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Abstract
In this paper, we propose a new approximate method, namely homotopy analysis sumudu
transform method (HASTM) to solve various linear and nonlinear Fokker-Planck equa-
tions. The homotopy analysis sumudu transform method is a combined form of the sumudu
transform method and the homotopy analysis method. The proposed technique finds the
solution without any discretization or restrictive assumptions and avoids the round-off
errors. The results obtained by the proposed method show that the approach is very
efficient, simple and can be applied to other nonlinear problems.
Keywords: Sumudu transform; Homotopy analysis method; Homotopy analysis sumudu transform

method; Linear and nonlinear Fokker-Planck equations

——————————————————————————————————

1 Introduction

Non-linear phenomena, that appear in many areas of scientific fields such as solid state
physics, plasma physics, fluid mechanics, population models and chemical kinetics, can
be modeled by nonlinear differential equations. In many different fields of science and
engineering, it is important to obtain exact or numerical solution of the nonlinear partial
differential equations. Searching of exact and numerical solution of nonlinear equations in
science and engineering is still quite problematic that’s need new methods for finding the
exact and approximate solutions. Various powerful mathematical methods such as Ado-
mian decomposition method (ADM) [1,6,7,39], homotopy perturbation method (HPM)
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[3,6,7,11,14,18,40], homotopy analysis method (HAM) [6,7,12,23,25,26,27,28,29,33], vari-
ational iteration method (VIM) [6,7,15,16,17,19], Laplace decomposition method (LDM)
[20,24,37,41], homotopy perturbation transform method (HPTM) [22], homotopy pertur-
bation sumudu transform method (HPSTM) [34] and homotopy analysis transform method
(HATM) [21] have been proposed to obtain exact and approximate analytical solutions of
nonlinear equations.

Inspired and motivated by the ongoing research in this area, we introduce a new ap-
proximate method, namely homotopy analysis sumudu transform method (HASTM) for
solving the nonlinear equations in this article. It is worth mentioning that the proposed
method is an elegant combination of sumudu transform method and homotopy analysis
method. It provides the solutions in terms of convergent series with easily computable
components in a direct way without using linearization, perturbation or restrictive as-
sumptions. The advantage of this method is its capability of combining two powerful
methods for obtaining exact and approximate analytical solutions for nonlinear equations.
This paper considers the effectiveness of the homotopy analysis sumudu transform method
(HASTM) in solving linear and nonlinear Fokker-Planck equations.

2 Sumudu transform

In early 90’s, Watugala [38] introduced a new integral transform, named the sumudu trans-
form and applied it to the solution of ordinary differential equation in control engineering
problems. The sumudu transform is defined over the set of functions

A = {f(t) | ∃M, τ1, τ2 > 0, | f (t) | < M e|t|/τj , if t ∈ (− 1)j × [0,∞)}

by the following formula

f̄(u) = S [f(t)] =

∫ ∞

0

f (ut) e−t dt, u ∈ (− τ1, τ2). (2.1)

For further detail and properties of this transform, see [2,4,5].

3 Fokker-Planck equation

The Fokker-Planck equation was first introduced by Fokker and Planck to describe the
Brownian motion of particles [31]. This equation has been used in different fields in natural
sciences such as quantum optics, solid state physics, chemical physics, theoretical biology
and circuit theory. Fokker-Planck equations describe the erratic motions of small particles
that are immersed in fluids, fluctuations of the intensity of laser light, velocity distribu-
tions of fluid particles in turbulent flows and the stochastic behavior of exchange rates.
In general, Fokker-Planck equations can be applied to equilibrium and nonequilibrium
systems [9,13,30,36]. The general form of Fokker-Plank equation is

∂U

∂t
=

[
− ∂

∂x
A(x) +

∂2

∂x2
B(x)

]
U, (3.2)

with the initial condition

U(x, 0) = f(x), x ∈ R
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where U(x, t) is an unknown function, A(x) and B(x) are called diffusion and drift coef-
ficients, such that B(x) > 0. The diffusion and drift coefficients in equation (3.2) can be
functions of x and t as well as

∂U

∂t
=

[
− ∂

∂x
A(x, t) +

∂2

∂x2
B(x, t)

]
U. (3.3)

Equation (3.2) is also well known as a forward Kolmogorov equation. There exists another
type of this equation is called a backward one as [31]:

∂U

∂t
=

[
−A(x, t)

∂

∂x
+B(x, t)

∂2

∂x2

]
U. (3.4)

A generalization of equation (3.2) to N-variables of x1, x2, ..., xN , yields to

∂U

∂t
=

− N∑
i=1

∂

∂xi
Ai(x) +

N∑
i,j=1

∂2

∂xi∂xj
Bi,j(x)

 U, (3.5)

with the initial condition

U(x, 0) = f(x), x = (x1, x2, ...xN ) ∈ RN .

The nonlinear Fokker-Planck equation is a more general form of linear one which has
also been applied in vast areas such as plasma physics, surface physics, astrophysics,
the physics of polymer fluids and particle beams, nonlinear hydrodynamics, theory of
electronic-circuitry and laser arrays, engineering, biophysics, population dynamics, human
movement sciences, neurophysics, psychology and marketing [10]. The nonlinear form of
the Fokker-Planck equation can be expressed in the following form:

∂U

∂t
=

[
− ∂

∂x
A(x, t, U) +

∂2

∂x2
B(x, t, U)

]
U. (3.6)

A generalization of equation (3.6) with N-variables of x1, x2, ..., xN , yields to

∂U

∂t
=

− N∑
i=1

∂

∂xi
Ai(x, t, U) +

N∑
i,j=1

∂2

∂xi∂xj
Bi,j(x, t, U)

 U. (3.7)

4 Basic idea of homotopy analysis method (HAM)

In order to show the basic idea of HAM, consider the following differential equation:

N [U(x, t)] = 0, (4.8)

where N is a nonlinear operator, x and t denote the independent variables and U is an
unknown function. For simplicity, we ignore all boundary or initial conditions, which can
be treated in the similar way. By means of the HAM, we first construct the so-called
zeroth-order deformation equation as

(1− q)L [ϕ(x, t ; q)− U0(x, t)] = ~ qH(x, t)N [U(x, t )], (4.9)
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where q ∈ [0, 1] is the embedding parameter, ~ ̸= 0 is an auxiliary parameter, L is an
auxiliary linear operator, ϕ(x, t ; q) is an unknown function, U0(x, t) is an initial guess of
U(x, t) and H(x, t) denotes a nonzero auxiliary function. Obviously, when the embedding
parameter q = 0 and q = 1, it holds

ϕ(x, t ; 0) = U0(x, t), ϕ(x, t ; 1) = U(x, t), (4.10)

respectively. Thus as q increases from 0 to1, the solution ϕ(x, t ; q) varies from the initial
guess U0(x, t) to the solution U(x, t). Expanding ϕ(x, t ; q) in Taylor series with respect to
q, we have

ϕ(x, t ; q) = U0(x, t) +
∞∑

m=1

Um(x, t) qm, (4.11)

where

Um(x, t) =
1

m !

∂mϕ(x, t ; q)

∂qm
|q=0. (4.12)

If the auxiliary linear operator, the initial guess, the auxiliary parameter ~, and the aux-
iliary function are properly chosen, the series (4.11) converges at q = 1, then we have

U(x, t) = U0(x, t) +

∞∑
m=1

Um(x, t), (4.13)

which must be one of the solutions of the original nonlinear equations. According to the
definition (4.13), the governing equation can be deduced from the zero-order deformation
(4.9). Define the vectors

U⃗m = {U0(x, t), U1(x, t), ..., Um(x, t)}. (4.14)

Differentiating the zeroth-order deformation equation (4.9) m-times with respect to q and
then dividing them by m! and finally setting q = 0, we get the following mth-order
deformation equation:

L [Um(x, t)− χmUm−1(x, t)] = ~H(x, t)ℜm(U⃗m−1), (4.15)

where

ℜm(U⃗m−1) =
1

(m− 1)!

∂m−1N [ϕ(x, t ; q)]

∂qm−1
|q=0, (4.16)

and

χm =

{
0, m ≤ 1,
1, m > 1.

(4.17)
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5 Homotopy analysis sumudu transform method (HASTM)

To illustrate the basic idea of this method, we consider an equation N [U(x)] = g(x), where
N represents a general nonlinear ordinary or partial differential operator including both
linear and nonlinear terms. The linear terms are decomposed into L+R, where L is the
highest order linear operator and R is the remaining of the linear operator. Thus, the
equation can be written as

LU +RU +N U = g(x), (5.18)

where NU , indicates the nonlinear terms.
By applying the sumudu transform on both sides of equation (5.18), we get

S [L U ] + S [RU ] + S [N U ] = S [g(x)]. (5.19)

Using the differentiation property of the sumudu transform, we have

S [U ]

un
−

n−1∑
k=0

U (k)(0)

u(n−k)
+ S [RU ] + S[N U ] = S[g(x)]. (5.20)

On simplifying

S [U ]− un
n−1∑
k=0

U (k)(0)

u(n−k)
+ un [S [RU ] + S[N U ]− S[g(x)]] = 0. (5.21)

We define the nonlinear operator

N [ϕ(x, t; q)] = S [ϕ(x, t; q)]− un
n−1∑
k=0

ϕ(k)(x, t; q)(0)

u(n−k)

+un [S [Rϕ(x, t; q)] + S[Nϕ(x, t; q)]− S[g(x)]] , (5.22)

where q ∈ [0, 1] and ϕ(x, t ; q) is a real function of x, t and q. We construct a homotopy
as follows

(1− q)S [ϕ(x, t ; q)− U0(x, t)] = ~ qH(x, t)N [U(x, t )], (5.23)

where S denotes the sumudu transform, q ∈ [0, 1] is the embedding parameter, H(x, t)
denotes a nonzero auxiliary function, ~ ̸= 0 is an auxiliary parameter, U0(x, t) is an initial
guess of U(x, t) and ϕ(x, t ; q) is a unknown function. Obviously, when the embedding
parameter q = 0 and q = 1, it holds

ϕ(x, t ; 0) = U0(x, t), ϕ(x, t ; 1) = U(x, t), (5.24)

respectively. Thus, as q increases from 0 to 1, the solution ϕ(x, t ; q) varies from the initial
guess U0(x, t) to the solution U(x, t). Expanding ϕ(x, t ; q) in Taylor series with respect to
q, we have

ϕ(x, t ; q) = U0(x, t) +
∞∑

m=1

Um(x, t) qm, (5.25)

where

Um(x, t) =
1

m !

∂mϕ(x, t ; q)

∂qm
|q=0. (5.26)
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If the auxiliary linear operator, the initial guess, the auxiliary parameter ~, and the aux-
iliary function are properly chosen, the series (5.25) converges at q = 1, then we have

U(x, t) = U0(x, t) +

∞∑
m=1

Um(x, t), (5.27)

which must be one of the solutions of the original nonlinear equations. According to the
definition (5.27), the governing equation can be deduced from the zero-order deformation
(5.23). Define the vectors

U⃗m = {U0(x, t), U1(x, t), ..., Um(x, t)}. (5.28)

Differentiating the zeroth-order deformation equation (5.23) m-times with respect to q
and then dividing them by m! and finally setting q = 0, we get the following mth-order
deformation equation:

S [Um(x, t)− χmUm−1(x, t)] = ~H(x, t)ℜm(U⃗m−1). (5.29)

Applying the inverse sumudu transform, we have

Um(x, t) = χmUm−1(x, t) + ~S−1[H(x, t)ℜm(U⃗m−1)], (5.30)

where

ℜm(U⃗m−1) =
1

(m− 1)!

∂m−1N [ϕ(x, t ; q)]

∂qm−1
|q=0, (5.31)

and

χm =

{
0, m ≤ 1,
1, m > 1.

(5.32)

6 Applications to Fokker-Planck equations

In this section, we use the HASTM to solve linear and nonlinear Fokker-Planck equa-
tions.

Example 6.1. Consider the following linear Fokker-Planck equation

Ut = Ux + Uxx, (6.33)

with the initial condition

U(x, 0) = x. (6.34)

According to the HASTM, we take the initial guess as

U0(x, t) = x. (6.35)

By applying the aforesaid method subject to initial condition, we have

S[U ]− x− u [S[Ux] + S[Uxx]] = 0. (6.36)
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The nonlinear operator is

N [ϕ(x, t ; q)] = S[ϕ(x, t ; q)]− x− u

[
S

[
∂ϕ(x, t ; q)

∂x

]
+ S

[
∂2ϕ(x, t ; q)

∂x2

]]
(6.37)

and thus

ℜm(U⃗m−1) = S[Um−1]− (1− χm)x− u

[
S

[
∂ Um−1

∂x

]
+ S

[
∂2Um−1

∂x2

]]
. (6.38)

The mth-order deformation equation is given by

S [Um(x, t)− χmUm−1(x, t)] = ~ℜm(U⃗m−1). (6.39)

Applying the inverse sumudu transform, we have

Um(x, t) = χmUm−1(x, t) + ~S−1[ℜm(U⃗m−1)]. (6.40)

Solving above equation (6.40), for m = 1, 2, 3..., we get

U1(x, t) = −~ t,

U2(x, t) = −~ (1 + ~) t, (6.41)

U3(x, t) = −~ (1 + ~)2 t,
...

and so on. Taking ~ = −1, the solution is given by

U(x, t) =

∞∑
m=0

Um(x, t) = x+ t, (6.42)

which is the exact solution and is same as obtained by ADM [35], VIM [32] and HPM [8].

Example 6.2. Consider the following linear Fokker-Planck equation (3.3) such that

A(x, t) = et cothx coshx+ et sinhx− cothx,

B(x, t) = et coshx

i.e

Ut = − ∂

∂x
A(x, t)U +

∂2

∂x2
B(x, t) U, (6.43)

with the initial condition

U(x, 0) = sinhx, x ∈ R. (6.44)

According to the HASTM, we take the initial guess as

U0(x, t) = sinhx. (6.45)
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By applying the aforesaid method subject to initial condition, we have

S[U ]− sinhx− uS

[
− ∂

∂x
A(x, t)U +

∂2

∂x2
B(x, t)U

]
= 0. (6.46)

The nonlinear operator is

N [ϕ(x, t ; q)] = S[ϕ(x, t ; q)]− sinhx

−uS

[
− ∂

∂x
A(x, t)ϕ(x, t ; q) +

∂2

∂x2
B(x, t)ϕ(x, t ; q)

]
(6.47)

and thus
ℜm(U⃗m−1) = S[Um−1]− (1− χm) sinhx

−uS

[
− ∂

∂x
A(x, t)Um−1 +

∂2

∂x2
B(x, t)Um−1

]
. (6.48)

The mth-order deformation equation is given by

S [Um(x, t)− χmUm−1(x, t)] = ~ℜm(U⃗m−1). (6.49)

Applying the inverse sumudu transform, we have

Um(x, t) = χmUm−1(x, t) + ~S−1[ℜm(U⃗m−1)]. (6.50)

Solving above equation (6.50), for m = 1, 2, 3..., we get

U1(x, t) = −~ t sinhx,

U2(x, t) = −~ (1 + ~) t sinhx+
~2t2 sinhx

2
, (6.51)

U3(x, t) = −~ (1 + ~)2t sinhx+ ~2(1 + ~) t2 sinhx− ~3t3 sinhx
6

,

...

and so on. Taking ~ = −1, the solution is given by

U(x, t) = et sinhx, (6.52)

which is the exact solution and is same as obtained by ADM [35], VIM [32] and HPM [8].

Example 6.3. Consider the Backward Kolmogorov equation (3.4) such that

A(x, t) = −(x+ 1), B(x, t) = x2 et (6.53)

i.e.

Ut = (x+ 1) Ux + x2 et Uxx, (6.54)

with the initial condition

U(x, 0) = x+ 1, x ∈ R. (6.55)
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According to the HASTM, we take the initial guess as

U0(x, t) = (x+ 1). (6.56)

By applying the aforesaid method subject to initial condition, we have

S[U ]− (x+ 1)− uS
[
(x+ 1)Ux + x2etUxx

]
= 0. (6.57)

The nonlinear operator is

N [ϕ(x, t ; q)] = S[ϕ(x, t ; q)]− (x+ 1)

−uS

[
(x+ 1)

∂ϕ(x, t ; q)

∂x
+ x2et

∂2ϕ(x, t ; q)

∂x2

]
(6.58)

and thus

ℜm(U⃗m−1) = S[Um−1]− (1− χm)(x+ 1)

−uS

[
(x+ 1)

∂Um−1

∂x
+ x2et

∂2Um−1

∂x2

]
. (6.59)

The mth-order deformation equation is given by

S [Um(x, t)− χmUm−1(x, t)] = ~ℜm(U⃗m−1). (6.60)

Applying the inverse sumudu transform, we have

Um(x, t) = χmUm−1(x, t) + ~S−1[ℜm(U⃗m−1)]. (6.61)

Solving above equation (6.61), for m = 1, 2, 3..., we get

U1(x, t) = −~ (x+ 1) t,

U2(x, t) = −~ (1 + ~) (x+ 1) t+
~2(x+ 1) t2

2
, (6.62)

U3(x, t) = −~ (1 + ~)2 (x+ 1) t+
~2(1 + ~) (x+ 1) t2

2
− ~3(x+ 1) t3

6
,

...

and so on.

Taking ~ = −1, the solution is given by

U(x, t) = et(x+ 1), (6.63)

which is the exact solution and is same as obtained by ADM [35], VIM [32] and HPM [8].



310 D. Kumar, et al/IJIM Vol. 4, No. 4 (2012) 301-314

Example 6.4. Consider the following nonlinear Fokker-Planck equation (3.6) such that

A(x, t, U) =
4

x
U − x

3
,

B(x, t, U) = U (6.64)

i.e.

Ut =
∂

∂x

(
xU

3
− 4

x
U2

)
+

∂2

∂x2
(U2), (6.65)

subject to the initial condition

U(x, 0) = x2, x ∈ R. (6.66)

According to the HASTM, we take the initial guess as

U0(x, t) = x2. (6.67)

By applying the aforesaid method subject to initial condition, we have

S[U ]− x2 − uS

[
∂

∂x

(
xU

3
− 4

x
U2

)
+

∂2

∂x2
(U2)

]
= 0. (6.68)

The nonlinear operator is

−uS

[
∂

∂x

(
xϕ(x, t ; q)

3
− 4ϕ2(x, t ; q)

x

)
+

∂2ϕ2(x, t ; q)

∂x2

]
(6.69)

and thus

−uS

[
∂

∂x

(
xUm−1

3
− 4

x

(
m−1∑
r=0

UrUm−1−r

))
+

∂2

∂x2

(
m−1∑
r=0

UrUm−1−r

)]
. (6.70)

The mth-order deformation equation is given by

S [Um(x, t)− χmUm−1(x, t)] = ~ℜm(U⃗m−1). (6.71)

Applying the inverse sumudu transform, we have

Um(x, t) = χmUm−1(x, t) + ~S−1[ℜm(U⃗m−1)]. (6.72)

Solving above equation (6.72), for m = 1, 2, 3..., we get

U1(x, t) = −~x2 t,

U2(x, t) = −~ (1 + ~) x2t+
~2x2t2

2
, (6.73)

U3(x, t) = −~ (1 + ~)2 x2t+
~2(1 + ~)x2t2

2
− ~3x2t3

6
,
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...

and so on.

Taking ~ = −1, the solution is given by

U(x, t) = x2 et, (6.74)

which is the exact solution and is same as obtained by ADM [35], VIM [32] and HPM [8].

7 Conclusion

In this paper, the homotopy analysis sumudu method (HASTM) is introduced for solving
nonlinear equations. To, show the applicability and efficiency of the proposed method, the
method is applied to obtain the solutions of linear and nonlinear Fokker-Planck equations.
The results obtained by using the HASTM presented here agree well with the results
obtained by ADM [35], VIM [32] and HPM [8]. It is worth mentioning that the proposed
technique is capable of reducing the volume of the computational work as compared to
the classical methods while still maintaining the high accuracy of the numerical result; the
size reduction amounts to an improvement of the performance of the approach. Finally,
we conclude that the HASTM is very powerful and efficient in finding analytical as well as
numerical solutions for wide classes of linear and nonlinear partial differential equations.
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