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———————————————————————————————-
Abstract
In sciences and industries such as signal optimization, traffic assignment, economic mar-
ket and etc, many problems have been modeled by bilevel programming (BLP) problems,
where in each level one must optimize some objective functions. There are so many algo-
rithms in order to find the global optimum of the linear version of BLP problems.
This paper addresses multi-objective linear bilevel multi-follower programming (MOLBMFP)
problems in which there is no sharing information among followers. It presents a new
method for solving these problems.
Keywords : Bilvel programming; Multi-objective linear bilevel multi-follower programming; Fuzzy
set theory; Fuzzy programming; K th-best algorithm.
————————————————————————————————–

1 Introduction

A bilevel programming (BLP) problem can be considered as the noncooperative, two-
player game, which was first presented by Von Stackelberg [15]. In a basic BLP model, the
control for the decision variables is partitioned amongst the players who seek to optimize
their individual objective functions. The upper level is called the leader and the lower
level is termed as the follower. The game which is said to be ”static” implies that each
player has only one move. The leader goes first and attempts to optimize his objective
function, then the follower reacts in a way that is personally without regard to extramural
effects by observing the leader’s decision.
There are some methods for finding the global optimum of a bilevel programming problem
in which only one leader and a follower are involved and each level has just one objective
function to be optimized. The majority of researches on bilevel programming problems
have been centered on the linear version of the problems, and there have been nearly two
dozen algorithms proposed for solving BLP problems [1, 2, 5, 6, 7]. Some of them are:
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Penalty function approach [12, 16], Genetic algorithm [10, 11], Grid-search algorithm [2]
and the K th-best algorithm [3, 4, 13].
If the feasible region of every linear BLP problem is nonempty and compact, it shares an
important property that at least one optimal (global) solution is attained at an extreme
point of the constraint region [12]. The K th-best method computes the global solution of
linear BLP problems by enumerating the extreme points of the constraint region.
Our previous work presented a new approach to solve multi-objective linear bilevel pro-
gramming problems [9]. this paper is aimed at presenting a method for solving multi-
objective linear bilevel multi-follower programming problems. in section 2, we apply Fuzzy
set theory and Fuzzy programming which was introduced by Zimmerman [17, 18] to con-
vert our problem to a linear bilevel multi-follower programming (LBLMFP) problem. we
express theoretical properties of LBLMFP problem in section 3, and it develops the K th-
best method, to find the global optimum solution of the achieved LBLMFP problem in
section 4. A numerical example is illustrated in section 5 to show the efficiency of the new
approach. We the conclusion is presented in section 6.

2 Converting the multi-objective linear bilevel programming
problem to LBLMFP problem

Consider the model of the MOLBLMFP problem in general as it follows, in which k (k ≥ 2)
followers are involved and there is no sharing information among them except the leader’s.

max
x∈X

{F1(x, y1, y2, . . . , yk), F2(x, y1, y2, . . . , yk), . . . , Fp(x, y1, y2, . . . , yk)}

s.t Ax +
k∑

t=1

Btyt ≤ b

max
yi∈Yi

{f1i(x, yi), f2i(x, yi), . . . , fji(x, yi)}

s.t Alix + Cliyi ≤ bli

(2.1)

where x ∈ X ⊂ ℜn, yi ∈ Yi ⊂ ℜmi , Fr : X × Y1 × . . . × Yk → ℜ1, fli : X × Yi → ℜ1,
i = 1, . . . , k, r = 1, . . . , p, l = 1, . . . , j (p, j are the number of the objective functions
which must be optimized respectively by the leader and the followers.)and A,Bt, Ali, Cli

are appropriate technology matrices. As there is no sharing variables among the followers,
all followers have individual objective functions and constraints.
To change the MOLBLMFP problem (2.1) to a BLMFP problem, first we need to find
upper and also lower bounds for any objective function in the leader’s level and also the
followers’ levels of the MOLBLMFP problem (2.1). One may call ZU

r and ZL
r , respectively

as upper and lower bounds of objective functions of the first level and ZU
li and ZL

li re-
spectively as upper and the lower bounds of objective functions of the followers. with the
aim of doing so, the following problems should be solved for i = 1, 2, . . . , k (based on the
method explained in [18]). Note that the following problems have solutions if the feasible
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region of the leader and the followers is nonempty and compact.

(LP )r max
x∈X

Fr(x, y1, y2, . . . , yk)

(r = 1, . . . , p)

s.t Ax +
k∑

t=1

Btyt ≤ b

(2.2)

(LP )l max
yi∈Yi

fli(x, yi)

(l = 1, . . . , j)
s.t Alix + Cliyi ≤ bli

(2.3)

Let (x[1]∗, y
[1]∗
1 , . . . , y

[1]∗
k ), . . . , (x[p]∗, y

[p]∗
1 , . . . , y

[p]∗
k ) be the solutions of (2.2). Matrix A is

defined as follows:

A =



F1(x[1]∗, y
[1]∗
1 , . . . , y

[1]∗
k ) F2(x[1]∗, y

[1]∗
1 , . . . , y

[1]∗
k ) . . . Fp(x[1]∗, y

[1]∗
1 , . . . , y

[1]∗
k )

F1(x[2]∗, y
[2]∗
1 , . . . , y

[2]∗
k ) F2(x[2]∗, y

[2]∗
1 , . . . , y

[2]∗
k ) . . . Fp(x[2]∗, y

[2]∗
1 , . . . , y

[2]∗
k )

...
...

. . .
...

F1(x[p]∗, y
[p]∗
1 , . . . , y

[p]∗
k ) F2(x[p]∗, y

[p]∗
1 , . . . , y

[p]∗
k ) . . . Fp(x[p]∗, y

[p]∗
1 , . . . , y

[p]∗
k )


The maximum and minimum values in each column of A are shown by ZU

r and ZL
r ,(r =

1, . . . , p), respectively. The difference ZU
r − ZL

r is the constants of admissible violations.
Now we can define a membership function corresponding to each level (the leader and the
followers) for any Fuzzy goal, as the following:
for r = 1, . . . , p

µr(Fr) =



1 Fr(x, y1, . . . , yk) ≥ ZU
r

Fr(x,y1,...,yk)−ZL
r

ZU
r −ZL

r
Z l

r ≤ Fr(x, y1, . . . , yk)− ZL
r ≤ ZU

r

0 Fr(x, y1, . . . , yk)− ZL
r ≤ ZL

r

(2.4)

One must also follow the above process for the followers (by considering (2.3)) thus the
upper and lower bounds of the followers’ objective functions can be denoted by zU

li and zL
li

for i = 1, . . . , k and l = 1, . . . , l, also the membership functions of the followers are defined
as above and are denoted by ϕi(fli(x, yi)) for i =, . . . , k, l = 1, . . . , j. Since membership
functions are the degrees of satisfaction, they must be maximized. So if we consider
λ = min{µ1, . . . , µp} and λi = min{ϕ1, . . . , ϕk},where i = 1, . . . , k is the number of the
followers, then the MOLBLMFP problem (2.1) changes to the LBLMFP problem (2.5) as
follows:

max
x∈X,λ

λ

s.t Ax +
∑k

t=1 Btyt ≤ b

µr(Fr) ≥ λ, r = 1, . . . , p

0 ≤ λ ≤ 1

(2.5)
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max
yi∈Yi,λi

λi

s.t Alix + Cliyi ≤ bli

ϕi(fli(x, yi)) ≥ λi, l = 1, . . . , j

0 ≤ λi ≤ 1

By substituting the membership functions from (2.4) to (2.5), the LBLMFP problem (2.5)
changes to:

max
x∈X,λ

λ

s.t Ax +
∑k

t=1 Btyt ≤ b

Fr(x, y1, . . . , yk)− (ZU
r − ZL

r )λ ≥ ZL
r , r = 1, . . . , p

0 ≤ λ ≤ 1

max
yi∈Yi,λi

λi

s.t Alix + Cliyi ≤ bli

fli(x, yi)− (zU
li − zL

li)λi ≥ zL
li , l = 1, . . . , j, i = 1, . . . , k

0 ≤ λi ≤ 1

(2.6)

Now we have a LBLMFP problem, in which, x ∈ X ⊂ ℜn and λ ∈ [0, 1] are the decision
variables for the leader and yi ∈ Yi ⊂ ℜmi and λi ∈ [0, 1] for i = 1, . . . , k are the decision
variables for the followers.

3 Theoretical properties of LBLMFP problem

The K th-best algorithm is aimed at investigating the constraint region of the LBLP
problem to find the optimal solution at a vertex of the constraint region. Now we explore
the definitions expressed in [12, 13] for the LBLMFP problem (2.6).

Constraint region of the linear BLMFP problem (2.6) is defined as follows:

S = {(x, y1, . . . , yk, λ, λi)|Ax +
k∑

t=1

Btyt ≤ b, Fr(x, y1, . . . , yk)− (ZU
r − ZL

r )λ ≥ ZL
r ,

Alix + Cliyi ≤ bli, fli(x, yi)− (zU
li − zL

li)λi ≥ zL
li , 0 ≤ λ ≤ 1,

0 ≤, λi ≤ 1, i = 1, . . . , k, l = 1, . . . , j, r = 1, . . . , p}

The linear BLFMP problem constraint region refers to all possible combinations of choices
that the leader and the followers may make.
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Denote the projection of S onto the leader’s decision space by S(X) and the feasible
set for each follower for all (x, λ) ∈ S(X), these two sets are defined as follows:

S(X) = {(x, λ)|x ∈ X,λ ∈ [0, 1] : ∃yi ∈ Yi,∃λi ∈ [0, 1], (x, y1, . . . , yk, λ, λi) ∈ S, i = 1, . . . , k}

(Constraints of the leader and the followers are satisfied.)

Si(x) = {yi ∈ Yi, λi ∈ [0, 1] : (x, y1, . . . , yk, λ, λi) ∈ S, i = 1, . . . , k}

Now we define for each follower, the rational reaction set for any (x, λ) ∈ S(X) as the
following:

Pi(x) = {yi ∈ Yi, λi ∈ [0, 1] : (yi, λi) ∈ argmin[λi : (yi, λi) ∈ Si(x)], i = 1, . . . , k}

Pi(x) is equivalent to the set of the solutions of the following problem for any (x, λ) ∈ S(X)
and i = 1, 2, . . . , k:

max
yi∈Yi,λi

λi

s.t Ax +
k∑

t=1

Btyt ≤ b

Fr(x, y1, . . . , yk)− (ZU
r − ZL

r )λ ≥ ZL
r , r = 1, . . . , p

0 ≤ λ ≤ 1

Alix + Cliyi ≤ bli

fli(x, yi)− (zU
li − zL

li)λi ≥ zL
li , l = 1, . . . , j, i = 1, . . . , k

0 ≤ λi ≤ 1

(3.7)

The followers select yi and λi from their objective functions by considering the leader’s
action. Now we present the Inducible Region of the problem (2.6) by:

IR = {(x, y1, . . . , yk, λ, λi) :∈ (x, y1, . . . , yk, λ, λi) ∈ S, (yi, λi) ∈ Pi(x), i = 1, . . . , k}

To ensure that (2.6) has an optimal solution, the following assumptions must be considered:

(i) S is nonempty and compact.

(ii) Pi(x) is nonempty,(i.e. Pi(x) ̸= ∅).

(iii) Pi(x), is a point to point map from S(X) to Ki which Ki ⊆ Si(x)(otherwise some
difficulties may appear, which are explained in [2, 8]).

Thus in terms of the above definitions and notations, the LBLMFP problem (2.6) can be
written as [14]:

max{λ : (x, y1, . . . , yk, λ, λi) ∈ IR} (3.8)

Every theorem for LBLMFP problems satisfies MOLBLMFP problems as well. Since
we made the LBLMFP problem (2.6) from MOLBLMFP problem (2.1), these two are
equivalents. The most important theorems are:
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Theorem 3.1. If S is nonempty and compact, there exists an optimal solution for a linear
BLMFP problem.

Proof: Since S is nonempty and compact, there exists a point (x∗, y∗1, . . . , y
∗
k, λ

∗, λ∗
i ) ∈

S. Then by the definition of the projection of S onto the leader’s decision space, we have

(x∗, λ∗) ∈ S(X) ̸= ∅

Consequently by the definition of the feasible set for each follower Si(x∗) ̸= ∅. Also by
the definition of each follower’s rational reaction set, we have Pi(x∗) ̸= ∅. Hence there
exists (y0i , λ0i) ∈ Pi(x∗) for all i = 1, 2, . . . , k such that (x∗, y∗01

, . . . , y∗0k
, λ∗, λ∗

0i
) ∈ S for

all i = 1, 2, . . . , k. Therefore, we have IR ̸= ∅ by the definition of Inducible Region. Since
we are optimizing a linear function over IR (by (3.8)) which is nonempty and bounded,
an optimal solution to the linear BLMFP problem must exist.

Theorem 3.2. [14], A solution for the linear BLMFP problem occurs at a vertex of IR.

Theorem 3.3. [14], The solution of the linear BLMFP problem occurs at a vertex of S.

4 The K th-best algorithm

Section 3 implies that we are efficiently able to find an optimal solution for a linear
MOBLMFP problem, by searching the constraint region S. Thus, first we should arrange
all the extreme points in S according to the leader’s objective function (step 1 in the algo-
rithm), then check the first extreme point, if it is on the Inducible Region IR. Therefore,
if yes, according to (3.8), the current extreme point is the optimal solution (step 2 in
the algorithm). Otherwise, the next extreme point is selected and examined (step 3 and
step 4 in the algorithm). Now for solving (2.6) we can present the steps of the K th-best
algorithm as the following:

Step 1. Put q ← 1. Solve the problem max{λ : (x, y1, . . . , yk, λ, λi) ∈ S, i = 1, 2, . . . , k}
with the simplex method to obtain the optimal solution (x[1], y

[1]
1 , . . . , y

[1]
k , λ[1], λ

[1]
i ).

Let W = {(x[1], y
[1]
1 , . . . , y

[1]
k , λ[1], λ

[1]
i )} and T = ∅. Go to Step 2.

Step 2. Solve (3.7) by the assumption x = x[q], λ = λ[q] with the simplex method to
obtain the optimal solution (ỹi, λ̃i) for all i = 1, 2, . . . , k and check If (ỹi, λ̃i) =
(y[q]

i , λ
[q]
i ). In case of having multiple optimal solution for (2.6) (like ỹi1 , . . . , ỹit),

it should be checked if ∃t0 : ỹit0
= yq

i ,then ỹit0
should be selected as the solution.

(x[q], y
[q]
1 , . . . , y

[q]
k , λ[q], λ

[q]
i ) is the global optimum of (2.1). Otherwise go to Step 3.

Step 3. Let W[q] denote the set of adjacent extreme points of (x[q], y
[q]
1 , . . . , y

[q]
k , λ[q], λ

[q]
i )

such that (x, y1, . . . , yk, λ, λi) implies λ ≤ λ[q]. Let T = T∪{(x[q], y
[q]
1 , . . . , y

[q]
k , λ[q], λ

[q]
i )}

and W = (W ∪W[q]) \ T . Go to Step 4.

Step 4. Set q ← q + 1 and choose (x[q], y
[q]
1 , . . . , y

[q]
k , λ[q], λ

[q]
i ) so that

λ[q] = max{λ : (x, y1, . . . , yk, λ, λi) ∈W}

Go to Step 2.
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5 Numerical Example

In this section, we apply the mentioned method to show its efficiency. So Consider the
following MOLBLMFP problem.

Example 5.1. Consider the following MOLBLMFP problem with x ∈ X ⊂ ℜ1, y1 ∈ Y1 ⊂
ℜ1, y2 ∈ Y2 ⊂ ℜ1 and X = {x ≥ 0}, Y1 = {y1 ≥ 0}, Y2 = {y2 ≥ 0}

max
x∈X

(x + 2y1 + 3y2, y1 − y2)

s.t x + 2y1 + 3y2 ≤ 6

y1 ≤ 2

max
y1∈Y1

(x + y1, y1)

s.t x + y1 ≤ 3

y1 ≤ 1

max
y2∈Y2

(x + y2, y2)

s.t x + y2 ≤ 4

y2 ≤ 2

(5.9)

The leader’s constraint region can be shown in the fig. 1 and the constraint regions of the
first follower and the second follower are respectively presented at the Fig.2 and Fig.3.

Fig. 1. The leader’s constraint region.

Fig. 2. (a) The first follower’s constraint region, (b) The second follower’s constraint region
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As it is viewed in the figures, The leader’s and each followers’ constraint region are
nonempty and compact, thus first we are able to convert (5.9) to a linear BLMFP problem
by using the method in section 2. So, the following problem can be set easily.

max
x∈X,λ

λ

s.t x + 2y1 + 3y2 ≤ 6

y1 ≤ 2

x + 2y1 + 3y2 − 2λ ≥ 4

y1 − y2 − 2λ ≥ 0

0 ≤ λ ≤ 1

max
y1∈Y1,λ1

λ1

s.t x + y1 ≤ 3

y1 ≤ 1

x + y1 − 2λ1 ≥ 1

y1 − λ1 ≥ 0

0 ≤ λ1 ≤ 1

max
y2∈Y2,λ2

λ2

s.t x + y2 ≤ 4

y2 ≤ 2

x + y2 − 2λ2 ≥ 2

y2 − 2λ2 ≥ 0

0 ≤ λ2 ≤ 1

(5.10)

Note that (5.10) is a linear BLMFP problem. Now according to the theorems in section 3,
since the constraint region of the linear BLMFP problem (5.10) is nonempty and compact,
there exists an optimal solution (5.10) at a vertex of S. Now for finding the optimal
solution of (5.10) we apply the Kth-best algorithm, expressed in section 4. According to
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the Kth-best approach, the example can be rewritten as follows:

max
x∈X,λ

λ

s.t x + 2y1 + 3y2 ≤ 6

y1 ≤ 2

x + 2y1 + 3y2 − 2λ ≥ 4

y1 − y2 − 2λ ≥ 0

0 ≤ λ ≤ 1

x + y1 ≤ 3

y1 ≤ 1

x + y1 − 2λ1 ≥ 1

y1 − λ1 ≥ 0

0 ≤ λ1 ≤ 1

x + y2 ≤ 4

y2 ≤ 2

x + y2 − 2λ2 ≥ 2

y2 − 2λ2 ≥ 0

0 ≤ λ2 ≤ 1

Step 1, set q = 1 and solve the above problem with the simplex method to obtain the
optimal solution

(x[1], y
[1]
1 , y

[1]
2 , λ[1], λ

[1]
1 , λ

[1]
2 ) = (2, 1, 0.25, 0.375, 0, 0)
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Let W = (2, 1, 0.25, 0.375, 0, 0) and T = ∅. Go to Step 2.
Iteration 1:
Setting i← 1 and by (3.7), we have

max λ1

s.t x + 2y1 + 3y2 ≤ 6

y1 ≤ 2

x + 2y1 + 3y2 − 2λ ≥ 4

y1 − y2 − 2λ ≥ 0

0 ≤ λ ≤ 1

x + y1 ≤ 3

y1 ≤ 1

x + y1 − 2λ1 ≥ 1

y1 − λ1 ≥ 0

0 ≤ λ1 ≤ 1

x + y2 ≤ 4

y2 ≤ 2

x + y2 − 2λ2 ≥ 2

y2 − 2λ2 ≥ 0

0 ≤ λ2 ≤ 1

x = 2

λ = 0.375

Using the simplex method we have (ỹ1, λ̃1) = (1, 1) . Because (ỹ1, λ̃1) ̸= (y[1]
1 , λ

[1]
1 ) we go

to Step 3. we have

W[1] = {(2, 1, 0.25, 0.375, 0, 0), (2, 1, 0.25, 0.375, 1, 0), (2, 1, 0.25, 0.375, 0, 0.125)

, (2, 1, 0.667, 0.167, 0, 0), (2, 1, 0, 0, 0, 0), (1.667, 1, 0.333, 0.333, 0, 0), (2.75, 0.25, 0.25, 0, 0, 0)}

and T = {(2, 1, 0.25, 0.375, 0, 0)} thus

W = {(2, 1, 0.25, 0.375, 1, 0), (2, 1, 0.25, 0.375, 0, 0.125), (2, 1, 0.667, 0.167, 0, 0), (2, 1, 0, 0, 0, 0)

, (1.667, 1, 0.333, 0.333, 0, 0), (2.75, 0.25, 0.25, 0, 0, 0)}

Then go to Step 4. Update q = 2 and choose

(x[2], y
[2]
1 , y

[2]
2 , λ[2], λ

[2]
1 , λ

[2]
2 ) = (2, 1, 0.25, 0.375, 1, 0),
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then go to Step 2.
Iteration 2:
Setting i← 1 and by (3.7), we have

max λ1

s.t x + 2y1 + 3y2 ≤ 6

y1 ≤ 2

x + 2y1 + 3y2 − 2λ ≥ 4

y1 − y2 − 2λ ≥ 0

0 ≤ λ ≤ 1

x + y1 ≤ 3

y1 ≤ 1

x + y1 − 2λ1 ≥ 1

y1 − λ1 ≥ 0

0 ≤ λ1 ≤ 1

x + y2 ≤ 4

y2 ≤ 2

x + y2 − 2λ2 ≥ 2

y2 − 2λ2 ≥ 0

0 ≤ λ2 ≤ 1

x = 2

λ = 0.375
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Using the simplex method we have (ỹ1, λ̃1) = (1, 1) . Because (ỹ1, λ̃1) = (y[1]
1 , λ

[1]
1 ) setting

i← i + 1 and by (3.7) we have

max λ2

s.t x + 2y1 + 3y2 ≤ 6

y1 ≤ 2

x + 2y1 + 3y2 − 2λ ≥ 4

y1 − y2 − 2λ ≥ 0

0 ≤ λ ≤ 1

x + y1 ≤ 3

y1 ≤ 1

x + y1 − 2λ1 ≥ 1

y1 − λ1 ≥ 0

0 ≤ λ1 ≤ 1

x + y2 ≤ 4

y2 ≤ 2

x + y2 − 2λ2 ≥ 2

y2 − 2λ2 ≥ 0

0 ≤ λ2 ≤ 1

x = 2

λ = 0.375

Using the simplex method we have (ỹ2, λ̃2) = (0.25, 0.125) . Because (ỹ2, λ̃2) ̸= (y[2]
1 , λ

[2]
1 )

we should continue the algorithm by Step 3. If we follow the Steps of the algorithm as as be-
fore, the optimal solution is obtained at the point (x∗, y∗1, y

∗
2, λ

∗, λ∗
1, λ

∗
2) = (2, 1, 0.25, 0.375, 1, 0.125)

and therefore we get the optimal objective values as follows:
x + 2y1 + 3y2 = 4.75
y1 − y2 = 0.75
x + y1 = 3
y1 = 1
x + y2 = 2.25
y2 = 0.25
The solution shows that the leader gains 37.5 percent of his Fuzzy goal, the first follower
gains 100 percent and the seccond follower gains only 12.5 percent, but it must be noted
that this is the maximum degree of satisfaction that they can obtain.
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6 Conclusion

This paper presented a method to find the global optimal solution of the multi-objective
linear bilevel multi-follower programming problems in which there are no sharing variables
except the leader’s, by using Fuzzy programming and K th-best algorithm and a numerical
example was presented at the end. If the constraint regions of the leader and all the
followers are non-empty and compact we are able to solve any linear multi-objective bilevel
programming problems.

It might suggest that this approach can be adopted to solve non-linear problems. Also
we can use this method for solving MOLBLMFP problems in which there are sharing
variables among followers.
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