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ember 2010.|||||||||||||||||||||||||||||||-Abstra
tIn this paper, the lapla
e transform formula on the fuzzy two order derivative is inves-tigated by using the strongly generalized di�erentiability 
on
ept. Then, it is used in aanalyti
 method for fuzzy two order di�erential equation. The related theorems and prop-erties are proved in detail and the method is illustrated by solving some examples.Keywords : Fuzzy-number, Fuzzy-valued fun
tion, Generalized di�erentiability, fuzzy di�erentialequation,fuzzy lapla
e transform, fuzzy initial value problem.||||||||||||||||||||||||||||||||{1 Introdu
tionA natural way to model dynami
 systems under un
ortainty is to use FDEs. Two orderfuzzy di�erential equations are one of the simplest FDEs whi
h may appear in manyappli
ations. The topi
 of fuzzy di�erential equations (FDEs) has been rapidly growingin re
ent years. The 
on
ept of the fuzzy derivative was �rst introdu
ed by Chang andZadeh [22℄; it was followed up by Dubois and Prade [27℄, who used the extension prin
iplein their approa
h. Other methods have been dis
ussed by Puri and Rales
u [44℄ andGoets
hel and Voxman [30℄. Kandel and Byatt [37, 38℄ applied the 
on
ept of FDEsto the analysis of fuzzy dynami
al problems. The FDE and the initial value problem(Cau
hy problem) were rigorously treated by Kaleva [35, 36℄, Seikkala [45℄, He and Yi[40℄, Kloeden [39℄ and Menda [42℄, and by other resear
hers (see [10, 15, 17, 16, 20,26, 34℄). The numeri
al methods for solving fuzzy di�erential equations are introdu
edin [1, 2, 7, 32℄. A thorough theoreti
al resear
h of fuzzy Cau
hy problems was given byKaleva [35℄, Seikkala [45℄, Ouyang and Wu [40℄, and Kloeden [39℄ and Wu [48℄. Kaleva [35℄dis
ussed the properties of di�erentiable fuzzy set-valued fun
tions by means of the 
on
ept�Corresponding author. Email address: S.J.Ramazannia�iauba.a
.ir.279
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u [44℄, gave the existen
e and uniquenesstheorem for a solution of the fuzzy di�erential equation y0 = f(t; y); y(t0) = y0 when fsatis�es the Lips
hitz 
ondition. Further, song and Wu [46℄ investigate fuzzy di�erentialequations, and generalize the main results of Kaleva [35℄. Seikkala [45℄, de�ned the fuzzyderivative whi
h is the generalization of Hukuhara derivative, and showed that fuzzy initialvalue problem y0 = f(t; y); y(t0) = y0 has a unique solution, for the fuzzy pro
ess of areal variable whose values are in the fuzzy number spa
e (E, D), where f satis�es thegeneralized Lips
hitz 
ondition. Strongly generalized di�erentiability was introdu
ed in[12℄ and studied in [10℄. The strongly generalized derivative is de�ned for a larger 
lassof fuzzy-valued fun
tion than the H-derivative, and fuzzy di�erential equations 
an havesolutions whi
h have a de
reasing length of their support. So we use this di�erentiability
on
ept in the present paper. The fuzzy Lapla
e transform method solves FTDEs and
orresponding fuzzy two order and boundary value problems. In this way fuzzy Lapla
etransforms redu
e the problem of solving a FTDE to an algebrai
 problem. This swit
hingfrom operations of 
al
ulus to algebrai
 operations on transforms is 
alled operational
al
ulus, a very important area of applied mathemati
s, and for the engineer, the fuzzyLapla
e transform method is pra
ti
ally the most important operational method. Thefuzzy Lapla
e transform also has the advantage that it solves problems dire
tly, fuzzy twoorder value problems without �rst determining a general solution, and non homogeneousdi�erential equations without �rst solving the 
orresponding homogeneous equation.The paper is organized as follows:Se
tion 2 
ontains the basi
 material to be used in the paper. In se
tion 3 fuzzy Lapla
etransform for two order derivative is de�ned and Pro
edure for solving FDEs by fuzzyLapla
e transform is proposed. Several examples are given in se
tion 4, and 
on
lusionsare drawn in se
tion 5.2 PreliminariesWe now re
all some de�nitions needed through the paper. The basi
 de�nition of fuzzynumbers is given in [25, 31℄.By R, we denote the set of all real numbers. A fuzzy number is a mapping u : R! [0; 1℄with the following properties:(a) u is upper semi-
ontinuous,(b) u is fuzzy 
onvex, i.e., u(�x+ (1� �)y) � minfu(x); u(y)g for all x; y 2 R;� 2 [0; 1℄,(
) u is normal, i.e.,9x0 2 R for whi
h u(x0) = 1,(d) supp u = fx 2 R j u(x) > 0g is the support of the u, and its 
losure 
l(supp u) is
ompa
t.Let E be the set of all fuzzy number on R. The r-level set of a fuzzy number u 2 E,o � r � 1, denoted by [u℄r , is de�ned as[u℄r = � fx 2 R j u(x) � rg if 0 � r � 1
l(supp u) if r = 0It is 
lear that the r-level set of a fuzzy number is a 
losed and bounded interval [u(r); u(r)℄,where u(r) denotes the left-hand endpoint of [u℄r and u(r) denotes the right-hand endpointof [u℄r. Sin
e ea
h y 2 R 
an be regarded as a fuzzy number ey de�ned by
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an be embedded in E.Remark 2.1. (See [52℄) Let X be Cartesian produ
t of universes X = X1� :::�Xn, andA1; : : : ; An be n fuzzy numbers in X1; : : : ;Xn, respe
tively. f is a mapping from X to auniverse Y , y = f(x1; :::; xn). Then the extension prin
iple allows us to de�ne a fuzzy setB in Y by B = f(y; u(y)) j y = f(x1; :::; xn); (x1; :::; xn) 2 XgwhereuB(y) = ( sup(x1;:::;xn)2f�1(y) minfuA1(x1); :::; uAn(xn))g; if f�1(y) 6= 0;0 if otherwise:where f�1 is the inverse of f .For n = 1, the extension prin
iple, of 
ourse, redu
es toB = f(y; uB(y)) j y = f(x); x 2 Xgwhere uB(y) = ( supx2f�1(y) uA(x); if f�1(y) 6= 0;0 if otherwise:A

ording to Zadeh;s extension prin
iple, operation of addition on E is de�ned by(u� v)(x) = supy2Rminfu(y); v(x � y)g; x 2 Rand s
alar multipli
ation of a fuzzy number is given by(k � u)(x) = ( u(x=k); k > 0;e0; k = 0;where ~0 2 E:It is well known that the following properties are true for all levels[u� v℄r = [u℄r + [v℄r; [k � u℄r = k[u℄rFrom this 
hara
teristi
 of fuzzy numbers, we see that a fuzzy number is determined bythe endpoints of the intervals [u℄r. This leads to the following 
hara
teristi
 representationof a fuzzy number in terms of the two "endpoint" fun
tions u(r) and u(r). An equivalentparametri
 de�nition is also given in ([29, 41℄) as:De�nition 2.1. A fuzzy number u in parametri
 form is a pair (u; u) of fun
tions u(r),u(r); 0 � r � 1, whi
h satisfy the following requirements:1. u(r) is a bounded non-de
reasing left 
ontinuous fun
tion in (0; 1℄, and right 
ontin-uous at 0,
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reasing left 
ontinuous fun
tion in (0; 1℄, and right 
ontin-uous at 0,3. u(r) � u(r); 0 � r � 1.A 
risp number � is simply represented by u(r) = u(r) = �; 0 � r � 1: We re
all thatfor a < b < 
 whi
h a; b; 
 2 R, the triangular fuzzy number u = (a; b; 
) determined bya; b; 
 is given su
h that u(r) = a+ (b � a)r and u(r) = 
 � (
 � b)r are the endpoints ofthe r-level sets, for all r 2 [0; 1℄.For arbitrary u = (u(r); u(r)), v = (v(r); v(r)) and k > 0 we de�ne addition u� v , sub-tra
tion u	 v and s
aler multipli
ation by k as (See [29, 41℄)(a) Addition: u� v = (u(r) + v(r); u(r) + v(r))(b) Subtra
tion: u	 v = (u(r)� v(r); u(r)� v(r))(
) Multipli
ation:u�v = (minfu(r)v(r); u(r)v(r); u(r)v(r); u(r)v(r)g;maxfu(r)v(r); u(r)v(r); u(r)v(r); u(r)v(r)g)(d) S
aler multipli
ation: k � u = ( (ku; ku); k � 0;(ku; ku); k < 0:The Hausdor� distan
e between fuzzy numbers given by D : E �E �! R+S 0,D(u; v) = supr2[0;1℄maxfju(r)� v(r)j; ju(r)� v(r)jg;where u = (u(r); u(r)), v = (v(r); v(r)) � R is utilized (See [12℄). Then, it is easy to seethat D is a metri
 in E and has the following properties (See [43℄)(i)D(u� w; v � w) = D(u; v), 8u; v; w 2 E,(ii)D(k � u; k � v) = jkjD(u; v), 8k 2 R; u; v 2 E,(iii)D(u � v; w � e) � D(u;w) +D(v; e), 8u; v; w; e 2 E,(iV )(D;E) is a 
omplete metri
 spa
e.Theorem 2.1. (See [8℄) (i) If we de�ne e0 = �0, then e0 2 E is a neutral element withrespe
t to addition, i.e. u� e0 = e0� u = u, for all u 2 E.(ii) With respe
t to e0, none of u 2 E n R, has opposite in E.(iii) For any a; b 2 R with a; b � 0 or a; b � 0 and any u 2 E, we have (a + b) � u =a� u� b� u; for the general a; b 2 R, the above property does not ne
essarily hold.(iv) For any � 2 R and any u; v 2 E, we have �� (u� v) = �� u� �� v;(v) For any �; � 2 R and any u 2 E, we have �� (�� u) = (�:�)� u;De�nition 2.2. Let E be a set of all fuzzy numbers, we say that f is fuzzy- valued-fun
tionif f : R! E
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ed by Puri and Rales
u([44℄) and it is based on theH-di�eren
e of sets, as follows.De�nition 2.3. Let x; y 2 E. If there exists z 2 E su
h that x = y � z, then z is 
alledthe H-di�eren
e of x and y, and it is denoted by x�h y.In this paper, the sign "�h" always stands for H-di�eren
e, and also note that x�hy 6=x	 y.In this paper we 
onsider the following de�nition whi
h was introdu
ed by Bede and Galin ([12, 13℄).De�nition 2.4. Let f : (a; b)! E and x0 2 (a; b). We say that f is strongly generalizeddi�erential at x0 (Bede-Gal di�erential). If there exists an element f 0(x0) 2 E, su
h that(i) for all h > 0 suÆ
iently small,9f(x0 + h)	 f(x0); 9f(x0)	 f(x0 � h)and the limits(in the metri
 D)limh&0 f(x0 + h)	 f(x0)h = limh&0 f(x0)	 f(x0 � h)h = f 0(x0)or(ii) for all h > 0 suÆ
iently small,9f(x0)	 f(x0 + h); 9f(x0 � h)	 f(x0)and the limits(in the metri
 D)limh&0 f(x0)	 f(x0 + h)�h = limh&0 f(x0 � h)	 f(x0)�h = f 0(x0)or(iii) for all h > 0 suÆ
iently small,9f(x0 + h)	 f(x0); 9f(x0 � h)	 f(x0)and the limits(in the metri
 D)limh&0 f(x0 + h)	 f(x0)h = limh&0 f(x0 � h)	 f(x0)�h = f 0(x0)or(iv) for all h > 0 suÆ
iently small,9f(x0)	 f(x0 + h); 9f(x0)	 f(x0 � h)and the limits(in the metri
 D)limh&0 f(x0)	 f(x0 + h)�h = limh&0 f(x0)	 f(x0 � h)h = f 0(x0)
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tively)Theorem 2.2. (See e.g. [21℄) Let y : [0; a℄�R �! R be 
ontinuous and f : [0; a℄�E �!E, be the Zadeh s extension of y, i.e., [f(t; x)℄r = f(t; [x℄r). If y is non-in
reasing withrespe
t to the se
ond argument, using the derivative in De�nition (2.4), 
ase (ii), the fuzzysolution of y0 = f(t; y); y(t0) = y0whenever it exists, 
oin
ides with the solution obtained via di�erential in
lusions.Remark 2.2. These 
ase (iii) and (iv) introdu
ed in [12℄, in order to ensure a di�eren-tiable swit
h the 
ase (i) and 
ase (ii) in De�nition (2.4). Of 
ourse, as the authors in[12℄ and in [21℄ have stated, the 
ases (i) and (ii) in De�nition (2.4), are more importantsin
e 
ase (iii) and (iv) in De�nition (2.4) o

ur only on a dis
rete set of points. As anexample supporting these 
omments, let us 
onsider 
 2 EnR be any fuzzy(non-real) 
on-stant and let f : [0; a℄ �E �! E, f(t) = 
� 
ost; t 2 [0; a℄. It is natural to expe
t that fis di�erentiable everywhere in its domain. Let us observe that f is di�erentiable a

ordingto De�nition (2.4) (ii), on ea
h sub interval (2k�; (2k + 1)�) and di�erentiable a

ordingto De�nition (2.4)(i), on ea
h interval of the form (2k + 1)�; (2k)�, k 2 Z. But, at thepoints fk�g, k 2 Z, none of the 
ases (i) and (ii) in De�nition (2.4) are ful�lled. Namely,at these points the H-di�eren
es f(k�+h)�h f(k�) and f(k�)�h f(k��h) may not existsimultaneously. Also, the H-di�eren
es f(k�)�h f(k�+h) and f(k��h)�h f(k�) 
annotexist simultaneously, so f is not di�erentiable at k� in none of the 
ases (i) and (ii) ofdi�erentiability in De�nition (2.4). Instead, it will be di�erentiable as in the 
ases (iii)and (iv) in De�nition (2.4). Another argument for the importan
e of the 
ases (iii) and(iv) in De�nition (2.4), is in the Theorem (2.2). Indeed, above stated theorem dose not
over the 
ase when f(t; x) has not 
onstant monotoni
ity. In these 
ases (i) and (ii)of di�erentiability in De�nition (2.4), so the 
ases (iii) and (iv) in De�nition (2.4) maybe
ome important as swit
h points. In the spe
ial 
ase when f is a fuzzy-valued fun
tion,we have the following result.Theorem 2.3. (See e.g. [21℄). Let f : R ! E be a fun
tion and denote f(t) =(f(t; r); f(t; r)), for ea
h r 2 [0; 1℄. Then(1) If f is (i)-di�erentiable, then f(t; r) and f(t; r) are di�erentiable fun
tions andf 0(t) = (f 0(t; r); f 0(t; r))(2) If f is (ii)-di�erentiable, then f(t; r) and f(t; r) are di�erentiable fun
tions andf 0(t) = (f 0(t; r); f 0(t; r))De�nition 2.5. (See [5, 6℄) Let f : (a; b) � E ! E and x0 2 (a; b). We De�ne thenth-order di�erential of f as follow: We say that f is strongly generalized di�erentiableof the nth�order at x0. If there exists an element f (s)(x0) 2 E; 8s = 1; : : : ; n, su
hthat(i) for all h > 0 suÆ
iently small,9f (s�1)(x0 + h)	 f (s�1)(x0); 9f (s�1)(x0)	 f (s�1)(x0 � h)
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 D)limh&0 f (s�1)(x0 + h)	 f (s�1)(x0)h = limh&0 f (s�1)(x0)	 f (s�1)(x0 � h)h = f (s)(x0)or(ii) for all h > 0 suÆ
iently small,9f (s�1)(x0)	 f (s�1)(x0 + h); 9f (s�1)(x0 � h)	 f (s�1)(x0)and the limits(in the metri
 D)limh&0 f (s�1)(x0)	 f (s�1)(x0 + h)�h = limh&0 f (s�1)(x0 � h)	 f(x0)�h = f (s)(x0)or(iii) for all h > 0 suÆ
iently small,9f (s�1)(x0 + h)	 f (s�1)(x0); 9f (s�1)(x0 � h)	 f (s�1)(x0)and the limits(in the metri
 D)limh&0 f (s�1)(x0 + h)	 f (s�1)(x0)h = limh&0 f (s�1)(x0 � h)	 f (s�1)(x0)�h = f (s)(x0)or(iv) for all h > 0 suÆ
iently small,9f (s�1)(x0)	 f (s�1)(x0 + h); 9f (s�1)(x0)	 f (s�1)(x0 � h)and the limits(in the metri
 D)limh&0 f (s�1)(x0)	 f (s�1)(x0 + h)�h = limh&0 f (s�1)(x0)	 f (s�1)(x0 � h)h = f (s)(x0)(h and �h at denominators mean 1h and �1h , respe
tively 8s = 1 : : : n)To more detail about di�erent 
ases of strongly generalized di�erentiability see [5, 6℄De�nition 2.6. [6℄ Let f(x) be 
ontinuous fuzzy-value fun
tion. Suppose that f(x)�e�pximproper fuzzy Rimann integrable on [0;1), then R10 f(x)� e�pxdx is 
alled fuzzy lapla
etransforms and is denoted as:L[f(x)℄ = Z 10 f(x)� e�pxdx (p > 0 and integer)we have Z 10 f(x)� e�pxdx = (Z 10 f(x; r)� e�pxdx;Z 10 f(x; r)� e�pxdx)
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lassi
al lapla
e transform:`[f(x; r)℄ = R10 f(x; r)� e�pxdx and `[f(x; r)℄= R10 f(x; r)� e�pxdxthen, we follow: L[f(x)℄ = (`[f(x; r)℄; `[f (x; r)℄):Theorem 2.4. [6℄ Let f 0(x) be an integrable fuzzy-valued fun
tion, and f(x) is the prim-itive of f 0(x) on [0;1). ThenL[f 0(x)℄ = pL[f(x)℄�h f(0) where f is (i)� differentiableorL[f 0(x)℄ = (�f(0))�h (�pL[f(x)℄) where f is (ii) � differentiableTheorem 2.5. [6℄ Let f(x), g(x) be 
ontinuous-fuzzy -valued fun
tions and 
1,
2 are 
on-stant. Suppose that f(x)e�px, g(x)e�px are improper fuzzy Rimann-integrable on [0;1),then L[(
1f(x))� (
2g(x))℄ = (
1L[f(x)℄)� (
2L[g(x)℄):Theorem 2.6. [6℄ Let f be 
ontinuous fuzzy value fun
tion and L[f(x)℄ = F (p), ThenL[eax � f(x)℄ = F (p� a)where eax is real value fun
tion and p� a > 0.3 Lapla
e transform formula on two order fuzzy derivativeand its appli
ationsIn this se
tion, by using de�nition of lapla
e transform on �rst-order fuzzy derivative,lapla
e transform formula on se
ond-order fuzzy derivative is introdu
ed then lapla
etransform method for solving se
ond-order fuzzy di�erential equation is proposed.Theorem 3.1. . Let f : R! E be a fun
tion and denote f(t) = (f(t; r); f(t; r)), for ea
hr 2 [0; 1℄. Then(1) If f; f 0 are di�erentiable in the �rst form (i) or f; f 0 are di�erentiable in the se
ondform (ii), then f 0(t; r) and f 0(t; r) are di�erentiable fun
tions andf 00(t) = (f 00(t; r); f 00(t; r))(2) If f is (i)-di�erentiable and f 0 is di�erentiable in the se
ond form (ii) or f is (ii)-di�erentiable and f 0 is di�erentiable in the �rst form (i) , then f 0(t; r) and f 0(t; r)are di�erentiable fun
tions andf 00(t) = (f 00(t; r); f 00(t; r))
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e the proof pro
edure is similar for all two 
ases, we 
onsider 
ase (1)without loss of generality.If f; f 0 is di�erentiable in the �rst form (i), then from theorem (2.3), we have:f 0(t) = (f 0(t; r); f 0(t; r))now, 
onsider g(t) as follows: g(t) = f 0(t)if h > 0 and r 2 [0; 1℄, we haveg(t+ h)�h g(t) = (g(t+ h; r)� g(t; r); g(t+ h; r)� g(t; r))= (f 0(t+ h; r)� f 0(t; r); f 0(t+ h; r)� f 0(t; r))and,multiplied by 1h , we have:g(t+ h)�h g(t)h = (f 0(t+ h; r)� f 0(t; r)h ; f 0(t+ h; r)� f 0(t; r)h )similarly, f 0(t)�h f 0(t� h)h = (f 0(t; r)� f 0(t� h; r)h ; f 0(t; r)� f 0(t� h; r)h )passing to the limit, we have: f 00(t) = (f 00(t; r); f 00(t; r))and If f; f 0 is di�erentiable in the �rst form (ii), then from theorem (2.3), we have:f 0(t) = (f 0(t; r); f 0(t; r))now, 
onsider g(t) as follows: g(t) = f 0(t)if h < 0 and r 2 [0; 1℄, we haveg(t+ h)�h g(t) = (g(t+ h; r)� g(t; r); g(t+ h; r)� g(t; r))= (f 0(t+ h; r)� f 0(t; r); f 0(t+ h; r)� f 0(t; r))and,multiplied by 1h , we have:g(t+ h)�h g(t)h = (f 0(t+ h; r)� f 0(t; r)h ; f 0(t+ h; r)� f 0(t; r)h )similarly, f 0(t)�h f 0(t� h)h = (f 0(t; r)� f 0(t� h; r)h ; f 0(t; r)� f 0(t� h; r)h )passing to the limit, we have: f 00(t) = (f 00(t; r); f 00(t; r))



288 S.J. R. Tolouti, M. B. Ahmadi = IJIM Vol. 2, No. 4 (2010) 279-293De�nition 3.1. For arbitrary u = (u(r); u(r)),�hu and �h(	u) are de�ned as follows:�hu = (�u(r);�u(r))�h(	u) = (u(r); u(r))Theorem 3.2. Let f 00(x) be an integrable fuzzy-valued fun
tion, and f(x); f 0(x) are theprimitive of f 0(x); f 00(x) on [0;1). ThenL[f 00(x)℄ = p2L[f(x)℄�h pf(0)�h f 0(0)where f is (i)� differentiable and f 0 is (i)� differentiableorL[f 00(x)℄ = �h(	p)�h (	p)� L[f(x)℄�h �h(	p)�h (	1)� f(0)�h �h(	1)� f 0(0)where f is (ii)� differentiable and f 0 is (ii) � differentiableorL[f 00(x)℄ = �h(	p2)� L[f(x)℄�h �h(	p)� f(0)�h �h(	1)� f 0(0)where f is (i)� differentiable and f 0 is (ii) � differentiableorL[f 00(x)℄ = �h(	p2)� L[f(x)℄�h �h(	p)� f(0)�h f 0(0)where f is (ii)� differentiable and f 0 is (i)� differentiableProof: By indu
tion, it 
an be proved easily. we shall now dis
uss how the lapla
etransform method solves fuzzy di�erential equations.Consider the following fuzzy initial value problemy00 + ay0 + by = er(t) y(t0) = ek0; y0(t0) = ek1with 
onstant a and b.By applying the lapla
e transform method on fuzzy initial value problem, we have:L[y00 ℄ + aL[y0 ℄ + bL[y℄ = L[er(t)℄Then, by substituting, lapla
e transform formulas on �rst and se
ond- order fuzzy deriva-tive in theorem (2.4) and (3.2) we obtain the following alternatives for solving:Case I. If we 
onsider y(t) and y0(t) by using (i)-di�erentiable, then we havep2 � L[y(t)℄�h p� y(t0)�h y0(t0)� ap� L[y(t)℄�h a� y(t0)� b� L[y(t)℄ = L[er(t)℄Case II. If we 
onsider y(t) and y0(t) by using (ii)-di�erentiable, then we havep2 � L[y(t)℄�h p� y(t0)	 y0(t0)� a(�h(	p))� L[y(t)℄
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onsider y(t) by using (i)-di�erentiable and y0(t) by using (ii)-di�erentiable,then we have(�h(	p2))�L[y(t)℄(	p)� y(t0)	 y0(t0)� ap�L[y(t)℄�h a� y(t0)� b�L[y(t)℄ = L[er(t)℄Case IV. If we 
onsider y(t) by using (ii)-di�erentiable and y0(t) by using (i)-di�erentiable,then we have(�h(	p2))� L[y(t)℄(	p)� y(t0)�h y0(t0)� (�h 	 p)a� L[y(t)℄(	a)� y(t0)� b� L[y(t)℄ = L[er(t)℄using this representation for four 
ases, we have the following examples.4 exampleIn this se
tion, we present two examples to illustrate the lapla
e transform method andalso 
ompare the results of this method with other method.Example 4.1. Consider the one-dimensional heat Let us 
onsider the se
ond order fuzzydi�erential equation 8<: y00 � 3y0 + 2y = e4y0(0) = e0y(0) = e1where e1 = (0:8+0:2r; 1:5�0:5r) and e4 = (3:2+0:8r; 5�r): by using fuzzy lapla
e transformmethod, we have: L[y00℄	 3L[y0℄� 2L[y℄ = L[e4℄in (i)�di�erentiable, then by using 
ase(II), we haveL[y(t; r)℄ = (3:2 + 0:8r) 1p(p� 1)(p� 2) + (0:8 + 0:2r) p� 3(p� 1)(p� 2)L[y(t; r)℄ = (5� r) 1p(p� 1)(p� 2) + (1:5 � 0:5r) p� 3(p� 1)(p� 2)Hen
e solution is as follows:y(t; r) = (3:2 + 0:8r)(12 � et + 12e2t) + (0:8 + 0:2r)(2et � e2t)y(t; r) = (5� r)(12 � et + 12e2t) + (1:5 � 0:5r)(2et � e2t)Now, if we 
onsider r = 1, theny(t; 1) = y(t; 1) = 2� 2et + e2t:By using H-di�erentiability and Hukuhara di�erentiability 
on
epts the following resultsare obtained:y(t; r) = (�1:6 � 0:4r) 
osh t� 43 sinh t+ (�0:8 + 0:2r) 
osh 2t� 23 sinh2t



290 S.J. R. Tolouti, M. B. Ahmadi = IJIM Vol. 2, No. 4 (2010) 279-293+13(e2t � e�2t)� 13(et � e�t) + 13(5� r)t+ 12(3:2 + 0:8r)� 0:8� 0:2ry(t; r) = �2 
osh t� (1:6 + 0:4r) sinh t+ 
osh 2t+ (0:2r � 0:8) sinh 2t+ 52 � 12rThe disadvantage of strongly generalized di�erentiability of a fun
tion with respe
t to H-di�erentiability and Hukuhara di�erentiability seems to be that a fuzzy di�erential equationhas not got a unique solution. So a fuzzy di�erential equation may have several solutions.the advantage of the existen
e of these solutions is that we 
an 
hoose the solution thatre
e
ts the behavior of the modelled real-world system, in a better way.Example 4.2. 
onsider the initial value problem equation8<: y00 + 4y = e4xy0(0) = 0y(0) = e1where e1 = (0:8 + 0:2r; 1:5 � 0:5r) and e4 = (3:2 + 0:8r; 5 � r): in (ii)�di�erentiable, thenby using 
ase(I), we haveL[y(t; r)℄� py(0; r) � y0(0; r) + 4L[y(t; r)℄ = L[(3:2 + 0:8r)t℄L[y(t; r)℄� py(0; r)� y0(0; r) + 4L[y(t; r)℄ = L[(5� r)t℄Hen
e solution is as follows:y(t; r) = (0:8 + 0:2r)(x � 12sin2t+ 
os2t)y(t; r) = (5� r)(14 t� 18sin2t) + (1:5 � 0:5r)
os2tNow, if we 
onsider r = 1, theny(t; 1) = y(t; 1) = x� 12sin2x+ 
os2xFrom, examples (4) and (4.2), we see that the solution of a FDE is dependent on thesele
tion of the derivative: the (i)-di�erentiable or the (ii)-di�erentiable.5 Con
lusionDeveloping fuzzy Lapla
e transform, we provided solutions to fuzzy two order di�erentialequation whi
h was interpreted by using the strongly generalized di�erentiability 
on
ept.This may 
onfer solutions whi
h have a de
reasing length of their support. The eÆ
ien
yof method was illustrated by a numeri
al example.
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