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Abstract

The present study is an attempt to find a solution for Volterra’s Population Model by utilizing Spectral
methods based on Rational Christov functions. Volterra’s model is a nonlinear integro-differential
equation. First, the Volterra’s Population Model is converted to a nonlinear ordinary differential
equation (ODE), then researchers solve this equation (ODE).The accuracy of method is tested in
terms of RES error and compare the obtained results with some well-known results.The numerical
results obtained show that the proposed method produces a convergent solution.
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1 Introduction

M
any problems arising in science and engineer-
ing are set in unbounded domain. Spec-

tral methods have been successfully applied in the
approximation of ordinary differential equations
(ODEs) defined in unbounded domains in recent
years[17, 18, 13, 15, 20].

1.1 Spectral Methods

Different spectral methods can be applied to solve
ODEs in unbounded domains, The first approach
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using orthogonal functions over the unbounded
domains were Sinc, Hermite and Laguerre poly-
nomials [9]. The second approach is to reformu-
late original problems in unbounded domains to
singular problems in bounded domains by vari-
able transformations, and then to use suitable
Jacobi polynomials to approximate the result-
ing singular problems [10]. The third approach
is to replacing infinite domain with [−L,L] and
semi-infinite interval with [0, L] by choosing L,
sufficiently large. This method is named as do-
main truncation [4].The fourth approach for solv-
ing such problems is based on Rational approx-
imations. Christov[6] and Boyd[2, 3] developed
some spectral methods on unbounded intervals
by using mutually orthogonal systems of ratio-
nal functions. Boyd [3] defined a new spectral
basis, named rational Chebyshev functions on
the semi-infinite interval, by suitable mapping to
the Chebyshev polynomials. Guo and Shen [11]
proposed and analyzed a set of Legendre ratio-
nal functions which are mutually orthogonal in
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L2(0,∞).Authors of [1] compared rational and
exponential Legendre functions Tau approach to
solve the governing equations for the flow of a
third grade fluid in a porous half space. Boyd
[5] applied pseudo-spectral methods on a semi-
infinite interval and compared rational Cheby-
shev, Laguerre and mapped Fourier sine [20].

1.2 Volterra’s Population Model

Attempts to explain the balance of nature
through mathematics began to appear around the
turn of the century. A simple set of differential
equations to describe malaria epidemics was pro-
posed by Ross [23]. Martini improved these equa-
tions by allowing for the immunity of individu-
als who had recovered from infection [8]. The
Volterra model for population growth of a species
within a closed system is given in [24, 26, 28] as:

κ
du

dt
= u− u2 − u

∫ t

0
u(x)dx, u(0) = u0 (1.1)

where u(t) is the scaled population of identical
individuals at a time t, and κ = c

ab is a prescribed
non-dimensional parameter. Moreover, a > 0 is
the birth rate coefficient, b > 0 is the crowding
coefficient, and c > 0 is the toxicity coefficient.
The coefficient c indicates the essential behavior
of the population evolution before its level falls
to zero in the long term. One may show that the
only equilibrium solution of (1.1) is the trivial
solution u(t) = 0. Furthermore, the analytical
solution [25]

u(t) = u0 exp(
1

κ

∫ t

0
[1− u(τ)−

∫ τ

0
u(x)dx]dτ),

(1.2)
shows that u(t) > 0 for all u0 > 0 [22].

The solution of Eq. (1.1) has been consider-
able concerned. Although a closed form solution
was achieved in [25, 26], it was formally shown
that the closed form solution cannot lead to any
insight into the behavior of the population evolu-
tion [28]. Some approximate and numerical solu-
tions for Volterra’s population model have been
reported. In Ref. [24], the successive approxima-
tions method was offered for the solution of Eq.
1.1, but was not implemented. In [25], the singu-
lar perturbation method for Volterra’s population
model is considered. It is shown in [25] that for
the case κ << 1, where populations are weakly
sensitive to toxins, a rapid rise occurs along the

logistic curve that will reach a peak and be fol-
lowed by a slow exponential decay. And, for κ
large, where populations are strongly sensitive to
toxins, the solution is proportional to sech2(t).
In this case the solution u(t) has a smaller am-
plitude compared to the amplitude of u(t) for the
case κ << 1. In [26], three numerical algorithms,
namely the Euler method, the modified Euler
method and a fourth order Rung-Kutta method,
have been used for Eq. 1.1. Recently, some
researchers employed spectral methods to solve
Volterras Population Model for example [22, 16]
; also, some researchers have used the analytical
methods for approximating this problem[28, 12].

In the present paper, we utilized Christov func-
tions to solve Volterra’s Population Model by col-
location method.

The rest of this paper is organized as follows:
In Section 2, the researchers have described ra-
tional Christov functions. In section 3, Volterra’s
Population Model has converted to a nonlinear
ordinary differential equation (ODE). In section
4, the presented method has applied to solve
Volterra’s Population Model. The researchers
have shown the approximate solutions and com-
pared it with other results. The last part of this
study described several concluding remarks.

2 Rational Christov functions

The system

ρn =
1√
π

(ix− 1)n

(ix+ 1)n+1 n = 0, 1, 2... , i =
√
−1,

(2.3)
was introduced by Wiener as Fourier transform
of the Laguerre functions (functions of parabolic
cylinder). Higgins defined it also for negative in-
dices n and proved its completeness and orthog-
onality [7]. Christov invented a new system, the
new system is comprised a two real-valued subse-
quences of odd functions Sn and even functions
Cn with asymptotic behavior x−1 and x−2 respec-
tively, namely [6, 7]:

Sn =
ρn + ρ−n−1

i
√
2

, n = 0, 1, 2... , (2.4)

Cn =
ρn − ρ−n−1√

2
, n = 0, 1, 2... . (2.5)

Both sequences are orthonormal and each
member of (2.4) is orthogonal to all members
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of (2.5); each member of (2.5) is also orthogonal
to all members of (2.4). it is worth mentioning
that (2.4) and (2.5) can be defined for negative n
through the relations [6]

S−n = Sn−1 and C−n = −Cn−1. (2.6)

The functions Sn and Cn can be easily ex-
pressed in an explicit way[6]:

Sn =

√
2

π

∑n+1
k=1 x

2k−1(−1)n+k
(
2n+1
2k−1

)
(x2 + 1)n+1

(2.7)

Cn =

√
2

π

∑n+1
k=1 x

2k−2(−1)n+k+1
(
2n+1
2k−2

)
(x2 + 1)n+1

(2.8)

For more details and explanation about Christov
Functions and its properties, see [6, 17].

2.1 Function Approximation

For any function, f in L2(−∞,∞) can be written
as follows:

f(x) =

∞∑
i=0

aiϕi(x), (2.9)

where ϕi is the Cn or Sn function. The function
f can be expanded as follows [7]:

f(x) =

∞∑
i=0

(aiCi(x) + biSi(x)) (2.10)

If the infinite series in Eq (2.9,2.10) is truncated
with N terms, then it can be written as follows
[27]:

fN (x) ≃
N∑
i=0

aiϕi(x) (2.11)

fN (x) ≃
N∑
i=0

(aiCi(x) + biSi(x)) (2.12)

where ϕi is the Cn or Sn function.

3 Converting Volterra’s Popu-
lation Model to a Nonlinear
ODE

The researchers convert Volterra’s Population
Model in Eq (1.1) to an equivalent nonlinear or-
dinary differential equation, let:

y(x) =

∫ x

0
u(t)dt, (3.13)

this leads to:

y′(x) = u(x), (3.14)

y′′(x) = u′(x). (3.15)

inserting Eqs. (3.13, 3.14, 3.15) into Eq (1.1)
yields the nonlinear differential equation

κy′′(x) = y′(x)− (y′(x))2 − y(x)y′(x), (3.16)

with initial conditions:

y(0) = 0 , y′(0) = u0 , (3.17)

obtained via Eqs. (3.13) and (3.14) respectively
[22] .

4 Solving Problem

In this section, we try to solve Volterra’s Pop-
ulation Model by using collocation method. We
multiply series (2.12) to x2, and also we construct
a function p(x) to satisfy the conditions (3.17),
given by

p(x) = u0x (4.18)

Therefore, the approximate solution of y(x), to
solve Eq (3.16) with conditions, Eq (3.17), be-
come:

ŷ(x) = u0x+ x2
N∑
i=0

(aiCi(x) + biSi(x)) (4.19)

Hence, ŷ(0) = 0 and dŷ(x)
dx = u(0) .

We construct the residual function by substi-
tuting y(x) by ŷ(x) in Eq.(3.16)

Res(x) = κ
d2ŷ(x)

dx2
− dŷ(x)

dx
+ (

dŷ(x)

dx
)2

+ ŷ(x)
dŷ(x)

dx
. (4.20)

A method for forcing the residual function
(4.20) to zero is Collocation algorithm. With
collocating {xk}2N+1

k=0 to residual function (4.20),
we have 2N + 2 equations and 2N + 2 unknown
coefficients (spectral coefficients), in all of
spectral methods, the purpose is to find these
coefficients. In shape of algorithmic for solving
equation (3.16), we do [19]:

BEGIN

1. Input N .
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Table 1: A comparison of present method with the exact value for umax

κ Exact umax

0.04 0.873719
0.10 0.769741
0.20 0.659050
0.50 0.485190

N=4
Presented method |Res(x)|2

0.7998379 1.81e− 3
0.7569857 5.72e− 4
0.6590674 3.64e− 7
0.4851861 2.90e− 7

N=6
Presented method |Res(x)|2

0.872953 5.18e− 5
0.768926 3.45e− 7
0.659050 2.18e− 8
0.485190 1.01e− 9

N=5
Presented method |Res(x)|2

0.829863 1.80e− 4
0.768735 4.55e− 7
0.659057 9.84e− 8
0.485190 1.55e− 7

N=7
Presented method |Res(x)|2

0.873408 7.64e− 7
0.769488 6.37e− 8
0.659050 7.23e− 10
0.485190 1.72e− 11

Table 2: A comparison of method in [22, 28, 14] and the present method with the exact values for umax.

κ N Exact umax Present method ADM[28] TAU[22] GA-IRBF [14]

0.04 7 0.873719 0.873408 0.861240 0.873708 0.873719
0.10 7 0.769741 0.769488 0.765113 0.769734 0.769741
0.20 6 0.659050 0.659050 0.657912 0.659045 0.659050
0.50 5 0.485190 0.485190 0.485282 0.485188 0.485190

2. Construct the series (2.12)

3. Construct the Eq.(4.19) to satisfy conditions
(3.17)

4. Construct the Residual function (4.20) by
substituting y(x) by Eq.(4.19) in Eq.(3.16)

5. Choice {xi}, i = 0, 1, ..., 2N+1 as collocation
points.

6. By substituting collocation points in
Res(x; a0, a1, ..., an, b0, b1, ..., bn), we con-
struct a system containing 2N+2 equations.

7. By solving obtained system of equations in
step 6, via Newton’s method and gain the
an, bn n = 0, 1, ..., N .

END

The researchers solve the Eq. (3.16) with
u0 = 0.1 and κ = 0.04, 0.1, 0.2, 0.5, and
also evaluate important values umax. Table 1
represents the obtained values by present method
with results obtained in [28, 22], and compare
umax with exact values obtained by [26]:

umax = 1 + κ ln(
κ

1 + κ− u0
). (4.21)

Figure 1: Graph of the approximated y(x) of
Volterra’s Population Model (ODE), with data
in Table 1, and rational Christov functions basis
function.

5 Conclusion

In this paper, the researchers converted
integro-ordinary differential equation to a non-
linear ordinary differential equation (ODE). The
method used in this study was rational Chris-
tov functions. This method solved the prob-
lem on the infinite domain without truncating
it to a finite domain and transforming domain
of the problem to a finite domain. Additionally,
through the comparison with other methods, we
have shown that the both of the presented ap-
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proaches have good reliability and efficiency.
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