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Abstract
Data Envelopment Analysis (DEA) models which evaluate the e�ciency of a set of decision
making units (DMUs) are unable to discriminate between e�cient DMUs. The problem
of discriminating between these e�cient DMUs is an interesting subject. A large num-
ber of methods for fully ranking both e�cient and ine�cient DMUs have been proposed.
Through real world applications, analysis may encounter data that are not deterministic
or on have a stochastic essence but whose distribution can be de�ned by collecting data in
successive periods and by statistical methods. In this paper, a method for ranking stochas-
tic e�cient DMUs is suggested which is based on the full ine�cient frontier method. Using
a numerical example, we will demonstrate how to use the result.
Keywords: Data envelopment analysis, Quadratic programming; Ranking, Standard normal distri-
bution.
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1 Introduction

Data Envelopment Analysis (DEA) was originated by Charnes et al. [2] and then it
extended to an approach for evaluating the relative e�ciency of DMUs. In real application,
we know that usually plural DMUs are e�cient. The problem of discriminating between
these e�cient DMUs is an interesting subject [5]. Sexton et al. [7] were pioneers in
the ranking �eld. They introduced a ranking method based on cross-e�ciency. Then,
the ranking of DEA-e�cient DMUs based on benchmarking, was an approach initially
developed by Torgersen et al. [10]. In this method, a DMU is highly ranked if it is chosen
as a reference by many other ine�cient DMUs. The most popular research stream in
ranking DMUs is called super-e�ciency. This stream was �rst developed by Andersen
�Corresponding author.E-mail address: behzadi@srbiau.ac.ir
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and Petersen [1]. Thrall [8] pointed out that the model developed by Andersen and
Petersen may result in instability when some inputs are close to zero. Then, to avoid this
problem, MAJ [6] and SBM [9] models were proposed. All of these methods rank DMUs
by comparing DMUs with the e�cient frontier. One of the disadvantages of DEA is
assessing DMUs in the best conditions. Jahanshahloo and Afzalinejad [4] have introduced
the full ine�cient frontier and they proposed a method for assessing DMUs in the worst
conditions and a ranking method by using this factor. All of the proposed ranking models
consider di�erent data such as: deterministic, interval, fuzzy, etc.data In di�erent real
world applications, analysis may encounter stochastic data. In this paper, on the basis
of Cooper's method [3], the stochastic e�cient DMUs have been distinguished and, with
the contribution of full ine�cient stochastic frontier, a model for ranking DMUs with the
stochastic data has been presented. The paper is organized as follows: First, the ine�cient
frontier and then the stochastic DEA models are introduced. After that, ranking DMUs
with the stochastic ine�cient frontier is discussed. Using a numerical example, we will
demonstrate how to use the result.

2 Ine�cient frontier

Jahanshahloo and Afzalinejad [4] have de�ned the full ine�cient frontier. By the contri-
bution of the full ine�cient frontier, they have also proposed a model for identifying the
worst score of e�ciency.
DMUj is full ine�cient if it can not be dominated by other dummy DMUs. That is,
DMUj is full ine�cient if it belongs to F (S) which is de�ned as follows:

F (S) =
�

(x; y)j 8(x0; y0) 2 Rm+s((�x0; y0)�6=(�x; y)) (x0; y0) =2 S)
�
� S;

where S is the convex hull of observed DMUs. Thus the full ine�cient frontier in radial
input orientation is de�ned as FI (S) where

FI(S) = f(x; y)j(x; y) 2 S & 8 ( > 1) ( x; y) =2 S)g :
Thus, DMUo is located on the full ine�cient frontier with variable returns to scale, if in
the following model we have  �o = 1, and it is not located on the full ine�cient frontier if
 �o > 1.

 �o = max  

s:t:
nX
j=1

�jxij �  xio; i = 1; :::;m;

nX
j=1

�jyrj � yro; r = 1; :::; s;

nX
j=1

�j = 1;

�j � 0; j = 1; :::; n:

(2.1)

 �o indicates the distance of DMUo from the ine�cient frontier. Therefore, the greater
 �o the better the ranking score. In Fig. 1, the convex hull of DMUs is schematically
portrayed. The piecewise linear frontier AGFE is the e�cient frontier and ABCD is the
ine�cient frontier.
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Fig. 1. Convex hull of DMUs with two input and one equal output.

3 Stochastic DEA models

Consider n DMUs with ~Xj = (~x1j ; :::; ~xmj) and ~Yj = (~y1j ; :::; ~ysj) as random input and
output vectors of DMUj , j = 1 : : : ; n, respectively. Assume that Xj = (x1j ; :::; xmj)
and Yj = (y1j ; :::; ysj) stand for the corresponding vectors of expected values of input
and output for every DMUj . All input and output components have been considered to
be normally distributed. The chance constrained version of the input-oriented stochastic
BCC model is as follows:

min �

s:t: pf
nX
j=1

~yrj�j � ~yrog � 1� �; r = 1; :::; s;

pf
nX
j=1

~xij�j � �~xiog � 1� �; i = 1; :::;m;

nX
j=1

�j = 1;

�j � 0; j = 1; :::; n:

(3.2)

Model (3.2) can be converted into the following two-stage model with equality constraints:

min � � "(
sX
r=1

s+
r +

mX
i=1

s�i )

s:t: pf
nX
j=1

~yrj�j � s+
r � ~yrog = 1� �; r = 1; :::; s;

pf
nX
j=1

~xij�j + s�i � �~xiog = 1� �; i = 1; :::;m;

nX
j=1

�j = 1;

s�i � 0; s+
r � 0; i = 1; :::;m; r = 1; :::; s:

�j � 0; j = 1; :::; n;

(3.3)
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where, p denotes \probability" and � is a predetermined number between 0 and 1. On
the basis of normal distribution characteristics, the deterministic model for (3.3) can be
attained as follows:

min � � "(
sX
r=1

s+
r +

mX
i=1

s�i )

s:t:
nX
j=1

yrj�j � s+
r + ��1(�)�or(�) = yro; r = 1; :::; s;

nX
j=1

xij�j + s�i � ��1(�)�Ii (�; �) = �xio; i = 1; :::;m;

nX
j=1

�j = 1;

s�i � 0; s+
r � 0; i = 1; :::;m; r = 1; :::; s;

�j � 0; j = 1; :::; n;

(3.4)

where

(�or(�))2 =
X
j 6=o

X
k 6=o

�j�kcov(~yrj ; ~yrk) + 2(�o � 1)
X
j 6=o

�jcov(~yrj ; ~yro) + (�o � 1)2var(~yro);

and

(�Ii (�; �))2 =
X
j 6=o

X
k 6=o

�j�kcov(~xij ; ~xik) + 2(�o � �)X
j 6=o

�jcov(~xij ; ~xio) + (�o � �)2var(~xio):

Here, � is the cumulative distribution function of the standard normal distribution and
��1(�), is its inverse at the level of �. The above model is a nonlinear programming
model which can be converted into a quadratic programming model.

De�nition 3.1. DMUo is stochastic e�cient if and only if in the optimal solution of
model (3.4) the following conditions are satis�ed:
(i) �� = 1
(ii) Slack values are all zeros.

4 Stochastic ine�cient frontier

Consider n DMUs with stochastic data as de�ned in section 3. The stochastic version of
model (2.1) for evaluating the stochastic ine�ciency score of DMUo, o 2 f1; :::; ng, is as
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follows:
max  

s:t: pf
nX
j=1

~xij�j �  ~xiog � 1� �; i = 1; :::;m;

pf
nX
j=1

~yrj�j � ~yrog � 1� �; r = 1; :::; s;

nX
j=1

�j = 1;

�j � 0; j = 1; :::; n;

(4.5)

The deterministic form of model (4.5) can be attained as follows:b o = max  

s:t:
nX
j=1

xij�j + ��1(�)�Ii (�;  ) �  xio; i = 1; :::;m;

nX
j=1

yrj�j � ��1(�)�or(�) � yro; r = 1; :::; s;

nX
j=1

�j = 1;

�j � 0; j = 1; :::; n:

(4.6)

where

(�or(�))2 =
X
j 6=o

X
k 6=o

�j�kcov(~yrj ; ~yrk) + 2(�o � 1)
X
j 6=o

�jcov(~yrj ; ~yro) + (�o � 1)2var(~yro);

and

(�Ii (�;  ))2 =
X
j 6=o

X
k 6=o

�j�kcov(~xij ; ~xik) + 2(�o �  )
X
j 6=o

�jcov(~xij ; ~xio) + (�o �  )2var(~xio):

The above model can also be converted into a quadratic programming model. To simplify
this model, we can assume that outputs and inputs for di�erent DMUs are independent.
This assumption implies that cov(~xij ; ~xik) = 0 and also cov(~yrj ; ~yrk) = 0 for every j 6= k.

Theorem 4.1. Model (3.3) is feasible for any � level.

Proof. Let � = 1, �o = 1, �j = 0 for all j 6= o. This is a feasible solution for any �
level.

Theorem 4.2. Model (4.6) is feasible for any � level.

Proof. Let  = 1, �o = 1, �j = 0 for all j 6= o. This is a feasible solution for any �
level.

Theorem 4.3. The stochastic ine�ciency score of DMUo is greater than or equal to 1,b o � 1.
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Proof. Let  = 1, �o = 1, �j = 0 for all j 6= o. Then �Ii (�;  ) = 0, �or(�) = 0 and all
constraints of model (4.6) will be satis�ed by this solution. Model (4.6) is a maximization
model, so the proof is completed.

De�nition 4.1. DMUo is located on the ine�cient stochastic frontier if and only if in
the optimal solution of model (4.6), b o = 1.

5 An application

In this section, we consider 10 branches of an Iranian bank with two stochastic inputs and
two stochastic outputs and run the proposed model in order to fully rank the stochastic
e�cient units. In this model, \payable bene�t" and \delayed requisitions" are inputs and
\amount of deposits " and \received bene�t" are outputs. These data, which are obtained
from an observation of ten successive months, have normal distribution and their scaled
parameters are presented in Table 1. We intend to assess the total performance of these
units. In this example, these DMUs have been assessed with two di�erent � levels by
model (3.4) and stochastic e�cient DMUs have been ranked by their ine�ciency score
and applying model (4.6). We consider � = 0:05, i.e., at least 95% con�dence in the
results which is shown in Table 2.

Table 1
Predicted inputs and outputs

inputs outputs
xij N(�; �) xij N(�; �) yrj N(�; �) yrj N(�; �)
X1,1 N(18.79,9.41) X2,1 N(7.28,0.76) Y1,1 N(49.6,6.93) Y2,1 N(4.7,0.64)
X1,2 N(44.3,25.3) X2,2 N(1.11,0.15) Y1,2 N(73.13,3.62) Y2,2 N(1.85,0.15)
X1,3 N(19.73,16.63) X2,3 N(19.2,0.69) Y1,3 N(108.04,15.02) Y2,3 N(6.06,0.12)
X1,4 N(17.43,11.06) X2,4 N(59.47,0.92) Y1,4 N(44.97,3.71) Y2,4 N(4.9,1.29)
X1,5 N(10.38,4.59) X2,5 N(12.23,7.74) Y1,5 N(31.63,6.24) Y2,5 N(2.78,0.66)
X1,6 N(16.67,10.42) X2,6 N(568.63,37.42) Y1,6 N(71.98,8.37) Y2,6 N(13.19,3.03)
X1,7 N(25.46,13.67) X2,7 N(552.85,20.78) Y1,7 N(78.05,13.99) Y2,7 N(7.79,1.89)
X1,8 N(123.06,65.3) X2,8 N(14.78,0.25) Y1,8 N(219.69,19.38) Y2,8 N(35.3,3.92)
X1,9 N(36.16,19.59) X2,9 N(361.88,34.11) Y1,9 N(86.25,6.95) Y2,9 N(17.64,1.92)
X1,10 N(46.41,23.06) X2,10 N(12.81,0.62) Y1,10 N(194.58,42.15) Y2,10 N(25.9,3.52)

Table 2
Results

e�cient DMU b RANK

DMU3 3.432 2
DMU5 2.091 3
DMU6 7.215 1
DMU10 1.117 4

The results in Table 5.2 show that DMU6 has the best ranking score because its
distance from the ine�cient stochastic frontier is more than that of other DMUs, which
can be determine by the objective value of model (4.6).
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6 Conclusion

In DEA, models have been formulated for evaluating e�ciency and ranking DMUs in var-
ious �elds with di�erent data such as: deterministic, interval, fuzzy, etc.data In real world
applications, managers may encounter data which are not deterministic. In such situa-
tions, the need to have a model with the ability to rank DMUs has been well recognized.
Cooper et al. [3] have proposed a model in which DMUs with stochastic data have been
assessed and have thus de�ned the stochastic e�cient DMUs. In the present paper, on
the basis of the ine�ciency score of e�cient DMUs, a model for ranking stochastic e�-
cient DMUs with stochastic data has been presented. In this model, a DMU with greater
distance from the ine�cient stochastic frontier has a better ranking score. The proposed
model is a quadratic programming model and the objective function is a function of �,
which is the level of error that should be determined by the managers. It is noteworthy
to say that, if � increases, the level of reliability of results will decrease. In addition to
the normal distribution, which be used this paper, di�erent other distributions can be
considered from this point of view.
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