or full ranking of the nine e�cient340
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units 1 , 3 , 4 , 5 , 6 , 7 , 8 , 9 and 10. Table 7 shows the e�ciency score of the ninee�cient units measured by model (4.9) with di�erent minimum weight restriction. If weimpose a minimum weight restriction w = 0.0046 on input and output weights, then DMU1, DMU3 to DMU10 will be DEA e�cient. If a minimum weight restriction w = 0.0070 isexerted on inputs and output, then DMU5 will not be e�cient any more. If a minimumweight restriction w = 0.0289 is applied on inputs and output weights, then DMU5 andDMU6 will not be e�cient any more. This removal process can be continued by constantlyincreasing the value of !. If a minimum weight restriction w = 0.1292 is imposed oninput and output weights, DMU1 and DMU10 will be the only units to remain e�cientand therefore a full ranking will be achieved. Apparently, by choosing an appropriate valuefor the minimum weight restriction on input and output weights, the DM or assessor cangive a partial or full ranking of the nine DMUs.6 ConclusionsIn this paper, we presented a ranking methodology for DEA e�cient units with intervaldata, also used a new pair of interval DEA models that recommended by Wang et al.[8], to measure the e�ciencies of decision-making units (DMUs) with interval data. Themethodology ranks DMUs by imposing an appropriate minimum weight restriction oninput and output weights. All e�cient units can be partially or fully put in order byexerting an appropriate minimumweight restriction on input and output weights. We alsodeveloped an LP model for DEA e�cient units to �nd their maximin weights that cankeep them e�cient to the best possible extent. The maximin weights provide very usefulinformation for the DM or assessor to decide that a minimum weight restriction shouldbe imposed on input and output weights. Also in this paper, new e�ciency model wasdeveloped for reevaluating of the e�ciencies of the e�cient units with interval data. Andone numerical example was tested and inspected using the proposed ranking methodology.It was shown that the proposed ranking methodology as successfully distinguish the bestunits among all e�cient units with interval data.References[1] R. D. Banker,A. Charnes,and W.W. Cooper, " Some models for estimating technicaland scale ine�ciencies in DEA ", Management Science 30 (1984) 1078-1092.[2] A. Charnes, W.W.Cooper, E. Rhodes, " Measuring the e�ciency of decision makingunits ", European Journal of Operational Research 2 (1978) 429- 444.[3] W.W. Cooper, K.S. Park, G. Yu, " An illustrative application of IDEA (imprecisedata envelopment analysis) to a Korean mobile telecommunication company ", Oper.Res. 49 (2001) 807-820.[4] W.W. Cooper, K.S. Park, G. Yu, " IDEA (imprecise data envelopment analysis) withCMDs (column maximum decision making units) ", J. Oper. Res. Soc. 52 (2001)176-181.[5] W.W. Cooper, K.S. Park, G. Yu, " IDEA and AR-IDEA: models for dealing withimprecise data in DEA ", Management Science 45 (1999) 597-607.341
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