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epted 11 De
ember 2010.|||||||||||||||||||||||||||||||-Abstra
tIn this paper, the variational iteration method is proposed to solve the Nagumo telegraphequation as boundary value problems over the �nite spatial interval x 2 [0; L℄, and �nitetime t 2 [0; t�℄. Approximate solution is obtained for some spe
ial 
ases, so that denotesthe validity of the variational iteration method. Also, this approximate solution is used todis
uss the qualitative 
hara
teristi
s of the solution for spe
i�
 initial data 
onsidered.Keywords : Nagumo telegraph equation, Variational iteration method.||||||||||||||||||||||||||||||||{1 Introdu
tionThe telegraph equations are used in the propagation of ele
tri
al signals along a telegraphline, digital pro
essing tele
ommuni
ation and also in many appli
ations of s
ien
e [28, 8,9, 10, 24℄.In this paper, we 
onsider the Nagumo telegraph equation [24, 25, 7℄�utt + (1� � [a� 2(1 + a)u+ 3u2℄)ut = uxx + u(a� u)(1� u); (1.1)as boundary value problems for a 2 [0; 1℄ and � 2 R. This equation is subje
t to theboundary 
onditionsux(0; t) = 0 and ux(L; t) = 0; for someL > 0; (1.2)and the initial 
ondition u(x; 0) = � 2 [0; 1℄: (1.3)Physi
ally, the initial data provides information on a distribution or 
on
entration, atthe time t = 0 [7℄. For appropriate initial data, the 
on
entration should be expe
ted to�Email address: rouhparvar59�gmail.
om 295
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h the �xed point a 2 (0; 1) for large time. The parameter a a
ts as the ambient
on
entration and the parameter � a
ts as a measure of the memory delay e�e
t in theequation (1.1). We see that, as � ! 0, the Nagumo telegraph equation is redu
ed to theNagumo rea
tion-di�usion equation [24, 7℄.Note that we don't solve the equation via ordinary di�erential equation, su
h as thosedis
ussed in the traveling wave 
ase [7, 5, 20℄. We obtain the approximate solution of thepartial di�erential equation for spe
i�ed initial data, so that it illustrates the validity and
onvergen
e of method, about the 
onvergen
e of method see [22℄.2 The He's variational iteration methodThe variational iteration method (VIM) is an analyti
al te
hnique that is introdu
ed byHe [16, 17, 18℄. In this method, as the �rst idea, a 
orre
tion fun
tional is 
onstru
ted bya general Lagrange multiplier, whi
h 
an be identi�ed optimally via the variation theory.As the se
ond idea, the initial approximation is freely 
hosen with possible unknown
onstants, whi
h 
an be determined by imposing the boundary=initial 
onditions.The VIM has been su

essfully applied on wide 
lass of initial and boundary valueequations in
luding integro-di�erential equations [26, 6℄, telegraph equation [12℄, Fokker-Plank equation [13℄, the Cau
hy rea
tion-di�usion problem [14℄, Klein-Gordon equation[1℄, non-linear wave and di�usion equations [2℄, eighth-order and tenth-order boundary-value di�erential equations [3, 4℄ and Boussinesq equations [27℄.To illustrate the basi
 
on
epts of the VIM, we 
onsider the following di�erentialequation Lu(x; t) +Nu(x; t) = g(x; t); (2.4)where L is a linear di�erential operator, N a nonlinear operator and g(x; t) an inhomoge-neous term.A

ording to the VIM, we 
an 
onstru
t a 
orre
tion fun
tional in x and t-dire
tionsas followsun+1(x; t) = un(x; t) + Z t0 �fLun(x; s) + ~Nun(x; s)� g(x; s)g ds; n � 0; (2.5)un+1(x; t) = un(x; t) + Z x0 �fLun(s; t) + ~Nun(s; t)� g(s; t)g ds; n � 0; (2.6)where � is a general Lagrangian multiplier and 
an be identi�ed optimally by the varia-tional theory [19℄, the subs
ript n shows the nth-order approximation, and ~un is 
onsideredas a restri
ted variation [19, 15℄, i.e., Æ~un = 0. The su

essive approximations un+1(x; t),n � 0 of the solution u(x; t) will be readily obtained upon using the obtained Lagrangemultiplier and by using any sele
tive fun
tion u0. The zeroth approximation u0 may besele
ted by any fun
tion that justi�es at least one of the pres
ribed boundary 
onditions.With � determined, then several approximations uj(x; t), j � 0 follow immediately. Con-sequently, the exa
t solution may be obtained by usingu(x; t) = limn!1un(x; t):To illustrate the above theory, we implement the VIM for �nding the approximate solutionof Nagumo telegraph equation. This problem will be handled easily, qui
kly and elegantlyby implementing the VIM.



H. Rouhparvar = IJIM Vol. 2, No. 4 (2010) 295-304 2973 Analysis of Nagumo telegraph equationIn re
ent years, the telegraph equation has been studied with various methods [12, 11, 21℄and so on. In this se
tion, the Nagumo telegraph equation is presented by the VIM.To 
onsider equation (1.1) with respe
t to iteration formula (2.5), we 
onstru
t itera-tion formula in t-dire
tion with two ideas. As the �rst idea, we 
an 
onstru
t a 
orre
tionfun
tional as followsun+1(x; t) = un(x; t) + R t0 �(s)f�unss + (1� �a)uns � a~un + 2�(1 + a)~un~uns�3� ~u2n~uns � ~unxx + (1 + a)~u2n � ~u3ng ds:Making the above 
orre
tion fun
tional stationary, and noting Æ~un = 0, we getÆun+1(x; t) = Æun(x; t) + Æ Z t0 �(s)f�unss + (1� �a)unsg ds = 0;or Æun+1(x; t) = Æun(x; t) + ��(s)Æunsjs=t � ��0(s)Æunjs=t+(1� �a)�(s)Æunjs=t + R t0 (��00(s)� (1� �a)�0(s))Æun ds = 0;whi
h yield the following stationary 
onditionsÆun : ��00 � (1� �a)�0 = 0;Æun : 1� ��0(s) + (1� �a)�(s)js=t = 0;Æuns : ��(s)js=t = 0:The general Lagrange multiplier, therefore, 
an be identi�ed as�(s) = 11� �a(e 1��a� (s�t) � 1):As a result, we obtain the following iteration formulaun+1(x; t) = un(x; t) + R t0 11��a (e 1��a� (s�t) � 1)f�unss + (1� �a)uns � aun+2�(1 + a)ununs � 3�u2nuns � unxx + (1 + a)u2n � u3ng ds; (3.7)with initial approximation u0(x; t) = u(x; 0) = �.As the se
ond idea, we 
an also 
onsider a 
orre
tion fun
tional as the following form:un+1(x; t) = un(x; t) + R t0 �(s)f�unss + (1� �a)uns � aun + 2�(1 + a)~un~uns�3� ~u2n~uns � ~unxx + (1 + a)~u2n � ~u3ng ds;where Æ~un is 
onsidered as a restri
ted variation, i.e. Æ~un = 0, and the 
orre
tion fun
tionalstationary is obtained as the followingÆun+1(x; t) = Æun(x; t) + Æ Z t0 �(s)f�unss + (1� �a)uns � aung ds = 0;or Æun+1(x; t) = Æun(x; t) + ��(s)Æunsjs=t � ��0(s)Æunjs=t+(1� �a)�(s)Æunjs=t + R t0 (��00(s)� (1� �a)�0(s)� a�)Æun ds = 0:
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onditions 
an be obtained as followÆun : ��00 � (1� �a)�0 � a� = 0;Æun : 1� ��0(s) + (1� �a)�(s)js=t = 0;Æuns : ��(s)js=t = 0:The general Lagrange multiplier, so, 
an be identi�ed as�(s) = 11 + �a(e 1� (s�t) � e�a(s�t)):Again as a result, we obtain another iteration formula as followsun+1(x; t) = un(x; t) + R t0 11+�a(e 1� (s�t) � e�a(s�t))f�unss + (1� �a)uns � aun+2�(1 + a)ununs � 3�u2nuns � unxx + (1 + a)u2n � u3ng ds; (3.8)with initial approximation u0(x; t) = u(x; 0) = �.The method depends on the proper sele
tion of the initial approximation u0(x; t).The variational iteration formulas (3.7) and (3.8) will give several approximations, andtherefore the exa
t solution is obtained asu(x; t) = limn!1un(x; t):Let us 
onsider uM (x; t) as the M -order approximate solution of Nagumo telegraph equa-tion, therefore, we de�ne the error fun
tional for M -order approximate solution as thefollowing Error(x; t) = j�uMtt + (1� �a)uMt � auM + 2�(1 + a)uMuMt�3�u2MuMt � uMxx + (1 + a)u2M � u3M j: (3.9)4 Numeri
al appli
ationsIn this se
tion, we apply the VIM for solving the Nagumo telegraph equation via somespe
ial 
ases, to demonstrate the validity of the method.Remark 4.1. We 
onsider initial data of the form u(x; 0) = � where � 2 [0; 1℄; that is,the density or 
on
entration is uniform over the spa
e (in our 
ase, the interval [0; L℄)at time t = 0. We �nd that, in the 
ase of 
onstant initial data, the solution dependspredominantly on t, and terms depending on x are of magnitude on the order of the errorin the approximation. Hen
e, we 
onsider a solution of the form t. Also this permitsus to prepare a physi
ally signi�
ant situation and analyze the in
uen
e of the physi
alparameters on the solutions.Note that when a = �, a solution is given by u(x; t) = �. The parameter a maybe viewed as an ambient density of 
on
entration, while � serves as an initial density or
on
entration over the �nite spa
e 
onsidered. Thus we expe
t for the solution via theVIM to tend from � to a, as we move forward in time (see [5, 23℄).



H. Rouhparvar = IJIM Vol. 2, No. 4 (2010) 295-304 299Let us �x a = 0:5, L = 1, t� = 1 and � = 0:1 in the equation (1.1) and (1.2). To
onsider 
ases for initial value, we have the equation0:1utt + 0:95ut � 0:5u + 0:3uut � 0:3u2ut � uxx + 1:5u2 � u3 = 0; (4.10)subje
t to the following di�erent 
onditions( ux(0; t) = ux(1; t) = 0;u(x; 0) = 0:55; (4.11)( ux(0; t) = ux(1; t) = 0;u(x; 0) = 0:5; (4.12)and ( ux(0; t) = ux(1; t) = 0;u(x; 0) = 0:45: (4.13)Following the pro
edure in se
tion 3, at �rst, we solve the equation (4.10) with the 
on-ditions (4.11), (4.12) and (4.13) the use of iteration formula (3.7) by initial approximationsu0(x; t) = 0:55, u0(x; t) = 0:5 and u0(x; t) = 0:45, respe
tively.Therefore, we �nd that the solutions are generally symmetri
 about the ambient densityor 
on
entration a = 0:5. we denote a plot of these fun
tions over t 2 [0; 1℄ (for �xedx = 0:5) in Fig. 1.
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Fig. 1. Solutions to the Nagumo telegraph equation for variable � = 0:55; n = 2 (the above blue
urve), � = 0:5; n = 1 (red line) and � = 0:45; n = 2 (the below blue 
urve) via iteration formula(3.7).Now we solve the equation (4.10) with the 
onditions (4.11), (4.12) and (4.13) usingiteration formula (3.8) by the previous initial approximations. As the pre
eding, we ob-serve that the solutions are generally symmetri
 about value 0.5, see Fig. 2. (for �xedx = 0:5).
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Fig. 2. Solutions to the Nagumo telegraph equation for variable � = 0:55; n = 2 (the above blue
urve), � = 0:5; n = 1 (red line) and � = 0:45; n = 2 (the below blue 
urve) via iteration formula(3.8).The value of error fun
tional for approximations is denoted in Fig. 3 and Fig. 4.
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Fig. 3. The error fun
tional for u(x; 0) = 0:55 by (3.7) (blue 
urve) and (3.8) (red 
urve).
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Fig. 4. The error fun
tional for u(x; 0) = 0:45 by (3.7) (blue 
urve) and (3.8) (red 
urve).Note that for u(x; 0) = 0:5, with one iteration of (3.7) and (3.8), we have u1(x; t) =u(x; t) = 0:5 in other words the error fun
tional is zero.Pro
eeding as the same way, we 
an obtain high order approximations. The numeri
alresults of the equation (4.10) with di�erent 
onditions (4.11) and (4.13) are presented inthe following Tables 1-4, we evaluated the numeri
al results using n = 1 and n = 2 terms
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urren
e relations (3.7) and (3.8) at various values of the time t.Tables 1-4 show the numeri
al solution and the error fun
tional with n = 1 and n = 2.Table 1For x = 0:5, Comparison of the numeri
al results with n = 1 in Eq. (4.10) by (4.11)t By (3.7) Error(x; t) By (3.8) Error(x; t)0.2 0.548561 0.00117232 0.54854 0.001933520.4 0.54613 0.00188765 0.545938 0.004072760.6 0.543551 0.00253622 0.542929 0.006439590.8 0.540949 0.00317624 0.539585 0.009058261 0.538345 0.00381634 0.535887 0.0119556Table 2For x = 0:5, Comparison of the numeri
al results with n = 2 in Eq. (4.10) by (4.11)t By (3.7) Error(x; t) By (3.8) Error(x; t)0.2 0.548623 0.00007046 0.548624 0.000146040.4 0.546428 0.00019064 0.546452 0.000625810.6 0.544239 0.00033989 0.544359 0.001509220.8 0.542167 0.00052102 0.542524 0.002877141 0.540228 0.00073547 0.541046 0.00482293Table 3For x = 0:5, Comparison of the numeri
al results with n = 1 in Eq. (4.10) by (4.13)t By (3.7) Error(x; t) By (3.8) Error(x; t)0.2 0.451439 0.00117232 0.45146 0.001933520.4 0.45387 0.00188765 0.454062 0.004072760.6 0.456449 0.00253622 0.457071 0.006439590.8 0.459051 0.00317624 0.460415 0.009058261 0.461655 0.00381634 0.464113 0.0119556Table 4For x = 0:5, Comparison of the numeri
al results with n = 2 in Eq. (4.10) by (4.13)t By (3.7) Error(x; t) By (3.8) Error(x; t)0.2 0.451377 0.00007046 0.451376 0.000146040.4 0.453572 0.00019064 0.453548 0.000625810.6 0.455761 0.00033989 0.455641 0.001509220.8 0.457833 0.00052102 0.457476 0.002877141 0.459772 0.00073547 0.458954 0.004822935 Con
lusionIn this paper, we 
onsidered the Nagumo telegraph equation (1.1) over a �nite spatialdomain and presented the VIM with di�erent 
ases for obtaining approximate analyti
alsolutions of the boundary value problems. We found that, in all 
ases 
onsidered, theobtained error is rather good 
onsidering the small number of iterations needed in the
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ourse, one may 
onsider adding more iterations, to get a betterapproximation to (1.1).The VIM 
an be applied to situations in whi
h the initial data is more 
ompli
ated, i.e.u(x; 0) = �(x). However, to a

ount for the variability in the initial data, one must in
reasethe number of iterations used in an approximate solution, in order to keep errors low. Forthis reason, we 
onsidered 
onstant initial data, whi
h is still physi
ally signi�
ant, andallows for rapid 
onvergen
e to the solution with a minimal number of iterations.In the 
ase of 
onstant initial data 
onsidered, when an initial 
on
entration di�ersfrom the ambient 
on
entration, we expe
t that the model will have a solution whi
htends toward the ambient 
on
entration.A
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