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Abstract
In this paper, a Burgers-Huxley equation is solved by using variety of methods: the Ado-
mian’s decomposition method , modified Adomian’s decomposition method , variational
iteration method , modified variational iteration method, homotopy perturbation method,
modified homotopy perturbation method and homotopy analysis method. The approxi-
mate solution of this equation is calculated in the form of series whose components are
computed by applying a recursive relation. Consequently, the existence and uniqueness
of the solution and the convergence of the proposed methods are proved. Furthermore, a
numerical example is studied to demonstrate the accuracy of the presented methods.
Keywords : Burgers-Huxley equation, Adomian decomposition method (ADM) , Modified Adomian
decomposition method (MADM), Variational iteration method (VIM) , Modified variational iter-
ation method (MVIM), Homotopy perturbation method (HPM), Modified homotopy perturbation
method (MHPM), Homotopy analysis method (HAM).
————————————————————————————————–

1 Introduction

Burgers-Huxley equation playes an important role in mathematical physics. In recent
years some works have been done in order to find the numerical solution to this equation,
for example [4, 9, 10, 17, 18, 23, 24, 27]. In this work, we develope the ADM, MADM,
VIM, MVIM, HPM, MHPM and HAM to solve the Burgers-Huxley equation as follows:

ut + αuδux − uxx = βu(1− uδ)(uδ − γ), (1.1)

where α, β , δ and γ are some arbitrary constants. With the initial conditions:

u(x, 0) = [γ
2 + γ

2 tanh(σγx)]
1
δ = f(x), (1.2)
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where,
σ = δ(ρ−α)

4(1+δ) ,

ρ =
√

α2 + 4β(1 + δ)

The paper is organized as follows. In section 2, the mentioned iterative methods are
introduced for solving Eq. (1.1). In section 3 we prove the existence , uniqueness of the
solution and convergence of the proposed methods. Finally, the numerical example and
computational complexity of the proposed methods are shown in section 4.

In order to obtain an approximate solution of Eq. (1.1), let us integrate one time Eq.
(1.1) with respect to t using the initial conditions we obtain,

u(x, t) = f(x)− α

∫ t

0
F1(u(x, t)) dt +

∫ t

0
D2(u(x, t)) dt + β

∫ t

0
F2(u(x, t)) dt, (1.3)

where,
D2(u(x, t)) = ∂2u(x,t)

∂x2 ,

F1(u(x, t)) = uδ(x, t)ux(x, t) dt,

F2(u(x, t)) = u(x, t)(1− uδ(x, t))(uδ(x, t)− γ).

In Eq. (1.3), we assume f(x) is bounded for all x in J = [a, T ](a, T ∈ R). The terms
D2(u(x, t)), F1(u(x, t)) and F2(u(x, t)) are Lipschitz continuous with

|D2(u)−D2(u∗)| ≤ L1|u− u∗|,

|F1(u)− F1(u∗)| ≤ L2|u− u∗|,

|F2(u)− F2(u∗)| ≤ L3|u− u∗|.

2 The iterative methods

2.1 Description of the MADM and ADM

The Adomian decomposition method is applied to the following general nonlinear equation

Lu + Ru + Nu = g1, (2.4)

where u(x, t) is the unknown function, L is the highest order derivative operator which is
assumed to be easily invertible, R is a linear differential operator of order less than L,Nu
which represents the nonlinear terms, and g1 is the source term. Applying the inverse
operator L−1 to both sides of Eq. (2.4), and using the given conditions we obtain

u(x, t) = f1(x)− L−1(Ru)− L−1(Nu), (2.5)

where the function f1(x) represents the terms arising from integrating the source term g1.
The nonlinear operator Nu = G1(u) is decomposed as

G1(u) =
∞∑

n=0

An, (2.6)
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where An, n ≥ 0 are the Adomian polynomials determined formally as follows :

An =
1
n!

[
dn

dλn
[N(

∞∑
i=0

λiui)]]λ=0. (2.7)

The first Adomian polynomials (introduced in [5, 12, 28]) are:

A0 = G1(u0),
A1 = u1G

′
1(u0),

A2 = u2G
′
1(u0) +

1
2!

u2
1G

′′
1(u0), (2.8)

A3 = u3G
′
1(u0) + u1u2G

′′
1(u0) +

1
3!

u3
1G

′′′
1 (u0), ...

2.1.1 Adomian decomposition method

The standard decomposition technique represents the solution of u(x, t) in (2.4) as the
following series,

u(x, t) =
∞∑
i=0

ui(x, t), (2.9)

where, the components u0, u1, . . . can be determined recursively

u0 = f(x),

u1 = −α

∫ t

0
A0(x, t) dt +

∫ t

0
B0(x, t) dt + β

∫ t

0
L0(x, t) dt,

... (2.10)

un+1 = −α

∫ t

0
An(x, t) dt +

∫ t

0
Bn(x, t) dt + β

∫ t

0
Ln(x, t) dt, n ≥ 0.

Substituting (2.8) into (2.10) leads to the determination of the components of u.

2.1.2 The modified Adomian decomposition method

The modified decomposition method was introduced by Wazwaz [29]. The modified form
was established on the assumption that the function f(x) can be divided into two parts,
namely f1(x) and f2(x). Under this assumption we set

f(x, t) = f1(x) + f2(x). (2.11)

Accordingly, a slight variation was proposed only on the components u0 and u1. It was sug-
gested that only the part f1 is assigned to the zeroth component u0, whereas the remaining
part f2 is combined with the other terms given in (2.11) to define u1. Consequently, the
modified recursive relation

u0 = f1(x),

u1 = f2(x)− L−1(Ru0)− L−1(A0),
... (2.12)

un+1 = −L−1(Run)− L−1(An), n ≥ 1,
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was developed.
To obtain the approximation solution of Eq. (1.1), according to the MADM, we can

write the iterative formula (2.12) as follows:

u0 = f1(x),
u1 = f2(x)− α

∫ t
0 A0(x, t) dt +

∫ t
0 B0(x, t) dt + β

∫ t
0 L0(x, t) dt

...
un+1 = −α

∫ t
0 An(x, t) dt +

∫ t
0 Bn(x, t) dt + β

∫ t
0 Ln(x, t) dt, n ≥ 1.

(2.13)

The operators D2(u) , F1(u) and F2(u) are usually represented by the infinite series of the
Adomian polynomials as follows:

D2(u) =
∞∑
i=0

Bi,

F1(u) =
∞∑
i=0

Ai,

F2(u) =
∞∑
i=0

Li,

where Ai , Bi and Li are the Adomian polynomials. Also, we can use the following formula
for the Adomian polynomials [11]:

An = F1(sn)−
∑n−1

i=0 Ai,

Bn = D2(sn)−
∑n−1

i=0 Bi,

Ln = F2(sn)−
∑n−1

i=0 Li.

(2.14)

where sn =
∑n

i=0 ui(x, t) is the partial sum.

2.2 Description of the VIM and MVIM

In the VIM [14, 19, 20, 21, 22], the following nonlinear differential equation is considered:

Lu + Nu = g1, (2.15)

where L is a linear operator, N is a nonlinear operator and g1 is a known analytical
function. In this case, the functions un may be determined recursively by

un+1(x, t) = un(x, t)+
∫ t

0
λ(x, τ){L(un(x, τ))+N(un(x, τ))−g1(x, τ)}dτ, n ≥ 0, (2.16)

where λ is a general Lagrange multiplier which can be computed using the variational the-
ory. Here the function un(x, τ) is a restricted variation which means δun = 0. Therefore,
we first determine the Lagrange multiplier λ that is identified optimally via integration
by parts. The successive approximation un(x, t), n ≥ 0 of the solution u(x, t) is readily
obtained upon using the obtained Lagrange multiplier and by using any selective function
u0. The zeroth approximation u0 selects any function that just satisfies at least the initial
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and boundary conditions. With λ determined, then several approximations un(x, t), n ≥ 0
follow immediately. Consequently, the exact solution is obtained by using

u(x, t) = lim
n→∞

un(x, t). (2.17)

The VIM is shown to solve effectively, easily and accurately a large class of nonlinear
problems with approximations converging rapidly to accurate solutions.

To obtain the approximation solution of Eq. (1.1), according to the VIM, we can write
iteration formula (2.16) as follows:

un+1(x, t) = un(x, t) + L−1
t (λ[un(x, t)− f(x) + α

∫ t
0 (F1(un(x, t)) dt

−
∫ t
0 D2(un(x, t)) dt− β

∫ t
0 F2(un(x, t)) dt]), n ≥ 0.

(2.18)

where,

L−1
t (.) =

∫ t

0
(.) dτ.

To find the optimal λ, we proceed as

δun+1(x, t) = δun(x, t) + δL−1
t (λ[un(x, t)− (x) + α

∫ t
0 F1(un(x, t)) dt

−
∫ t
0 D2(un(x, t)) dt− β

∫ t
0 F2(un(x, t)) dt]).

(2.19)

From Eq. (2.19), the stationary conditions are obtained as follows:

λ
′
= 0 and 1 + λ = 0

Therefore, the Lagrange multipliers are identified as λ = −1 and by substituting in (2.18),
the following iteration formula is obtained.

u0(x, t) = f(x),

un+1(x, t) = un(x, t)− L−1
t (un(x, t)− f(x) + α

∫ t
0 F1(un(x, t)) dt

−
∫ t
0 D2(un(x, t)) dt− β

∫ t
0 F2(un(x, t)) dt), n ≥ 0.

(2.20)

To obtain the approximation solution of Eq. (1.1), based on the MVIM [1, 2], we write
the following iteration formula:

u0(x, t) = f(x),

un+1(x, t) = un(x, t)− L−1
t (α

∫ t
0 F1(un(x, t)− un−1(x, t)) dt

−
∫ t
0 D2(un(x, t)− un−1(x, t)) dt− β

∫ t
0 F2(un(x, t)− un−1(x, t)) dt), n ≥ 0.

(2.21)
Relations (2.20) and (2.21) enable us to determine the components un(x, t) recursively for
n ≥ 0.
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2.3 Description of the HAM

Consider
N [u] = 0,

where N is a nonlinear operator, u(x, t) is an unknown function and x is an independent
variable. let u0(x, t) denote an initial guess of the exact solution u(x, t), h ̸= 0 an auxiliary
parameter, H1(x, t) ̸= 0 an auxiliary function, and L an auxiliary linear operator with the
property L[s(x, t)] = 0 when s(x, t) = 0. Then using q ∈ [0, 1] as an embedding parameter,
we construct a homotopy as follows:

(1− q)L[ϕ(x, t; q)−u0(x, t)]− qhH1(x, t)N [ϕ(x, t; q)] = Ĥ[ϕ(x, t; q);u0(x, t),H1(x, t), h, q].
(2.22)

It should be emphasized that we have great freedom to choose the initial guess u0(x, t), the
auxiliary linear operator L, the non-zero auxiliary parameter h, and the auxiliary function
H1(x, t).

Enforcing the homotopy (2.22) to be zero, i.e.,

Ĥ1[ϕ(x, t; q);u0(x, t),H1(x, t), h, q] = 0, (2.23)

we have the so-called zero-order deformation equation

(1− q)L[ϕ(x, t; q)− u0(x, t)] = qhH1(x, t)N [ϕ(x, t; q)]. (2.24)

When q = 0, the zero-order deformation Eq. (2.4) becomes

ϕ(x; 0) = u0(x, t), (2.25)

and when q = 1, since h ̸= 0 and H1(x, t) ̸= 0, the zero-order deformation Eq. (2.24) is
equivalent to

ϕ(x, t; 1) = u(x, t). (2.26)

Thus, according to (2.25) and (2.26), as the embedding parameter q increases from 0
to 1, ϕ(x, t; q) varies continuously from the initial approximation u0(x, t) to the exact
solution u(x, t). Such a kind of continuous variation is called deformation in homotopy
[8, 13, 25, 26].

Due to Taylor’s theorem, ϕ(x, t; q) is expanded in a power series of q as follows

ϕ(x, t; q) = u0(x, t) +
∞∑

m=1

um(x, t)qm, (2.27)

where,

um(x, t) =
1
m!

∂mϕ(x, t; q)
∂qm

|q=0 .

Let the initial guess u0(x, t), the auxiliary linear parameter L, the nonzero auxiliary pa-
rameter h and the auxiliary function H1(x, t) be properly chosen so that the power series
(2.27) of ϕ(x, t; q) converges at q = 1, then, on these assumptions, we have the solution
series

u(x, t) = ϕ(x, t; 1) = u0(x, t) +
∞∑

m=1

um(x, t). (2.28)
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From Eq. (2.28), we write Eq. (2.25) as follows:

(1− q)L[ϕ(x, t, q)− u0(x, t)] = (1− q)L[
∑∞

m=1 um(x, t) qm]

= q h H1(x, t)N [ϕ(x, t, q)]

then, we have

L[
∞∑

m=1

um(x, t) qm]− q L[
∞∑

m=1

um(x, t)qm] = q h H1(x, t)N [ϕ(x, t, q)] (2.29)

By differentiating (2.29) m times with respect to q, we obtain

{L[
∑∞

m=1 um(x, t) qm]− q L[
∑∞

m=1 um(x, t)qm]}(m) = {q h H1(x, t)N [ϕ(x, t, q)]}(m)

= m! L[um(x, t)− um−1(x, t)]

= h H1(x, t) m ∂m−1N [ϕ(x,t;q)]
∂qm−1 |q=0 .

Therefore,
L[um(x, t)− χmum−1(x, t)] = hH1(x, t)ℜm(um−1(x, t)), (2.30)

where,

ℜm(um−1(x, t)) =
1

(m− 1)!
∂m−1N [ϕ(x, t; q)]

∂qm−1
|q=0, (2.31)

and

χm =

{
0, m ≤ 1

1, m > 1

Note that the high-order deformation Eq. (2.30) is governing the linear operator L, and
the term ℜm(um−1(x, t)) can be expressed simply by (2.31) for any nonlinear operator N .

To obtain the approximation solution of Eq. (1.1), according to HAM, let

N [u(x, t)] = u(x, t)− f(x) + α
∫ t
0 F1(u(x, t)) dt−

∫ t
0 D2(u(x, t)) dt− β

∫ t
0 F2(u(x, t)) dt,

so,

ℜm(um−1(x, t)) = um−1(x, t)− f(x) + α
∫ t
0 F1(um−1(x, t)) dt−

∫ t
0 D2(um−1(x, t)) dt− β∫ t

0 F2(um−1(x, t)) dt.
(2.32)

Substituting (2.32) into (2.30)

L[um(x, t)− χmum−1(x, t)] = hH1(x, t)[um−1(x, t) + α
∫ t
0 F1(um−1(x, t)) dt

−
∫ t
0 D2(um−1(x, t)) dt− β

∫ t
0 F2(um−1(x, t)) dt

+(1− χm)z(x, t)(x)].

(2.33)

We take an initial guess u0(x, t) = f(x), an auxiliary linear operator Lu = u, a nonzero
auxiliary parameter h = −1, and auxiliary function H1(x, t) = 1. This is substituted into
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(2.33) to give the recurrence relation

u0(x, t) = f(x),

un+1(x, t) = −α
∫ t
0 F1(un(x, t)) dt +

∫ t
0 D2(un(x, t)) dt + β

∫ t
0 F2(un(x, t)) dt, n ≥ 0.

(2.34)
Therefore, the solution u(x, t) becomes

u(x, t) =
∑∞

n=0 un(x, t)

= f(x) +
∑∞

n=1

(
−α

∫ t
0 F1(un(x, t)) dt +

∫ t
0 D2(un(x, t)) dt + β

∫ t
0 F2(un(x, t)) dt

)
.

(2.35)
Which is the method of successive approximations. If

| un(x, t) |< 1,

then the series solution (2.35) convergence uniformly.

2.4 Description of the HPM and MHPM

To explain HPM [6, 7, 15], we consider the following general nonlinear differential equation:

Lu + Nu = f(u), (2.36)

with initial conditions
u(x, 0) = f(x).

According to HPM, we construct a homotopy which satisfies the following relation

H(u, p) = Lu− Lv0 + p Lv0 + p [Nu− f(u)] = 0, (2.37)

where p ∈ [0, 1] is an embedding parameter and v0 is an arbitrary initial approximation
satisfying the given initial conditions.

In HPM, the solution of Eq. (2.37) is expressed as

u(x, t) = u0(x, t) + p u1(x, t) + p2 u2(x, t) + ... (2.38)

Hence the approximate solution of Eq. (2.36) is expressed as a series of the power of p,
i.e.

u = lim
p→1

u = u0 + u1 + u2 + ...

where,

u0(x, t) = f(x),

...

um(x, t) =
∑m−1

k=0 −α
∫ t
0 F1(um−k−1(x, t)) dt +

∫ t
0 D2(um−k−1(x, t)) dt

+β
∫ t
0 F2(um−k−1(x, t)) dt, m ≥ 1.

(2.39)
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To explain MHPM [3,16], we consider Eq. (1.1) as

L(u) = u(x, t)− f(x) + α

∫ t

0
F1(u(x, t)) dt−

∫ t

0
D2(u(x, t)) dt− β

∫ t

0
F2(u(x, t)) dt.

where F1(u(x, t)) = g1(x)h1(t), D2(u(x, t)) = g2(x)h2(t) and F2(u(x, t)) = g3(x)h3(t). We
define homotopy H(u, p, m) by

H(u, 0,m) = f(u), H(u, 1,m) = L(u),

where, m is an unknown real number and

f(u(x, t)) = u(x, t)− f(x).

Typically we choose a convex homotopy by

H(u, p,m) = (1− p)f(u) + p L(u) + p (1− p)[m(g1(x) + g2(x) + g3(x))] = 0, 0 ≤ p ≤ 1.
(2.40)

where m is called the accelerating parameters, and for m = 0 we define H(u, p, 0) =
H(u, p), which is the standard HPM.

The convex homotopy (2.40) continuously trace an implicity defined curve from a
starting point H(u(x, t) − f(u), 0,m) to a solution function H(u(x, t), 1,m). The embed-
ding parameter p monotonically increases from 0 to 1 as the trivial problem f(u) = 0 is
continuously deformed to the original problem L(u) = 0.

The MHPM uses the homotopy parameter p as an expanding parameter to obtain

v =
∞∑

n=0

pnun, (2.41)

when p → 1, Eq. (2.37) corresponds to the original one and Eq. (2.41) becomes the
approximate solution of Eq. (1.1), i.e.,

u = lim
p→1

v =
∞∑

m=0

um.

Where,

u0(x, t) = f(x),

u1(x, t) = −α
∫ t
0 F1(u0(x, t)) dt +

∫ t
0 D2(u0(x, t)) dt + β

∫ t
0 F2(u0(x, t)) dt

−m(g1(x) + g2(x) + g3(x)),

u2(x, t) = −α
∫ t
0 F1(u1(x, t)) dt +

∫ t
0 D2(u1(x, t)) dt + β

∫ t
0 F2(u1(x, t)) dt

+m(g1(x) + g2(x) + g3(x)),

...

um(x, t) =
∑m−1

k=0 −α
∫ t
0 F1(um−k−1(x, t)) dt +

∫ t
0 D2(um−k−1(x, t)) dt

+β
∫ t
0 F2(um−k−1(x, t)) dt, m ≥ 3.

(2.42)
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3 Existence and convergence of iterative methods

We set,

α1 := T (| α | L1 + L2+ | β | L3),

β1 := 1− T (1− α1),

γ1 := 1− Tα1.

Theorem 3.1. Let 0 < α1 < 1, then Burgers-Huxley equation (1.1), has a unique solution.

Proof: Let u and u∗ be two different solutions of (1.3) then

| u− u∗ | =| −α
∫ t
0 [F1(u(x, t))− F1(u∗(x, t))] dt +

∫ t
0 [D2(u(x, t))−D2(u∗(x, t))]dt

+β
∫ t
0 [F2(u(x, t))− F2(u∗(x, t))]dt |

≤| α |
∫ t
0 | F1(u(x, t))− F1(u∗(x, t)) | dt +

∫ t
0 | D

2(u(x, t))−D2(u∗(x, t)) | dt

+ | β |
∫ t
0 | F2(u(x, t))− F2(u∗(x, t)) | dt

≤ T (| α | L1 + L2+ | β | L3) | u− u∗ |

= α1 | u− u∗ | .

From which we get (1 − α1) | u − u∗ |≤ 0. Since 0 < α1 < 1, then | u − u∗ |= 0. Implies
u = u∗ and the proof is completed.

Theorem 3.2. The series solution u(x, t) =
∑∞

i=0 ui(x, t) of problem (1.1) using MADM
converges when 0 < α1 < 1, | u1(x, t) |<∞.

Proof: Denote as (C[J ], ∥ . ∥) the Banach space of all continuous functions on J with
the norm ∥ f(t) ∥= max | f(t) |, for all t in J . Define the sequence of partial sums sn, let
sn and sm be arbitrary partial sums with n ≥ m. We prove that sn is a Cauchy sequence
in this Banach space:

∥ sn − sm ∥ = max∀t∈J | sn − sm |

= max∀t∈J |
∑n

i=m+1 ui(x, t) |

= max∀t∈J | −α
∫ t
0 (

∑n−1
i=m Ai) dt +

∫ t
0 (

∑n−1
i=m Bi) dt + β

∫ t
0 (

∑n−1
i=m Li) dt | .

From [14], we have ∑n−1
i=m Ai = F1(sn−1)− F1(sm−1),∑n−1
i=m Bi = D2(sn−1)−D2(sm−1),∑n−1
i=m Li = F2(sn−1)− F2(sm−1).
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So,

∥ sn − sm ∥ = max∀t∈J | −α
∫ t
0 [F1(sn−1)− F1(sm−1)] dt +

∫ t
0 [D2(sn−1)−D2(sm−1)] dt

+β
∫ t
0 [F2(sn−1)− F2(sm−1)] dt |

≤| α |
∫ t
0 | F1(sn−1)− F1(sm−1) | dt +

∫ t
0 | D

2(sn−1)−D2(sm−1) | dt

+ | β |
∫ t
0 | F2(sn−1)− F2(sm−1) | dt

≤ α1 ∥ sn − sm ∥ .

Let n = m + 1, then
∥ sn − sm ∥ ≤ α1 ∥ sm − sm−1 ∥

≤ α2
1 ∥ sm−1 − sm−2 ∥

...

≤ αm
1 ∥ s1 − s0 ∥ .

From the triangle inquality we have

∥ sn − sm ∥ ≤∥ sm+1 − sm ∥ + ∥ sm+2 − sm+1 ∥ +...+ ∥ sn − sn−1 ∥

≤ [αm
1 + αm+1

1 + ... + αn−m−1
1 ] ∥ s1 − s0 ∥

≤ αm
1 [1 + α1 + α2

1 + ... + αn−m−1
1 ] ∥ s1 − s0 ∥

≤ αm
1 [1−αn−m

1
1−α1

] ∥ u1(x, t) ∥ .

Since 0 < α1 < 1, we have (1− αn−m
1 ) < 1, then

∥ sn − sm ∥≤
αm

1

1− α1
max∀t∈J | u1(x, t) | . (3.43)

But | u1(x, t) |< ∞ , so, as m → ∞, then ∥ sn − sm ∥→ 0. We conclude that sn is a
Cauchy sequence in C[J ], therefore the series is converged and the proof is completed.

Theorem 3.3. The solution un(x, t) obtained from the relation (2.20) using VIM, con-
verges to the exact solution of the problem (1.1) when 0 < α1 < 1 and 0 < β1 < 1.

Proof:

un+1(x, t) = un(x, t)− L−1
t

([
un(x, t)− f(x) + α

∫ t
0 F1(un(x, t)) dt

−
∫ t
0 D2(un(x, t))) dt− β

∫ t
0 F2(un(x, t))) dt

]) (3.44)

u(x, t) = u(x, t)− L−1
t

([
u(x, t)− f(x) + α

∫ t
0 F1(u(x, t)) dt

−
∫ t
0 D2(u(x, t))) dt− β

∫ t
0 F2(u(x, t))) dt

]) (3.45)
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By subtracting relation (3.44) from (3.45),

un+1(x, t)− u(x, t) = un(x, t)− u(x, t)− L−1
t (un(x, t)− u(x, t)

+α
∫ t
0 [F1(un(x, t))− F1(u(x, t))] dt

−
∫ t
0 [D2(un(x, t))−D2(u(x, t))] dt

−β
∫ t
0 [F2(un(x, t))− F2(u(x, t))] dt),

if we set, en+1(x, t) = un+1(x, t)−un(x, t), en(x, t) = un(x, t)−u(x, t),| en(x, t∗) |= maxt |
en(x, t) | then since en is a decreasing function with respect to t from the mean value
theorem we write,

en+1(x, t) = en(x, t) + L−1
t (−en(x, t)− α

∫ t
0 [F1(un(x, t))− F1(u(x, t))] dt

−
∫ t
0 [D2(un(x, t))−D2(u(x, t))] dt− β

∫ t
0 [F2(un(x, t))− F2(u(x, t))] dt)

≤ en(x, t) + L−1
t [−en(x, t) + L−1

t | en(x, t) | (T (| α | L1 + L2+ | β | L3)]

≤ en(x, t)− Ten(x, η) + T (| α | L1 + L2+ | β | L3)L−1
t L−1

t | en(x, t) |

≤ 1− T (1− α1) | en(x, t∗) |,

where 0 ≤ η ≤ t. Hence, en+1(x, t) ≤ β1 | en(x, t∗) | . Therefore,

∥en+1∥ = max∀t∈J | en+1 |

≤ β1 max∀t∈J | en |

≤ β1∥en∥.

Since 0 < β1 < 1, then ∥en∥ → 0. So, the series converges and the proof is complete.

Theorem 3.4. The solution un(x, t) obtained from the relation (2.21) using MVIM for
the problem (1.1) converges when 0 < α1 < 1 , 0 < γ1 < 1.

Proof: The Proof is similar to the previous theorem.

Theorem 3.5. If the series solution (2.34) of problem (1.1) uses HAM then it converges
to the exact solution of the problem (1.1).

Proof: We assume:

u(x, t) =
∑∞

m=0 um(x, t),

F̂1(u(x, t)) =
∑∞

m=0 F1(um(x, t)),

D̂2(u(x, t)) =
∑∞

m=0 D2(um(x, t)),

F̂2(u(x, t)) =
∑∞

m=0 F2(um(x, t)).

where,
lim

m→∞
um(x, t) = 0.
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We write,

n∑
m=1

[um(x, t)− χmum−1(x, t)] = u1 + (u2 − u1) + ... + (un − un−1) = un(x, t). (3.46)

Hence, from (3.46),
lim

n→∞
un(x, t) = 0. (3.47)

So, using (3.47) and the definition of the linear operator L, we have

∞∑
m=1

L[um(x, t)− χmum−1(x, t)] = L[
∞∑

m=1

[um(x, t)− χmum−1(x, t)]] = 0.

therefore from (2.30), we obtain,

∞∑
m=1

L[um(x, t)− χmum−1(x, t)] = hH1(x, t)
∞∑

m=1

ℜm−1(um−1(x, t)) = 0.

Since h ̸= 0 and H1(x, t) ̸= 0 , we have

∞∑
m=1

ℜm−1(um−1(x, t)) = 0. (3.48)

By substituting ℜm−1(um−1(x, t)) into the relation (3.48) and simplifying it , we have∑∞
m=1ℜm−1(um−1(x, t)) =

∑∞
m=1[um−1(x, t) + α

∫ t
0 F − 1(um−1(x, t)) dt

−
∫ t
0 D2(um−1(x, t)) dt− β

∫ t
0 F2(um−1(x, t)) dt + (1− χm)f(x)]

= u(x, t)− f(x) + α
∫ t
0 F̂1(u(x, t)) dt−

∫ t
0 D̂2(u(x, t)) dt

−β
∫ t
0 F̂2(u(x, t)) dt.

(3.49)
From (3.48) and (3.49), we have

u(x, t) = f(x)− α
∫ t
0 F̂1(u(x, t)) dt +

∫ t
0 (D̂2(u(x, t)) dt + β

∫ t
0 F̂2(u(x, t)) dt.

Therefore, u(x, t) must be the exact solution.

Theorem 3.6. If | um(x, t) |≤ 1, then the series solution u(x, t) =
∑∞

i=0 ui(x, t) of
problem (1.1) converges to the exact solution by using HPM.

Proof: We set,

ϕn(x, t) =
n∑

i=1

ui(x, t),

ϕn+1(x, t) =
n+1∑
i=1

ui(x, t).
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so,
| ϕn+1(x, t)− ϕn(x, t) | = D(ϕn+1(x, t), ϕn(x, t))

= D(ϕn + un, ϕn)

= D(un, 0)

≤
∑m−1

k=0 | α |
∫ t
0 | F1(um−k−1(x, t)) | dt

+
∫ t
0 | D

2(um−k−1(x, t)) | dt

+ | β |
∫ t
0 | F2(um−k−1(x, t)) | dt.

thus,
∞∑

n=0

∥ ϕn+1(x, t)− ϕn(x, t) ∥≤ mα1 | f(x) |
∞∑

n=0

(mα1)n.

Therefore,
lim

n→∞
un(x, t) = u(x, t).

Theorem 3.7. If | um(x, t) |≤ 1, then the series solution u(x, t) =
∑∞

i=0 ui(x, t) of
problem (1.1) converges to the exact solution by using MHPM.

Proof: The Proof is similar to the previous theorem.

Lemma 3.1. The computational complexity of the ADM and MADM is O(n3),that of
HAM, VIM and MVIM is O(n),that of HPM and MHPM is O(n2).

Proof: The number of computations including division, production, sum and subtrac-
tion.

ADM:
In step 2,

An, Bn, Ln : n2

2 + 9
2n + 2.

In step 3,
u0 : 6.
u1 : 11.
u2 : 26.
.
.
un+1 : 3

2n2 + 27
2 n + 11, n ≥ 0.

In step 5, the total number of the computations is equal to∑n
i=0 ui(x, t) = O(n3).

MADM:
In step 2,

An, Bn, Ln : n2

2 + 9
2n + 2.

In step 3,
u0 : 6.
u1 : 17.
u2 : 26.
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.

.
un+1 : 3

2n2 + 27
2 n + 16, n ≥ 1.

In step 5, the total number of the computations is equal to∑n
i=0 ui(x, t) = O(n3).

VIM:
In step 2,

u0 : 6.

u1 : 17.

.

.
un+1 : 17, n ≥ 0.

In step 4, the total number of the computations is equal to∑n
i=0 ui(x, t) = O(17n).

MVIM:
In step 2,

u0 : 6.

u1 : 13.

.

.
un+1 : 13, n ≥ 0.

In step 4, the total number of the computations is equal to∑n
i=0 ui(x, t) = O(13n).

HAM:
In step 2,

u0 : 6.

u1 : 10.

.

.
un+1 : 10, n ≥ 0.

In step 4, the total number of the computations is equal to∑n
i=0 ui(x, t) = 10n + 16 = O(10n).

HPM:
In step 2,

u0 : 6.

u1 : 10.

u2 : 10.

.

.
un+1 : 10n + 16, n ≥ 0.

In step 4, the total number of the computations is equal to∑n
i=0 ui(x, t) = O(n2).
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MHPM:
In step 2,

u0 : 6.
u1 : 13.
u2 : 13.
.
.
un+1 : 10n + 10, n ≥ 2.

In step 4, the total number of the computations is equal to
u0 + u1 + u2 +

∑n
i=3 ui(x, t) = O(n2).

4 Numerical example

In this section, we compute a numerical example which is solved by the ADM, MADM,
VIM, MVIMm HPM, MHPM and HAM. The program is provided with Mathematica 6
according to the following algorithm where ε is a given positive value.

Algorithm 1:
Step 1. Set n← 0.
Step 2. Calculate the recursive relations (2.10) for ADM , (2.13) for MADM, (2.34) for
HAM, (2.39) for HPM and (2.42) for MHPM.
Step 3. If | un+1 − un |< ε then go to step 4, else n← n + 1 and go to step 2.
Step 4. Print u(x, t) =

∑n
i=0 ui(x, t) as the approximate of the exact solution.

Algorithm 2:
Step 1. Set n← 0.
Step 2. Calculate the recursive relations (2.20) for VIM and (2.21) for MVIM.
Step 3. If | un+1 − un |< ε then go to step 4, else n← n + 1 and go to step 2.
Step 4. Print un(x, t) as the approximate of the exact solution.

Example 4.1. Consider the Burgers-Huxley equation as follows:

ut + uux − uxx = u(1− u)(u− 2),

subject to the initial conditions:

f(x) = 1 + tanh(
1
2
x).

Table 1, shows that, approximate solution of the Burgers-Huxley equation is convergent
with 4 iterations by using the HAM . By comparing the results of Table 1 , we can observe
that the HAM is of higher level of convergence than the ADM, MADM, VIM, MVIM,
HPM and MHPM.
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Table 1
Numerical results for Example (4.1)

(x,t)
E

rrors
A

D
M

(n=
16)

M
A

D
M

(n=
13)

V
IM

(n=
9)

M
V

IM
(n=

7)
H

P
M

(n=
8)

M
H

P
M

(n=
7)

H
A

M
(n=

4)
(0.1

,0.15)
0
.080623

0.072725
0
.051647

0
.042458

0.060658
0
.042673

0
.033365

(0.2
,0.18)

0
.081482

0.073668
0
.054562

0
.043461

0.062763
0
.044658

0
.023706

(0.3
,0.28)

0
.083772

0.074235
0
.055651

0
.043736

0.063495
0
.045277

0
.034458

(0.4
,0.34)

0
.084785

0.074788
0
.056351

0
.044386

0.063756
0
.046674

0
.036742

(0
.5,0

.4)
0
.085562

0.075325
0
.057744

0
.044825

0.064347
0
.047706

0
.037173

(0.7
,0.45)

0
.086687

0.075864
0
.058443

0
.045746

0.064832
0
.048248

0
.038785
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5 Conclusion

The HAM has been shown to solve effectively, easily and accurately a large class of non-
linear problems with the approximations which rapidly converge to exact solutions. In
this work, the HAM has been successfully employed to obtain the approximate solution
to analytical solution of the Burgers-Huxley equation. For this purpose, we have showed
that the HAM is of higher level of convergence than the ADM, MADM, VIM, MVIM,
HPM and MHPM. Also, the number of computations in HAM is less than the number of
computations in ADM, MADM, VIM, MVIM, HPM and MHPM.
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