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Some Results on Modular Hyperconvex SpacesH. R. Rahimi a�, M. Firooznasab b(a) Department of Mathematics, Faculty of Science, Centeral Tehran Branch, Islamic Azad University,Tehran, Iran.(b) Department of Mathematics, Science and Research Branch, Islamic Azad University, Tehran, Iran.Received 10 September 2009; revised 20 November 2009; accepted 23 Desember 2009.|||||||||||||||||||||||||||||||-AbstractIn recent years, many authors have focused on hyperconvex space and obtained a lotof valuable results (see [1, 2, 3, 5] ). In this paper we develop some of those results formodular hyperconvex spaces. As a consequence we show that A�(X�) � "�(X�) � H�(X�)where, A�(X�); "�(X�); and H�(X�) are modular admissible subsets, modular externallyhyperconvex subsets and modular hyperconvex subsets in X�, respectively.Keywords : Hyperconvex space; Modular function; Modular hyperconvex space.||||||||||||||||||||||||||||||||{1 IntroductionHyperconvex space, modular hyperconvex space and Fixed point theory play an impor-tant role in several subject of mathematics. For instance, it has been used in probabilityand mathematical statistics, boundary-value problems [3], the inverse function [9] , theexistence of equilibria in economics [11, 12], and the existence of solutions of di�erentialequations [6, 10].For the discussion of the following sections, we state here some de�nitions, notationsand known results. For convenience of readers, we suggest that one refer to [1, 2, 4, 5, 8]for details.Let X be a vector space on IR, a function � : X ! [0;+1] is called modular if forevery x; y in X , (i) �(x) = 0 if and only if x = 0, (ii) �(�x) = �(x) , for every � 2 Rwhere j � j= 1, (iii ) �(�x + �y) � �(x) + �(y) if � + � = 1 and � � 0; � � 0, and � iscalled convex modular if , �(�x + �y) � ��(x) + ��(y) if � + � = 1 and � � 0; � � 0.By a modular space we mean X� = fx 2 X : lim�!0 �(�x) = 0g, where � is a modularfunction on X .Following [4], for a modular space X�, the sequence fxng is called �-convergent to x if�Corresponding author. Email address:h rahimi2004@yahoo.com315



�(xn; x)! x, and it is called �-Cauchy if �(xn; xm)! 0 as n;m! 0. We will say that themodular function � satisfy the Fatou property if �(x) � lim infn �(xn) as xn ! x ,wherefxng is a sequence in X�.A modular function � is called complete if every �- Caushy sequence fxng is �- con-vergent. A subset A of X� is called �- closed if the �-limit of a �-convergent sequence ofA always belong to A. By a �-ball B�(x; r), we mean fy 2 X� : �(x� y) � rg .Finally, a subset A of X� is called �-bounded if��(A) = f�(x� y) : x; y 2 Ag <1. In general we note that � does not a metric because � does not satisfy the triangleinequality. For example �- convergent does not imply �- Caushy. However, �-balls are�-closed in a modular space X� if and only if they have Fatou property, [5].2 Main ResultsIn this section, we begin with basic de�nitions and notation. Then we discuss with moregeneral properties on modular hyperconvixity , say, completeness of modular hyperconvexspace and then we prove some technical results in modular hyperconvex spaces .De�nition 2.1. A modular space X� is called modular hyperconvex space if, for anycollection of points fx�g�2� of X and for any collection fr�g of non-negative real suchthat �(1=2(x� � x�)) � r� + r� (�; � 2 �), it follows that T�2�B�(x�; r�) 6= ;Theorem 2.1. Any modular hyperconvex space is complete.Proof. Let X� be modular hyperconvex space and fxngn�1 be a �-Cauchy sequence inX�. For any n � 1, set rn = supm�n �(xn � xm). Consider the collection of ballsfB�(xn; rn)gn�1. Thenxnk 2 B�(xn1 ; rn1) \B�(xn2 ; rn2) \ ::: \B�(xnk ; rnk)where n1 < n2 < ::: < nk. So�(1=2(xni � xnj )) = �(1=2xni � 1=2xnk + 1=2xnk � 1=2xnj )= �(1=2(xni � xnk) + 1=2(xnk � xnj ))� �(xni � xnk) + �(xnk ; xnj )� rni + rnjNow, X� is a modular hyperconvex space, so Tn�1B�(xn; rn) 6= ;. Since fxngn�1 is a�-Cauchy sequence, limn!1 rn = 0, and so the intersection Tn�1B�(xn; rn) is reduced toone point x which is the �-limit of the sequence fxngn�1.Now we introduce some notation which will be used throughout the next Lemma.
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De�nition 2.2. Let A be a subset of a modular hyperconvex space X�, setrx(A) = fsupfd�(x; y) : y 2 Ag; x 2 X�;r(A) = inffrx(A) : x 2 X�g;R(A) = inffrx(A) : x 2 Ag;diam(A) = fsupfd�(x; y) : x; y 2 Ag;C(A) = fx 2 X� : rx(A) = r(A)g;CA(A) = fx 2 A : rx(A) = r(A)g;cov�(A) = TfB : B is a �� ball and B � Ag;r(A) is called the reduce of A ( relative to X�), diam(A) is called the diameter of A, R(A)is called Chebyshev radius of A, C(A) is called the Chebyshev center of A, and cov�(A) iscalled the cover of A.Lemma 2.1. Let A be a �-bounded subset of modular hyperconvex space X�, then:1) cov�(A) = TfB�(x; rx(A)) : x 2 X�g.2) rx(cov�(A)) = rx(A), for any x 2 X�.3) r(cov�(A))) = r(A).4) r(A) = 1=2(diam(A)).5) diam(cov�(A)) = diam(A).6) If A = cov�(A), then r(A) = R(A). In particular we have R(A) = 1=2(diam(A)).Proof. 1) We note that A � B�(x; rx(A)) for each x 2 X�, so cov�(A) � TfB�(x; rx(A)) :x 2 X�g. On the other hand, if A � B�(x; r) then rx(A) � r, so B�(x; rx(A)) � B�(x; r).Thus \fB�(x; rx(A)) : x 2 X�g � B�(x; r)This implies that cov�(A) = TfB�(x; rx(A)) : x 2 X�g.2) By (1), rx(cov�(A)) = supf�(x � y) : y 2 Tx2X� B�(x; rx(A))g. Now if y 2 cov�(A)implies y 2 B�(x; rx(A)) for any x 2 X�. Thus rx(cov�(A)) � rx(A).On the other hand A � cov(A) so, rx(A) � rx(cov�(A). Thus rx(cov�(A)) = rx(A).On the other hand, A � cov�(A) so, rz(A) � rz(cov�(A)). Thus rz(cov�(A)) = rz(A) foreach z 2 X�.3) By (2) and de�nition of r, we have r(A) = inffrx(A) : x 2 X�g = inffrx(cov�(A)) :x 2 X�g = r(cov�(A)).4) Consider the collection fB�(a; �=2) : a 2 Ag where � = diam(A). If a; b 2 A then�(a� b) � � = (�=2) + (�=2) so by modular hyperconvexity,\a2AB�(a; �=2) 6= ;If x is a point in this intersection then �(x� a) � �=2 so, rx(A) � �=2.On the other hand for each a; b 2 A , z 2 X� we have�(a� b) � �(a� z) + �(z � b)so, � � 2rx(A) imply � � 2r(A). Thus � � 2r(A) � 2rz(A) � �. Therefore r(A) = �=2.5) By (3), (4) we havediam(A) = 2r(A) = 2r(cov�(A)) = diam(cov�(A))317
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6) Since 1=2diam(A) � r(A) � R(A) and A = cov�(A), so we can write A = Ti2I B�iwhere B�i is �-balls in X� ( for each i 2 I). Now, by (4), Ta2AB�i(a; �=2) 6= ; where� = diam(A). Thus any two �-ball drown from the collection fB�i : i 2 Ig [ fB�(a; �=2) :a 2 Ag have nonempty intersection, so by hyperconvexity of X�,C = A \ fB�(a; �=2) : a 2 Ag = fB�i : i 2 Ig \ fB�(a; �=2) : a 2 Ag 6= ;.Now, if x 2 C then, rx(A) � �=2 and therefore �=2 � r(A) � R(A) � rx(A) � �=2. Hencer(A) = R(A) = 1=2(diam(A)).De�nition 2.3. Let X� be a modular space such that has Fatou property. A subset A ofX� is called modular admissible set if A is an intersection of �-closed balls in X�.The collection of all modular admissible sets in X� is denoted by A�(X�)De�nition 2.4. Let X� be a modular space. A subset C of X� is called modular proximalif C \B�(x; dist�(x; c)) 6= ; where x 2 X� anddist�(x; c) = inff�(x� y) : y 2 Cg:De�nition 2.5. A subset E of modular space X� is called modular externally hyperconvex(relative to X� ) if given any family fx�g of point in X� and any family fr�g of realpositive numbers satisfying �(1=2(x� � x�)) � r� + r�(for all �; � 2 �) and dist�(x�; E) � r� then it follows\�2�B�(x�; r�) \E 6= ;The class of all modular externally hyperconvex subsets of X� is denoted by "�(X�) andthe class of all modular hyperconvex of X� is denoted by H�(X�).Lemma 2.2. If E is either a modular admissible or modular externally hyperconvex of amodular hyperconvex X�. Then E is modular proximal in X�.Proof. We write the proof for the case E is a modular admissible subset. Other case issimilar. Let A = Ti2I B�i , then for any � > 0, there exists a� 2 E such that �(x � a�) �dist�(x;A) + �.Clearly this implies \i2IB�i \B�(x; dist�(x;A) + �) 6= ;We note a� belong to the above intersection for any � > 0. ThusA \B�(x; dist�(x;A)) =\i2IB�i \ (\�>0B�(x; dist�(x;A) + �)) 6= ;This implies that E is a modular proximal in X�.Theorem 2.2. If X� is modular hyperconvex, thenA�(X�) � "�(X�) � H�(X�)318
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Proof. Let A be a modular admissible subset of X�, fx�g�2� be a family of points ofX� and fr�g�2� be a family of positive real numbers that satis�es dist�(x�; A) � r� ,�(1=2(x� � x�)) � r� � r� (for all �; � 2 �). By the Lemma 2.2, A is a modular proximalin X�. Thus for any � 2 �, there exists a� 2 A such that�(x� � r�) = dist�(x�; A):So A \B�(x�; r�) 6= ;:Furthermore X� is a modular hyperconvex so, T�2�B�(x�; r�) 6= ;.On the other hand A = Ti2I B�i . Clearly this impliesA \ (\�2�B�(x�; r�) 6= ;:Thus A is a modular externally hyperconvex in X� and A�(X�) � "�(X�). Other inclusionis trivial.For next Theorem we need the following Lemma, that is similar to Lemma due to R.Sine, [7].Lemma 2.3. If X� is a modular hyperconvex space and D = T�B�(x�; r�), then for any� > 0 N�(D) =\� B�(x�; r� + �)Theorem 2.3. If X� is a modular hyperconvex space and if A is a modular externallyhyperconvex subset of X�. Then N�(A) is a modular externally hyperconvex in �� for each� > 0.Proof. Let fx�g be sequences in X� and fr�g be a sequence in IR such that �(x� � x�) �r� + r�, dist(x�; N�(A)) � r�. Therefore dist�(x�; A) � r� + �. Since A is modularexternally hyperconvex, this impliesA \ (\� B�(x�; r� + �)) 6= ;By Sine`s Lemma \� B�(x�; r� + �) = N�(\� B�(x�; r�))Thus A \N�(\� B�(x�; r�)) 6= ;This implies that there exist y 2 A such thatdist�(y;\� B�(x�; r�)) � �On the other hand, T�B�(x�; r�) is modular admissible and so is modular proximal.Thus there exist b 2 T�B�(x�; r�) such thatdist�(y;\� B�(x�; r�)) = �(y � b) � �319
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Hence dist�(b�A) = inff�(b � a) : a 2 Ag � �(b� y) � �So b 2 N�(A) \ (T�B�(x�; r�)). ThusN�(A) \ (\� B�(x�; r�)) 6= ;This means that N�(A) is a modular externally hyperconvex in X�.References[1] N. Aronszajn, P. Panitchpakdi, Extensions of uniformly continuous transformationsand hyperconvex metric space, Paci�c J. Math. 6 (1956) 405-439.[2] J. B. Baillon, Nonexpansive mapping and hyperconvex space, Contemp. Math. 72(1986) 11-22.[3] J. G. Dix and G. L. Karakostas, A �xed-point theorem for S-type operators on Banachspaces and its applications to boundary-value problems, Nonlinear Analysis 71 (2009)3872-3880.[4] Espinola and M. A. Khamsi, Introduction to hyperconvex spaces, Handbook of MetricFixed Point Theorem, Kluwer, Dordrecht (2001) 391-435.[5] M. A. Japon, Some geometric properties in modular spaces and application to �xedpoint theorem, J Math. Appl. 295 (2004) 576-594.[6] Robert F. Brown, A Topological Introduction to Nonlinear Analysis, Birkhuser,Boston, 1993.[7] R. Sine, Hyperconvexity and approximate �xed points, Nonlinear Analysis 13 (1989)893-869.[8] P. Soardi, Existence of �xed points for nonexpansive mapping in certain Banachlattices, Proc. Amer. Math. Soc. 13 (1972) 25-29.[9] Serge Lang, Undergraduate Analysis, Springer Science + Business Media, New York,1997.[10] D.R. Smart, Fixed Point Theorems, Cambridge University Press, 1974.[11] M. J. Todd, The Computation of Fixed Points and Applications, Lecture Notes inEconom. and Math. Systems, vol. 124, Springer-Verlag, Berlin, 1976.[12] Zaifu Yang, Computing Equilibria and Fixed Points, Theory and Decision Library.Series C: Game Theory, Mathematical Programming and Operations Research 21,Kluwer Academic Publishers, Boston, MA, 1999.
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