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Abstract

In recent years, many authors have focused on hyperconvex space and obtained a lot
of valuable results (see [1, 2, 3, 5] ). In this paper we develop some of those results for
modular hyperconvex spaces. As a consequence we show that A,(X,) C ¢,(X,) C H,(X,)
where, A,(X,),c,(X,), and H,(X,) are modular admissible subsets, modular externally
hyperconvex subsets and modular hyperconvex subsets in X, respectively.
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1 Introduction

Hyperconvex space, modular hyperconvex space and Fixed point theory play an impor-
tant role in several subject of mathematics. For instance, it has been used in probability
and mathematical statistics, boundary-value problems [3], the inverse function [9] , the
existence of equilibria in economics [11, 12], and the existence of solutions of differential
equations [6, 10].

For the discussion of the following sections, we state here some definitions, notations
and known results. For convenience of readers, we suggest that one refer to [1, 2, 4, 5, 8]
for details.

Let X be a vector space on IR, a function p : X — [0,+00] is called modular if for
every x,y in X , (i) p(x) = 0 if and only if x = 0, (ii) p(ax) = p(zx) , for every a € R
where | a |= 1, (iii ) plax + By) < p(z) + p(y) if a4+ =1and a > 0,5 > 0, and p is
called convex modular if , p(ax + fBy) < ap(x) + Bp(y) f a+ =1 and a > 0,3 > 0.
By a modular space we mean X, = {x € X : limy_¢ p(Az) = 0}, where p is a modular
function on X .

Following [4], for a modular space X,, the sequence {x,} is called p-convergent to x if
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p(xp, x) — x, and it is called p-Cauchy if p(zy,, zp) — 0 as n,m — 0. We will say that the
modular function p satisfy the Fatou property if p(z) < liminf, p(x,) as x,, — x ,where
{xn} is a sequence in X,

A modular function p is called complete if every p- Caushy sequence {z,} is p- con-
vergent. A subset A of X, is called p- closed if the p-limit of a p-convergent sequence of
A always belong to A. By a p-ball B,(x,7), we mean {y € X, : p(x —y) <r} .

Finally, a subset A of X, is called p-bounded if

6(A) ={p(z —y):z,y € A} <0

In general we note that p does not a metric because p does not satisfy the triangle
inequality. For example p- convergent does not imply p- Caushy. However, p-balls are
p-closed in a modular space X, if and only if they have Fatou property, [5].

2 Main Results

In this section, we begin with basic definitions and notation. Then we discuss with more
general properties on modular hyperconvixity , say, completeness of modular hyperconvex
space and then we prove some technical results in modular hyperconvex spaces .

Definition 2.1. A modular space X, is called modular hyperconvex space if, for any
collection of points {x4}tacr of X and for any collection {ro} of non-negative real such
that p(1/2(xa —x3)) < 1o +15 (a, 3 €T), it follows that (\,cp Bp(Ta,7a) # 0

Theorem 2.1. Any modular hyperconvex space is complete.

Proof. Let X, be modular hyperconvex space and {x,},>1 be a p-Cauchy sequence in
X,. For any n > 1, set 7, = sup,,>, p(n — &y,). Consider the collection of balls
{B,(2p,70)}n>1. Then

Tny € By(xn,,7n,) NV By(Tny, Tny) N oo N By(20,,7n),)
where n1 < no < ... <ng. So

p(l/Z(xni - xn]))

p(1/2xy, —1/22y, +1/23,, —1/21,,)
/0(1/2(1'711' - wnk) + 1/2(1'7% - l‘n]))

P(Tn; = Tny,) + p(Tnys Tnj)
Tni + Tn;

IANIA I

Now, X, is a modular hyperconvex space, so (,~q Bp(@n, 1) # 0. Since {z,},>1 is a
p-Cauchy sequence, lim,,_.o, 7, = 0, and so the intersection ﬂn>1 Bp(a:n, ) is reduced to
one point x which is the p-limit of the sequence {zy}n>1. O

Now we introduce some notation which will be used throughout the next Lemma.
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Definition 2.2. Let A be a subset of a modular hyperconvexr space X,, set

r:(A) = {sup{d,(z,y) : ye A}, x€X,;
r(A) = inf{r,(4) : z€X,};

R(A) = inf{r,(A) : x € A}

diam(A) = {sup{d,(z,y) : x,y € A};

C(A) = {zeX, : r(4) =r(A)}

Ca(A) = {zeA: ry(A)=r(A)}

cov,(A) = (W{B:Bisap—ball and B DO A};

r(A) is called the reduce of A ( relative to X,), diam(A) is called the diameter of A, R(A)
is called Chebyshev radius of A, C(A) is called the Chebyshev center of A, and cov,(A) is
called the cover of A.

Lemma 2.1. Let A be a p-bounded subset of modular hyperconvex space X,, then:
1) cov,(A) = ({By(z,72(A)) : v € X, }.

2) ry(cov,(A)) = r2(A), for any x € X,,.

3) r(couy(A4))) = r(A).

4) r(A) =1/2(diam(A)).

5) diam(cov,(A)) = diam(A).

6) If A = cov,(A), then r(A) = R(A). In particular we have R(A) = 1/2(diam(A)).

Proof. 1) We note that A C B,(x,7,(A)) for each x € X, so cov,(A) C ({B,(x,rz(A)) :
x € X,}. On the other hand, if A C B,(x,7) then r,(A) <7, so B,(x,7,(A4)) C B,y(x,r).
Thus

(V{B,(x.7:(A)) : w € X,} C By(a,7)

This implies that cov,(A) = {B,(z,r»(A)) : v € X, }.

2) By (1), ra(covp(A)) = sup{p(z —y) : y € Nyex, Bplx,r2(A))}. Now if y € covy(A)
implies y € B,(x,rz(A)) for any x € X,. Thus ry(cov,(A4)) < r.(A).

On the other hand A C cov(A) so, rz(A) < ry(cov,(A). Thus ry(cov,(A)) = ro(A).
On the other hand, A C cov,(A) so, 7.(A) < r.(cov,(A)). Thus r.(cov,(A)) = r.(A) for
each z € X,.

3) By (2) and definition of r, we have r(A) = inf{r,(A4) : € X, } = inf{r,(cov,(A)) :
x € Xy} =r(cov,(A)).

4) Consider the collection {B,(a,6/2) : a € A} where § = diam(A). If a,b € A then
pla—b) <6 =1(6/2) + (6/2) so by modular hyperconvexity,

() Bola,8/2) #10

a€A

If x is a point in this intersection then p(x — a) < 6/2 so, r,(A) < /2.
On the other hand for each a,b € A, z € X, we have

pla—b) < pla—2)+p(z —b)

s0, 6 < 2r,(A) imply 6 < 2r(A). Thus § < 2r(A) <2r,(A) < 4. Therefore r(A) = §/2.
5) By (3), (4) we have

diam(A) = 2r(A) = 2r(cov,(A)) = diam(cov,(A))
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6) Since 1/2diam(A) < r(A) < R(A) and A = cov,(A), so we can write A = (\;c; By,
where B,, is p-balls in X, ( for each i € I). Now, by (4), (,ca Bp;(a,6/2) # 0 where
6 = diam(A). Thus any two p-ball drown from the collection {B,, :i € I} U{B,(a,6/2) :
a € A} have nonempty intersection, so by hyperconvexity of X,,

C=AN{B,(a,6/2): a€ A} ={B,, :i € I} N{B,(a,6/2) :a € A} # 0.
Now, if # € C then, r;(A) < /2 and therefore §/2 < r(A) < R(A) < ry(A) < /2. Hence

r(A) = R(A) = 1/2(diam(A))
|

Definition 2.3. Let X, be a modular space such that has Fatou property. A subset A of
X, is called modular admissible set if A is an intersection of p-closed balls in X,.
The collection of all modular admissible sets in X, is denoted by A,(X),)

Definition 2.4. Let X, be a modular space. A subset C' of X, is called modular prozimal
if CN By(x,dist,(x,c)) #0 where x € X, and

dist,(x,c) = inf{p(x —y) 1y € C}.

Definition 2.5. A subset E' of modular space X, is called modular externally hyperconvex
(relative to X, ) if given any family {xo} of point in X, and any family {ro} of real
positive numbers satisfying p(1/2(xq — xg)) < ro + 173
(for all o, B € T') and dist,(xq, E) < 1o then it follows

ﬂ B,(xa,ma) NE #0
ael

The class of all modular externally hyperconver subsets of X, is denoted by ,(X,) and
the class of all modular hyperconvex of X, is denoted by H,(X,).

Lemma 2.2. If E is either a modular admissible or modular externally hyperconvex of a
modular hyperconver X,. Then E is modular prozimal in X,,.

Proof. We write the proof for the case E is a modular admissible subset. Other case is
similar. Let A = (,c; B,,, then for any € > 0, there exists a. € E such that p(z —a.) <
dist,(z, A) + €.
Clearly this implies

NierBp, N By (x, dist,(x, A) +¢€) # 0

We note a. belong to the above intersection for any € > 0. Thus

AN By(x,dist,(x,A)) = ﬂ B, N (ﬂ B,(x,dist,(x,A) +€)) #0
el e>0

This implies that £ is a modular proximal in X,,. O

Theorem 2.2. If X, is modular hyperconvez, then

Ap(Xp) Cep(Xp) C Hy(X))
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Proof. Let A be a modular admissible subset of X,, {zq}acr be a family of points of
X, and {ro}aer be a family of positive real numbers that satisfies dist,(zq, A) < rq ,
p(1/2(xq —x3)) < rq —rg (for all a, 3 € T'). By the Lemma 2.2, A is a modular proximal
in X,. Thus for any a € I, there exists a, € A such that

p(ra —1rq) = dist,(rq, A).
So
ANBy(zq,7a) # 0.

Furthermore X, is a modular hyperconvex so, [\ ,cr Bp(Za,7a) 7# 0.
On the other hand A = (),c; B,,. Clearly this implies

AN (m By(xa,ra) # 0.

acl

Thus A is a modular externally hyperconvex in X, and A,(X,) C £,(X,). Other inclusion
is trivial. O

For next Theorem we need the following Lemma, that is similar to Lemma due to R.
Sine, [7].

Lemma 2.3. If X, is a modular hyperconvex space and D =, By(xa,7a), then for any
e>0
Ne(D) =()Bo(za,ra +€)

Theorem 2.3. If X, is a modular hyperconvex space and if A is a modular externally
hyperconvex subset of X,. Then Nc(A) is a modular externally hyperconvex in x, for each
e > 0.

Proof. Let {x,} be sequences in X, and {r,} be a sequence in IR such that p(z, —25) <
ra + g, dist(xq,Ne(A)) < ro. Therefore dist,(x,A) < 7o + €. Since A is modular
externally hyperconvex, this implies

AN (ﬂ By(ta,ra +€)) #0

By Sine‘s Lemma

() Bo(7a:7a + €) = Ne([ ) Bo(za:7a))

Thus
ANN(()Bo(wa,ra)) #

This implies that there exist y € A such that

diStp(ya m Bp(xon Ta)) <e

On the other hand, (), By(%a, 7o) is modular admissible and so is modular proximal.
Thus there exist b € [, By(xa,ra) such that

dist,(y,( ") Bp(war7a)) = ply —b) < €
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Hence

dist,(b—A) =inf{p(b—a) : a € A} <p(b—y) <e

Sobe N(A)N (N, By(ra,7a)). Thus

N(A) N () By(warra)) # 0

«

This means that N.(A) is a modular externally hyperconvex in X,,. O
References
[1] N. Aronszajn, P. Panitchpakdi, Extensions of uniformly continuous transformations

2]

[10]

[11]

[12]

and hyperconvex metric space, Pacific J. Math. 6 (1956) 405-439.

J. B. Baillon, Nonexpansive mapping and hyperconvex space, Contemp. Math. 72
(1986) 11-22.

J. G. Dix and G. L. Karakostas, A fixed-point theorem for S-type operators on Banach
spaces and its applications to boundary-value problems, Nonlinear Analysis 71 (2009)
3872-3880.

Espinola and M. A. Khamsi, Introduction to hyperconvex spaces, Handbook of Metric
Fixed Point Theorem, Kluwer, Dordrecht (2001) 391-435.

M. A. Japon, Some geometric properties in modular spaces and application to fixed
point theorem, J Math. Appl. 295 (2004) 576-594.

Robert F. Brown, A Topological Introduction to Nonlinear Analysis, Birkhuser,
Boston, 1993.

R. Sine, Hyperconvexity and approximate fixed points, Nonlinear Analysis 13 (1989)
893-869.

P. Soardi, Existence of fixed points for nonexpansive mapping in certain Banach
lattices, Proc. Amer. Math. Soc. 13 (1972) 25-29.

Serge Lang, Undergraduate Analysis, Springer Science 4+ Business Media, New York,
1997.

D.R. Smart, Fixed Point Theorems, Cambridge University Press, 1974.

M. J. Todd, The Computation of Fixed Points and Applications, Lecture Notes in
Econom. and Math. Systems, vol. 124, Springer-Verlag, Berlin, 1976.

Zaifu Yang, Computing Equilibria and Fixed Points, Theory and Decision Library.
Series C: Game Theory, Mathematical Programming and Operations Research 21,
Kluwer Academic Publishers, Boston, MA, 1999.


IJIM JOURNAL
Text Box




