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Abstract

In this paper, the laplace transform formula on the fuzzy two order derivative is inves-
tigated by using the strongly generalized differentiability concept. Then, it is used in a
analytic method for fuzzy two order differential equation. The related theorems and prop-
erties are proved in detail and the method is illustrated by solving some examples.
Keywords : Fuzzy-number, Fuzzy-valued function, Generalized differentiability, fuzzy differential
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1 Introduction

A natural way to model dynamic systems under uncortainty is to use FDEs. Two order
fuzzy differential equations are one of the simplest FDEs which may appear in many
applications. The topic of fuzzy differential equations (FDEs) has been rapidly growing
in recent years. The concept of the fuzzy derivative was first introduced by Chang and
Zadeh [22]; it was followed up by Dubois and Prade [27], who used the extension principle
in their approach. Other methods have been discussed by Puri and Ralescu [44] and
Goetschel and Voxman [30]. Kandel and Byatt [37, 38] applied the concept of FDEs
to the analysis of fuzzy dynamical problems. The FDE and the initial value problem
(Cauchy problem) were rigorously treated by Kaleva [35, 36], Seikkala [45], He and Yi
[40], Kloeden [39] and Menda [42], and by other researchers (see [10, 15, 17, 16, 20,
26, 34]). The numerical methods for solving fuzzy differential equations are introduced
in [1, 2, 7, 32]. A thorough theoretical research of fuzzy Cauchy problems was given by
Kaleva [35], Seikkala [45], Ouyang and Wu [40], and Kloeden [39] and Wu [48]. Kaleva [35]
discussed the properties of differentiable fuzzy set-valued functions by means of the concept
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of H-differentiability due to Puri and Ralescu [44], gave the existence and uniqueness
theorem for a solution of the fuzzy differential equation y' = f(t;y); y(to) = yo when f
satisfies the Lipschitz condition. Further, song and Wu [46] investigate fuzzy differential
equations, and generalize the main results of Kaleva [35]. Seikkala [45], defined the fuzzy
derivative which is the generalization of Hukuhara derivative, and showed that fuzzy initial
value problem y' = f(t;y); y(to) = yo has a unique solution, for the fuzzy process of a
real variable whose values are in the fuzzy number space (E, D), where f satisfies the
generalized Lipschitz condition. Strongly generalized differentiability was introduced in
[12] and studied in [10]. The strongly generalized derivative is defined for a larger class
of fuzzy-valued function than the H-derivative, and fuzzy differential equations can have
solutions which have a decreasing length of their support. So we use this differentiability
concept in the present paper. The fuzzy Laplace transform method solves FTDEs and
corresponding fuzzy two order and boundary value problems. In this way fuzzy Laplace
transforms reduce the problem of solving a FTDE to an algebraic problem. This switching
from operations of calculus to algebraic operations on transforms is called operational
calculus, a very important area of applied mathematics, and for the engineer, the fuzzy
Laplace transform method is practically the most important operational method. The
fuzzy Laplace transform also has the advantage that it solves problems directly, fuzzy two
order value problems without first determining a general solution, and non homogeneous
differential equations without first solving the corresponding homogeneous equation.

The paper is organized as follows:

Section 2 contains the basic material to be used in the paper. In section 3 fuzzy Laplace
transform for two order derivative is defined and Procedure for solving FDEs by fuzzy
Laplace transform is proposed. Several examples are given in section 4, and conclusions
are drawn in section 5.

2 Preliminaries

We now recall some definitions needed through the paper. The basic definition of fuzzy
numbers is given in [25, 31].

By R, we denote the set of all real numbers. A fuzzy number is a mapping v : R — [0, 1]
with the following properties:

(a) w is upper semi-continuous,

(b) w is fuzzy convex, i.e., u(Az + (1 — N)y) > min{u(z),u(y)} for all z,y € R, X € [0,1],
(c) u is normal, i.e.,3zy € R for which u(zy) =1,

(d) supp u = {x € R | u(xz) > 0} is the support of the u, and its closure cl(supp u) is
compact.

Let E be the set of all fuzzy number on R. The r-level set of a fuzzy number v € F,
o <r <1, denoted by [u], , is defined as

[ {zeR|u(x)>r} if 0<r<l1
[ulr = cl(supp u) if r=0

It is clear that the r-level set of a fuzzy number is a closed and bounded interval [u(r), w(r)],
where u(r) denotes the left-hand endpoint of [u], and T(r) denotes the right-hand endpoint
of [u],. Since each y € R can be regarded as a fuzzy number y defined by
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~ 1 if t=y
o if t#y
R can be embedded in E.

Remark 2.1. (See [52]) Let X be Cartesian product of universes X = X1 X ... x X,,, and
Ay, ..., Ay be n fuzzy numbers in Xq,...,X,, respectively. f is a mapping from X to a
universe Y, y = f(z1,...,2n). Then the extension principle allows us to define a fuzzy set
BinY by

B={(y,u(y) |y = f(z1,.., zn), (T1, ..., T1) € X}
where
SUP(xy,...,z0)Ef 1 (y) min{uAl (xl)a e UA, (xn))}a if f_l(y) # 0,
up(y) =

0 if  otherwise.

where f~' is the inverse of f.
For n =1, the extension principle, of course, reduces to

B ={(y,us(y)) |y = f(z),z € X}
where

) { SUPgze f-1(y) ua(z), if fﬁl(y) # 0,
uplY) =
0 if  otherwise.

According to Zadeh’s extension principle, operation of addition on F is defined by
(u ®v)(z) = supyermin{u(y),v(zr —y)}, = €R

and scalar multiplication of a fuzzy number is given by

u(z/k), k>0,
(k©u)(z) = {

0, k=0,
where 0 € E.
It is well known that the following properties are true for all levels

[u ®v], = [ul, + [v], [k © u], = k[ul,

From this characteristic of fuzzy numbers, we see that a fuzzy number is determined by
the endpoints of the intervals [u],. This leads to the following characteristic representation
of a fuzzy number in terms of the two ”endpoint” functions u(r) and u(r). An equivalent
parametric definition is also given in ([29, 41]) as:

Definition 2.1. A fuzzy number u in parametric form is a pair (u,u) of functions u(r),
u(r), 0 <r <1, which satisfy the following requirements:

1. u(r) is a bounded non-decreasing left continuous function in (0,1], and right contin-
uous at 0,
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2. u(r) is a bounded non-increasing left continuous function in (0,1], and right contin-
uwous at 0,

3. u(r) <u(r), 0 <r<1.

A crisp number « is simply represented by u(r) = u(r) = «, 0 < r < 1. We recall that
for a < b < ¢ which a,b,c € R, the triangular fuzzy number u = (a, b, ¢) determined by
a, b, ¢ is given such that u(r) = a + (b — a)r and u(r) = ¢ — (c — b)r are the endpoints of
the r-level sets, for all r € [0, 1].

For arbitrary u = (u(r),u(r)), v = (v(r),v(r)) and k > 0 we define addition v @ v , sub-
traction v © v and scaler multiplication by & as (See [29, 41])

(a) Addition:
u®v = (u(r) +uv(r),a(r) +o(r))

(b) Subtraction:
uSwv = (u(r) —o(r),u(r) —uv(r))

(¢) Multiplication:

u®v = (min{u(r)o(r), u(r)
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(d) Scaler multiplication:

(ku,kw), k>0,
kOu=
(ku, ku), Kk <O.

The Hausdorff distance between fuzzy numbers given by D : E x E — R, |0,

D(u,v) = P max{|u(r) —u(r)], [a(r) = o(r)[},

where u = (u(r),u(r)), v = (v(r),v(r)) C R is utilized (See [12]). Then, it is easy to see
that D is a metric in F and has the following properties (See [43])

(1)D(u ® w,v ®w) = D(u,v), Vu,v,w € E,

(15)D(k ® u, k ©®v) = |k|D(u,v), Vk € R,u,v € E,

(130)D(u @ v,w de) < D(u,w) + D(v,e), VYu,v,w,e € E,

(1V)(D, E) is a complete metric space.

Theorem 2.1. (See [8]) (i) If we define 0 = xo, then 0 € E is a neutral element with
respect to addition, i.e. u P0=00u= u, for all u € F.

(ii) With respect to 0, none of u € E \ R, has opposite in E.

(iii) For any a,b € R with a,b > 0 or a,b < 0 and any u € E, we have (a +b) © u =
a®udbou; for the general a,b € R, the above property does not necessarily hold.

(iv) For any A € R and any u,v € E, we have A® (u®v) =AQud A O v;

(v) For any A\, € R and any u € E, we have A ® (p ® u) = (A\.pu) © u;

Definition 2.2. Let E be a set of all fuzzy numbers, we say that f is fuzzy- valued-function
iff:R—F
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It is well-known that the H-derivative (differentiability in the sense of Hukuhara)for
fuzzy mappings was initially introduced by Puri and Ralescu([44]) and it is based on the
H-difference of sets, as follows.

Definition 2.3. Let z,y € E. If there exists z € E such that © = y ® z, then z is called
the H-difference of = and y, and it is denoted by x —" y.

h»

In this paper, the sign ”—"” always stands for H-difference, and also note that = —"y #

HASKIR
In this paper we consider the following definition which was introduced by Bede and Gal
in ([12, 13]).

Definition 2.4. Let f : (a,b) — E and zy € (a,b). We say that f is strongly generalized
differential at zo (Bede-Gal differential). If there exists an element f (x0) € E, such that

(i) for all h > 0 sufficiently small,
3f(zo +h) © f(z0), If(x0) © fz0 —h)

and the limits(in the metric D)
f(@o) © flwo—h) _

h

or
(ii) for all h > 0 sufficiently small,
Af (w0) © f(xo +h), If(zo—h) S f(z0o)
and the limits(in the metric D)
f@o—h) & f(zo)

h

or
(13i) for all h > 0 sufficiently small,
If(mo + 1) © f(zo), 3f(zo—h) S flxo)
and the limits(in the metric D)
f@o—h) & f(zo)

h

or
() for all h > 0 sufficiently small,
Af(zo) © f(zo + 1),  If(x0) © f(z0 —h)
and the limits(in the metric D)
f(@o) © flwo—h) _ .

h
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(h and —h at denominators mean % and %1, respectively)

Theorem 2.2. (See e.g. [21]) Lety : [0,a] x R — R be continuous and f : [0,a] x E —
E, be the Zadeh s extension of y, i.e., [f(t,x)], = f(t,[x]). If y is non-increasing with
respect to the second argument, using the derivative in Definition (2.4), case (ii), the fuzzy
solution of

y' = f(t;y): y(to) =yo

whenever it exists, coincides with the solution obtained via differential inclusions.

Remark 2.2. These case (iii) and (iv) introduced in [12], in order to ensure a differen-
tiable switch the case (i) and case (ii) in Definition (2.4). Of course, as the authors in
[12] and in [21] have stated, the cases (i) and (ii) in Definition (2.4), are more important
since case (14i) and (i) in Definition (2.4) occur only on a discrete set of points. As an
example supporting these comments, let us consider ¢ € E\R be any fuzzy(non-real) con-
stant and let f :[0,a] x E — E, f(t) = c® cost, t € [0,a]. It is natural to expect that f
is differentiable everywhere in its domain. Let us observe that f is differentiable according
to Definition (2.4) (ii), on each sub interval (2km, (2k + 1)7) and differentiable according
to Definition (2.4)(i), on each interval of the form (2k + 1), (2k)n, k € Z. But, at the
points {km}, k € Z, none of the cases (i) and (ii) in Definition (2.4) are fulfilled. Namely,
at these points the H-differences f(km +h) =" f(kn) and f(kn) =" f(km —h) may not exist
simultaneously. Also, the H-differences f(km) =" f(km+h) and f(kx —h) =" f(kT) cannot
exist simultaneously, so f is not differentiable at km in none of the cases (i) and (ii) of
differentiability in Definition (2.4). Instead, it will be differentiable as in the cases (iii)
and (iv) in Definition (2.4). Another argument for the importance of the cases (iii) and
(iv) in Definition (2.4), is in the Theorem (2.2). Indeed, above stated theorem dose not
cover the case when f(t,z) has not constant monotonicity. In these cases (i) and (ii)
of differentiability in Definition (2.4), so the cases (iii) and (iv) in Definition (2.4) may
become important as switch points. In the special case when f is a fuzzy-valued function,
we have the following result.

Theorem 2.3. (See e.g. [21]). Let f : R — E be a function and denote f(t) =
(f(t,r), f(t,r)), for each r € [0,1]. Then

(1) If f is (i)-differentiable, then f(t,r) and f(t,r) are differentiable functions and

£ = t,m), T (t,7))

(2) If f is (ii)-differentiable, then f(t,r) and f(t,r) are differentiable functions and

£ =7 &), £ (t,7))

Definition 2.5. (See [5, 6]) Let f : (a,b) x E — E and xzy € (a,b). We Define the
nth-order differential of f as follow: We say that f is strongly generalized differentiable
of the nth—order at zo. If there exists an element f(%) (zo) € E, Vs =1,...,n, such
that

(i) for all h > 0 sufficiently small,

3 (o +h) © FO (o), I D(zo) © fFEV(zg — h)
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and the limits(in the metric D)

(s—1) (s—1)
Ill\r‘% f ($0 + h}z S f (x[)) _ Ill\r‘% 0 . — f(s)($0)

or

(i) for all h > 0 sufficiently small,
3FC D (wo) © £ (wo + h), 3fC D (wo — h) o f& D (z0)
and the limits(in the metric D)

. [ (@) o V(@ +h) )
fo “h = b “h = [ (@)

or

(iii) for all h > 0 sufficiently small,
3 (@o + h) © f (o),  IFET(mo — k) © F N (o)
and the limits(in the metric D)

) =D(zg+h)o fE(z )
Ill{l%f ( 0 iz f ( 0) _ 111{‘% — — f(s)($0)

or
(iv) for all h > 0 sufficiently small,
36 (mo) © FE N (wo + 1), FFC(wo) © fO N (wo — 1)
and the limits(in the metric D)

lim FE D zo) © f& V(wo + 1) _ lim FE D zo) © f V(wo —h) _ £ (o)

h\0 —h h\0 h

(h and —h at denominators mean % and _Tl, respectively Vs =1...n)

To more detail about different cases of strongly generalized differentiability see [5, 6]

Definition 2.6. [6] Let f(x) be continuous fuzzy-value function. Suppose that f(x) ®e™P*
improper fuzzy Rimann integrable on [0,00), then fooo f(x)®e Prdz is called fuzzy laplace
transforms and is denoted as:

Lif(z)] = /000 f(z)©e™P*dz  (p > 0 and integer)

we have

/Ooo fz) © e Pdr = (/0°° flz,r) ® e P dr, /[)007(:1:,7“) ® e Prdr)
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also by using the definition of classical laplace transform:
(f = [° f(z,r) © e P"dz and ([f(z,7)]

—fo xr ) @ e Prdx

then, we follow:

L{f ()] = (€l (=, 7)), £[f (. 7))

Theorem 2.4. [6] Let f'(x) be an integrable fuzzy-valued function, and f(z) is the prim-
itive of f'(z) on [0,00). Then

L{f'(z)] = pL[f(z)] =" £(0) where  fis (i) — dif ferentiable

Lf'(z)] = (= f(0)) =" (=pL[f(x)]) where f is (ii) — dif ferentiable

Theorem 2.5. [6] Let f(x), g(x) be continuous-fuzzy -valued functions and cy,co are con-
stant. Suppose that f(z)e P*, g(x)e™P* are improper fuzzy Rimann-integrable on [0, 00),
then

L(crf(x)) ® (c29())] = (eL L{f (2)]) @ (c2Lg(2)])-
Theorem 2.6. [6] Let f be continuous fuzzy value function and L[f(z)] = F(p), Then

L[e* © f(z)] = F(p — a)

where €™ is real value function and p —a > 0.

3 Laplace transform formula on two order fuzzy derivative
and its applications

In this section, by using definition of laplace transform on first-order fuzzy derivative,
laplace transform formula on second-order fuzzy derivative is introduced then laplace
transform method for solving second-order fuzzy differential equation is proposed.

Theorem 3.1. . Let f : R — E be a function and denote f(t) = (f(t,7), f(t,r)), for each
r € [0,1]. Then

(1) If f, f" are differentiable in the first form (i) or f, f' are differentiable in the second
form (i), then f'(t,r) and fl(t,r) are differentiable functions and

(6 = ("), 7 (87))
(2) If f is (i)-differentiable and f' is differentiable in the second form (ii) or f is (ii)-

differentiable and f' is differentiable in the first form (i) , then f'(t,r) and fl(t,r)

are differentiable functions and

£ty = (F'(t,r), £ (t, 7))
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Proof: Since the proof procedure is similar for all two cases, we consider case (1)
without loss of generality.
If f, f' is differentiable in the first form (i), then from theorem (2.3), we have:

F1(t) = (f'(t,r), F (t,7))

now, consider g(t) as follows:

if h > 0 and r € [0, 1], we have

g(t+h) =" g(t) = (g(t + h,r) = g(t,r),g(t + h,r) = G(t,7))

—! —!

= (f'(t—{—h,r) _f,(th)af (t+h,T) - f (t,?“))

and,multiplied by 7, we have:

gt +h) ~"g(t) _ (f(t +hor) = f'(&r) Ft+hr)—F (¢ ),
h h ’ h

similarly,
F'@) =" f't=h) _ (
: =

passing to the limit, we have:

f'tr) = f'(t—=hr) Ft,r)—F (t—h,r)
h

£ty = (f"(t,r), F (t,7))

and If f, f' is differentiable in the first form (ii), then from theorem (2.3), we have:

F1(t) = (F (t,r), f'(t,7))

now, consider g(t) as follows:

if h <0 and r € [0, 1], we have
g(t+h) =" g(t) = (g(t + h,r) — g(t;r),g(t + hyr) = G(t,7))

= (F(t+ hyr) = F (t,7), £ (¢ + hyr) — f'(£,7))

and,multiplied by 7, we have:

glt+h) =" g(t) (f(t +hyr) = () Ft+hr) —F(t 7"))
h o h ’ h

similarly,

f')="fe=h) (f(t,r) —f't=h,r) F(t,r)=F (t—h,r)
h - h h

passing to the limit, we have:

)

’

£ty = (f"(t,r), F (t, 7))
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Definition 3.1. For arbitrary v = (u(r),%(r)),~"u and —"(ou) are defined as follows:
~Mu = (~u(r), —u(r))

~"(©u) = (@(r), u(r))

Theorem 3.2. Let f"(x) be an integrable fuzzy-valued function, and f(z), f'(z) are the
primitive of f'(xz), f"(z) on [0,00). Then

L[/ (#)] =PI ()] =" pf (0) =" £/(0)
where f is (i) — dif ferentiable and f'is (i) — dif ferentiable
or
L[f"(x)] = ="(ep) =" (op) ® L[f(x)] =" -"(op) =" (61) ® f(0) =" -"(e1) ® f'(0)
where  f is (i1) — dif ferentiable and f'is (ii) — dif ferentiable
or
Lf"(2)] = ="(ep?) © L[f(2)] =" —"(op) © f(0) =" ~"(e1) © f'(0)
where  fis (i) — dif ferentiable and f'is (ii) — dif ferentiable
or
Lif"(z)] = ="(ep®) © L[f(z)] =" —"(op) © £(0) =" f'(0)
where  f is (ii) — dif ferentiable and f'is (i) — dif ferentiable

Proof: By induction, it can be proved easily. we shall now discuss how the laplace
transform method solves fuzzy differential equations.
Consider the following fuzzy initial value problem

y tay +by=7(t) ylto) = ko, y'(to) =k

with constant a and b.
By applying the laplace transform method on fuzzy initial value problem, we have:

Lly"] +aL[y] + bLy] = L[7(t)]

Then, by substituting, laplace transform formulas on first and second- order fuzzy deriva-
tive in theorem (2.4) and (3.2) we obtain the following alternatives for solving:
Case I. If we consider y(¢) and y'(¢) by using (i)-differentiable, then we have

p* O Lly®)] =" p © y(to) "4/ (to) ® ap ® Lly(t)] " a © y(to) ® b © L[y(t)] = L[ (t)]
Case II. If we consider y(¢) and y'(¢) by using (ii)-differentiable, then we have

P’ @ Lly(t)] =" p @ y(te) ©y'(to) @ a(~"(&p)) © Lly(1)]
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©a O y(t) ®b O Lly(t)] = L[r(t)]

Case III. If we consider y(t) by using (i)-differentiable and y'(¢) by using (ii)-differentiable,

then we have

(—"(ep?) @ Lly(H)](ep) @ y(ts) © ¥ (to) ® ap ® Ly(t)] =" a ® y(to) ® b ® Lly(t)] = L[F(#)]

Case IV. If we consider y(t) by using (ii)-differentiable and y'(¢) by using (i)-differentiable,
then we have

(—"(ep) © Liy(®)](6p) © y(te) =" /' (to) & (" ©p)a ® L[y(t)]
(©a) ©@y(to) ® b ® Lly(t)] = L[r(t)]

using this representation for four cases, we have the following examples.

4 example

In this section, we present two examples to illustrate the laplace transform method and
also compare the results of this method with other method.

Example 4.1. Consider the one-dimensional heat Let us consider the second order fuzzy
differential equation N
y' =3y +2y=4
y(0) =0
y(0) =1
where 1 = (0.840.2r,1.5—0.57) and 4 = (3.240.8r,5—r). by using fuzzy laplace transform
method, we have: N
Lly"] o 3L[y'] & 2L[y] = L[4]

in (i)—differentiable, then by using case(Il), we have

Liyt,r)] = (32 + 0-87")m + (0.8 + 0.2r)%
G = (5= 1) + (15— 0.5r) —L 2
Lyt =6 —r) oo —gy + (15 =050 — e

Hence solution is as follows:
1 1
y(t:r) = (3:2+0.8)(5 — e’ + 562'5) + (0.8 +0.2r) (2" — €*!)
1 1

gtr) =06 -r)(5 - el + 56”) + (1.5 — 0.57) (2" — €*)

Now, if we consider r =1, then
y(t,1) =7(t,1) = 2 — 2" + €*.
By using H-differentiability and Hukuhara differentiability concepts the following results

are obtained:

4 2
y(t,r) = (—1.6 — 0.4r) cosht — 3 sinht 4 (—0.8 + 0.2r) cosh 2 — 3 sinh 2¢
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1 1 1 1
+§(62t —e72) — g(et —e )+ 5(5 —r)t+ 5(3.2 +0.87r) — 0.8 — 0.2r

y(t,r) = —2cosht — (1.6 + 0.4r) sinh ¢ + cosh 2t + (0.2r — 0.8) sinh 2¢ + g - %r
The disadvantage of strongly generalized differentiability of a function with respect to H-
differentiability and Hukuhara differentiability seems to be that a fuzzy differential equation
has not got a unique solution. So a fuzzy differential equation may have several solutions.
the advantage of the existence of these solutions is that we can choose the solution that
reflects the behavior of the modelled real-world system, in a better way.

Example 4.2. consider the initial value problem equation

y" + dy = 4z
y'(0)=0
y(0) =

where 1 = (0.8 4+ 0.2r,1.5 — 0.5r) and 4 = (3.2 4 0.8r,5 — r). in (ii)—differentiable, then
by using case(I), we have

Lly(t,r)] — py(0,7) — ' (0,r) + 4L[y(t,r)] = L[(3.2 + 0.8r)¢]

Lly(t,r)] = py(0,r) = 7'(0,r) +4L[g(t,r)] = L[(5 — r)t]

Hence solution is as follows:

1
y(t,r) = (0.8 +0.2r)(x — Esin% + cos2t)

1 1
y(t,r)=(5— r)(Zt - gsin%) + (1.5 — 0.57)cos2t

Now, if we consider r =1, then
_ L.
y(t,1) =y(t,1) =z — 53271236 + cos2z

From, examples (4) and (4.2), we see that the solution of a FDE is dependent on the
selection of the derivative: the (i)-differentiable or the (ii)-differentiable.

5 Conclusion

Developing fuzzy Laplace transform, we provided solutions to fuzzy two order differential
equation which was interpreted by using the strongly generalized differentiability concept.
This may confer solutions which have a decreasing length of their support. The efficiency
of method was illustrated by a numerical example.
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