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Abstract

In this paper, a nonlinear Volterra-Fredholm integral equation of the first kind is solved by using the
homotopy analysis method (HAM). In this case, the first kind integral equation can be reduced to
the second kind integral equation which can be solved by HAM. The approximate solution of this
equation is calculated in the form of a series which its components are computed easily. The accuracy
of the proposed numerical scheme is examined by comparing with other analytical and numerical
results. The existence, uniqueness and convergence of the proposed method are proved. Example is
presented to illustrate the efficiency and the performance of the homotopy analysis method.
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1 Intaduction

W
e consider the nonlinear Volterra-Fredholm
integral equation of the first kind given by

f(x) = µ1

∫ x
a k1(x, t)g1(t, u(t))dt+

µ2

∫ b
a k2(x, t)g2(t, u(t))dt,

(1.1)

where a,b,µ1,µ2 are constant values and µ1 ̸=
0, also f(x), k1(x, t), k2(x, t), g1(t, u(t)), g2(t, u(t))
are functions that have suitable derivatives on an
interval a ≤ t ≤ x ≤ b and u(t) is unknown func-
tion. The solution is expressed in the form

u(x) =

∞∑
i=0

ui(x). (1.2)

If we set g1(t, u(t)) = G1(u(t)), g2(t, u(t)) =
G2(u(t)), where G1 and G2 are known smooth
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functions nonlinear in u(t), then Eq.(1.1) reduces
to the following equation

f(x) = µ1

∫ x
a k1(x, t)G1(u(t))dt+

µ2

∫ b
a k2(x, t)G2(u(t))dt.

(1.3)

We reduce integral equation of the first kind to
the second kind by differentiating one time with
respect to x. In recent years, numerous works
have been focusing on the development of more
advanced and efficient methods for integral equa-
tions of the second kind such as the lineariza-
tion method [6], product integration method [27],
Hermite-type collocation method [7], RF-pair
method [8], collocation method [4], a new com-
putational method [24], asymptotic expansion for
the Nystrom method [13], Taylor polynomials
method [9, 10, 14, 25, 26, 28], Adomian decom-
position method (ADM) for solving integral and
integro-differential equations [5, 11]. The homo-
topy analysis method is based on homotopy, a
fundamental concept in topology and differential
geometry [21]. The HAM has successfully been
applied to many situations [1, 2, 15, 16, 17, 18,
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19, 20, 21, 22, 23]. In [16] the HAM has been used
for solving linear integral equations of the second
kind. The paper is organized as follows. In Sec-
tion 2, the HAM is briefly presented. In Section
3, this method is presented for solving Eq.(1.3).
Also, the existence, uniqueness and convergence
of the proposed method are proved. Finally, the
numerical example is presented in Section 4 to
illustrate the accuracy of these methods.

2 Preliminaries

Consider
N [u] = 0,

where N is a nonlinear operator, u(x) is un-
known function and x is an independent vari-
able. let u0(x) denote an initial guess of the ex-
act solution u(x), h ̸= 0 an auxiliary parameter,
H(x) ̸= 0 an auxiliary function, and L an auxil-
iary linear operator with the property L[r(x)] = 0
when r(x) = 0. Then using q ∈ [0, 1] as an em-
bedding parameter, we construct a homotopy as
follows:

(1− q)L[ϕ(x; q)− u0(x)]−
qhH(x)N [ϕ(x; q)] =

Ĥ[ϕ(x; q);u0(x),H(x), h, q].

(2.4)

It should be emphasized that we have great
freedom to choose the initial guess u0(x), the aux-
iliary nonlinear operator L, the non-zero auxiliary
parameter h, and the auxiliary function H(x).

Enforcing the homotopy Eq.(2.4) to be zero,
i.e.,

Ĥ[ϕ(x; q); y0(x),H(x), h, q] = 0, (2.5)

we have the so-called zero-order deformation
equation

(1− q)L[ϕ(x; q)− u0(x)] = qhH(x)N [ϕ(x; q)].
(2.6)

When q = 0, the zero-order deformation
Eq.(2.6) becomes

ϕ(x; 0) = u0(x), (2.7)

and when q = 1, since h ̸= 0 and H(x) ̸= 0,
the Eq.(2.6) is equivalent to

ϕ(x; 1) = u(x). (2.8)

Thus, according to Eq.(2.7) and Eq.(2.8), as
the embedding parameter q increases from 0 to
1, ϕ(x; q) varies continuously from the initial ap-
proximation u0(x) to the exact solution u(x).
Such a kind of continuous variation is called de-
formation in homotopy [1, 22, 23].

Due to Taylor’s theorem, ϕ(x; q) can be ex-
panded in a power series of q as follows

ϕ(x; q) = u0(x) +

∞∑
m=1

um(x)qm, (2.9)

where,

um(x) =
1

m!

∂mϕ(x; q)

∂qm
|q=0 .

Let the initial guess u0(x), the auxiliary linear
parameter L, the nonzero auxiliary parameter h
and the auxiliary function H(x) be properly cho-
sen so that the power series Eq.(2.9) of ϕ(x; q)
converges at q = 1, then, we have under these
assumptions the solution series

u(x) = ϕ(x; 1) = u0(x) +
∞∑

m=1

um(x). (2.10)

From Eq.(2.9), we can write Eq.(2.6) as follows

L[
∑∞

m=1 um(x) qm]− q L[
∑∞

m=1 um(x)qm] =
q h H(x)N [ϕ(x, q)].

(2.11)

By differentiating Eq.(2.11) m times with re-
spect to q, we obtain

m! L[um(x)− um−1(x)] =

h H(x) m ∂m−1N [ϕ(x;q)]
∂qm−1 |q=0 .

Therefore,

L[um(x)− χmum−1(x)] = hH(x)ℜm(um−1(x)),
um(0) = 0,

(2.12)

where,

ℜm(um−1(x)) =
1

(m− 1)!

∂m−1N [ϕ(x; q)]

∂qm−1
|q=0,

(2.13)

and
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χm =

{
0 m ≤ 1,
1 m > 1.

Note that the high-order deformation Eq.(2.12)
is governing the linear operator L, and the
term ℜm(um−1(x)) can be expressed simply by
Eq.(2.13) for any nonlinear operator N .

3 Description of the method

Consider the following nonlinear Volterra-
Fredholm integral equation of the firs kind

f(x) = µ1

∫ x
a k1(x, t)G1(u(t))dt+

µ2

∫ b
a k2(x, t)G2(u(t))dt,

(3.14)

where u(t) is an unknown function, and
f(x), k1(x, t), k2(x, t) are analytical functions. To
obtain the solution of equation Eq.(3.14) in the
form of expression Eq.(1.2) we first differentiate
it one time with respect to x:

f
′
(x) = µ1k1(x, x)G1(u(x))+

µ1

∫ x
a

∂k1(x,t)
∂x G1(u(t)) dt+

µ2

∫ b
a

∂k2(x,t)
∂x G2(u(t)) dt.

(3.15)

Since k1(x, x) ̸= 0, therefore,

G1(u(x)) = ( f
′
(x)

µ1k1(x,x)
)−∫ x

a (
∂k1(x,t)

∂x
k1(x,x)

) G1(u(t)) dt−
µ2

µ1

∫ b
a (

∂k2(x,t)
∂x

k1(x,x)
) G2(u(t)) dt,

we set

F (x) = ( f
′
(x)

µ1k1(x,x)
),

K
′
1(x, t) = −(

∂k1(x,t)
∂x

k1(x,x)
),

k
′
2(x, t) = −

µ2

µ1
(

∂k2(x,t)
∂x

k1(x,x)
).

Therefore,

u(x) = G−1
1 (F (x))+

G−1
1 (

∫ x
a k

′
1(x, t)G1(u(t))dt)+

G−1
1 (

∫ b
a k

′
2(x, t)G2(u(t))dt),

(3.16)

where k
′
1(x, t), k

′
2(x, t) andG−1

1 (F (x)) are func-
tions that have suitable derivatives on an interval
a ≤ t ≤ x ≤ b.

So, Eq.(3.14) reduces to the standard nonlinear
Volterra-Fredholm integral equation of the second
kind.

To obtain the approximation solution of
Eq.(3.16) based on the HAM let

N [u] = u(x)−G−1
1 (F (x))−

G−1
1 (

∫ x
a k

′
1(x, t)G1(u(t))dt)−

G−1
1 (

∫ b
a k

′
2(x, t)G2(u(t))dt).

We have,

ℜm(um−1(x)) = um−1(x)−
G−1

1 (
∫ x
a k

′
1(x, t)G1(u(t))dt)−

G−1
1 (

∫ b
a k

′
2(x, t)G2(u(t))dt)

−(1− χm)G−1
1 (F (x)), m ≥ 1.

(3.17)

Substituting Eq.(3.17) into Eq.(2.12),

L[um(x)− χmum−1(x)] =

hH(x)[um−1(x)−G−1
1 (

∫ x
a k

′
1(x, t)G1(um−1(t))dt)−

G−1
1 (

∫ b
a k

′
2(x, t)G2(um−1(t))dt)−

(1− χm)G−1
1 (F (x))].

(3.18)
We take an initial guess u0(x) = G−1

1 (F (x)),
an auxiliary linear operator Lu = u, a nonzero
auxiliary parameter h = −1, and auxiliary func-
tion H(x) = 1. This is substituted into Eq.(3.18)
to give the recurrence relation

u0(x) = G−1
1 (F (x)),

um(x) = G−1
1 (

∫ x
a k

′
1(x, t)G1(um−1(t))dt)+

G−1
1 (

∫ b
a k

′
2(x, t)G2(um−1(t))dt), m ≥ 1.

(3.19)
Relation Eq.(3.19) will enable us to determine

the components um(x) recursively for m ≥ 0.
We assume that G−1

1 (F (x)) is bounded for all
x in J = [a, b] and

|k′
1(x, t)|≤M

′
,

|k′
2(x, t)|≤M

′′
, a ≤ t ≤ x ≤ b.

The nonlinear terms G1(u(t)), G2(u(t))
, G−1

1 (
∫ x
a k

′
1(x, t)G1(u(t))dt) and

G−1
1 (

∫ b
a k

′
2(x, t)G2(u(t))dt)

are Lipschitz continuous with

|G1(u)−G1(z)|≤ L
′ |u− z|,

|G2(u)−G2(z)|≤ L
′′ |u− z|,

| G−1
1 (

∫ x
a k

′
1(x, t)G1(u(t))dt)−

G−1
1 (

∫ x
a k

′
1(x, t)G1(z(t))dt) |

≤ L1 |
∫ x
a k

′
1(x, t)G1(u(t))−∫ x

a k
′
1(x, t)G1(z(t)) |,
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| G−1
1 (

∫ b
a k

′
2(x, t)G2(u(t))dt)−

G−1
1 (

∫ b
a k

′
2(x, t)G2(z(t))dt) |

≤ L2 |
∫ b
a k

′
2(x, t)G2(u(t))−∫ b

a k
′
2(x, t)G2(z(t)) |,

Theorem 3.1 Eq.(3.16) has a unique solution
whenever 0 < α < 1, where

α = (b− a)(L1L
′
M

′
+ L2L

′′
M

′′
).

Proof.
Let u and u∗ be two different solutions of

Eq.(3.16) then

|u− u∗|= |G−1
1 (

∫ x
a k

′
1(x, t)G1(u(t))dt)−

G−1
1 (

∫ x
a k

′
1(x, t)G1(u

∗(t))dt)−
G−1

1 (
∫ b
a k

′
2(x, t)G2(u(t))dt)

−G−1
1 (

∫ b
a k

′
2(x, t)G2(u

∗(t))dt) |
≤ L1(

∫ x
a | k

′
1(x, t) || G1(u)−G1(u

∗) | dt)+
L2(

∫ b
a | k

′
2(x, t) || G2(u)−G2(u

∗)dt) |
≤ (b− a)(L1M

′
L

′
+ L2M

′′
L

′′
) | u− u∗ |

(3.20)

from which we get (1 − α)|u − u∗|≤ 0. Since
0 < α < 1, then |u − u∗|= 0 implies u = u∗ and
this completes the proof. 2

Theorem 3.2 If the series solution u(x) =∑∞
m=0 um(x) obtained from Eq.(3.19) is conver-

gent then it converges to the exact solution of the
Eq.(1.3).

Proof. We assume:

u(x) =
∑∞

m=0 um(x),
S1(u(x)) =

∑∞
m=0G1(um(x)),

S2(u(x)) =
∑∞

m=0G2(um(x)),
(3.21)

where,

lim
m→∞

um(x) = 0.

We can write,

∑n
m=1[um(x)− χmum−1(x)] =

u1 + (u2 − u1) + ...+ (un − un−1) = un(x).
(3.22)

Hence, from Eq.(3.22),

lim
n→∞

un(x) = 0. (3.23)

So, using Eq.(3.23) and the definition of the-
linear operator L, we have

∑∞
m=1 L[um(x)− χmum−1(x)] =

L[
∑∞

m=1[um(x)− χmum−1(x)]] = 0.

Therefore, from Eq.(2.12) we can obtain that∑∞
m=1 L[um(x)− χmum−1(x)] =

hH(x)
∑∞

m=1ℜm(um−1(x)) = 0.

Since h ̸= 0 and H(x) ̸= 0, we have

∞∑
m=1

ℜm(um−1(x)) = 0. (3.24)

By applying the relations Eq.(3.17) and
Eq.(3.21),

∑∞
m=1ℜm(um−1(x)) =∑∞
m=1[um−1 −G−1

1 (
∫ x
a k

′
1(x, t)

G1(um−1(t))dt)−
G−1

1 (
∫ b
a k

′
2(x, t)G2(um−1(t))dt)−

(1− χm)G−1
1 (F (x))] =

u(x)−G−1
1 (F (x))−

G−1
1 (

∫ x
a k

′
1(x, t)[

∑∞
m=1G1(um−1(t))]dt)

−G−1
1 (

∫ b
a k

′
2(x, t)[

∑∞
m=1G2(um−1(t))]dt) =

u(x)−G−1
1 (F (x))

−G−1
1 (

∫ x
a k

′
1(x, t)S1(u(t))dt)

−G−1
1 (

∫ b
a k

′
2(x, t)S2(u(t))dt).

(3.25)
From Eq.(3.24) and Eq.(3.25), we have

u(x) = G−1
1 (F (x))+

G−1
1 (

∫ x
a k

′
1(x, t)S1(u(t))dt)+

G−1
1 (

∫ b
a k

′
2(x, t)S2(u(t))dt),

therefore, u(x) must be the exact solution.
2

4 Numerical examples

In this Section, we compute numerical example
which is solved by the proposed method of this
article. The program has been provided with
Mathematica 6 according to the following algo-
rithm where, ε is a given positive value.

Algorithm:
Step 1. n← 0,
Step 2. Calculate the recursive relation using

Eq.(3.19),
Step 3. If | un+1 − un |< ε then go to step 4

else n← n+ 1 and go to step 2,
Step 4. Print u(x) =

∑n
i=0 ui as the approxi-

mate of the exact solution.
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Example 4.1 Let us first consider the integral
equation of the first kind [12]

f(x) =

∫ x

0.1

[u(t)]2

2
dt+

∫ 0.5

0.1
(x+ t)(1 + [u(t)]2)dt,

f(x) =
x4

8e2
+ 0.0450658 + 0.300274x.

The exact solution is u(x) = xe−x. Also α =
0.487726, ε = 10−3.

x Errors
(ADM,
n=12)

Errors(HAM,
n=6)

0.1 0.0057438 0.0004522
0.2 0.0062763 0.0005617
0.3 0.0066845 0.0005849
0.4 0.0068573 0.0005849
0.5 0.0073126 0.0006145

Table 4.1. Numerical results for the Example.

Table 4.1 shows that, the approximate solution of
the nonlinear Fredholm-Volterra integral equation
of the first kind is convergent with 6 iterations by
using the HAM. By comparing the results of table
1, one can observe that the results of the HAM is
more accurate than the results of the ADM with
faster convergence.

5 Conclusion

Homotopy analysis method has been known as
a powerful scheme for solving many functional
equations such as algebraic equations, ordinary
and partial differential equations, integral equa-
tions and so on. The HAM has been shown
to solve effectively, easily and accurately a large
class of nonlinear problems with the approxima-
tions which are rapidly convergent to the exact
solution. In this work, we reduced the first kind
integral equation into the second kind integral
equation by differentiation and calculated the ap-
proximate solutions of the nonlinear Volterra-
Fredholm integral equations of the first kind by
using the homotopy analysis method. The HAM
has been successfully employed to obtain the
approximate solution of the nonlinear Volterra-
Fredholm integral equations of the first kind.
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