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Abstract

Recently, it has been obtained a lot of results on hyperconvex space (see [1, 2, 3, 5]). In
this paper we develop some of those results for modular hyperconvex spaces.
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1 Introduction

The theory of hyperconvex space was initiated by Aronzajn and Panitchpakdi [1]. It
was proved that a hyperconvex space is a nonexpansive absolute retract ,i.e. it is a
nonexpansive retract of any metric space in which it is isometrically embedded. Many
interesting results and applications of the theory of hyperconvex spaces in another branch
of mathematics are the base of our motivation to study this subject. For example ,it has
been used in probability and mathematical statistics, boundary-value problems [3], the
inverse function [10], and the existence of solutions of differential equations [9, 12]. The
theory of modular function space was initiated by Nakano in 1950 in connection with the
theory of order spaces and redefined and generalized by Luxemburg and Orlicz in 1959.

The organization of this paper is the following: We start with introducing the defi-
nitions and notations which will be used later. For convenience of readers, we suggest
that one refers to [1, 2, 4, 5, 13]. Section two startes with the proof of the existence
of the selection of Lipschitz set valued mappings T from a modular hyperconvex space
H, that choose their values from the space of the external modular hyperconvex subset
M, ie )(H,). Also we get interesting results by considering intersection of the sets in
modular hyperconvex spaces such as the intersection of a modular admissible subset and
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a externally modular hyperconvex subset with respect to the hyperconvex modular space
H, is externally modular hyperconvex with respect to H,.

Also we show that when the communion of externally modular hyperconvex subsets of a
modular hyperconvex space is nonempty.

2 Preliminaries

Let X be a vector space on R, a function p : X — [0, +0o0] is called modular if for every
z,y in X , (i) p(z) = 0 if and only if z = 0, (ii) p(az) = p(z) , for every a € R where
|a|=1, (iil) p(azx+pBy) < p(z)+p(y) ifa+F =1and a > 0,5 > 0, and p is called convex
modular if | p(az + By) < ap(z) + Bp(y) if a+ 5 =1 and a > 0,8 > 0. By a modular
space we mean X, = {z € X : limy_,g p(Az) = 0}, where p is a modular function on X.
Following Khamsi [3], for a modular space X, the sequence {z,} is called p-convergent
to z if p(z,,z) — x, and it is called p-Cauchy if p(zy,,z,) — 0 as n,m — 0. We will
say that the modular function p satisfies the Fatou property if p(z) < liminf, p(z,) as
T, — x ,where {z,} is a sequence in X,. A modular function p is called complete if
every p- Caushy sequence {z,} is p- convergent. A subset A of X, is called p- closed if
the p-limit of a p-convergent sequence of A always belongs to A. By a p-ball B,(z,r), we
mean {y € X, : p(z —y) <r}.

Finally, a subset A of X, is called p-bounded if

d,(A) =sup{p(z —y) 1 z,y € A} < o0.

We note that p does not behave in general as a metric because p does not satisfy the
triangle inequality. For example p- convergent does not imply p- Caushy. However, p-
balls are p-closed in a modular space X, if and only if they have Fatou property [5].

Definition 2.1. A modular space X, is called modular hyperconvex space if, for any
collection of points {zq}acr of X and for any collection {ry} of non-negative real numbers
such that p(1/2(zq — x3)) < ro + 15 (a, B €T), it follows that ,cp By(Ta,7a) # 0.

If X, is a modular space we show the family of all the nonempty and bounded subset
X, by B,(X,).

Definition 2.2. Let X, be a modular space such that has Fatou property. A subset A of
X, is called modular admissible subset if A is an intersection of p-closed balls in X,.

Definition 2.3. Suppose that X, is a modular space and C' it’s subset. We say that C' is
modular proziminal ,if for each v € X,

C N By(z,dist,(z,C)) # 0
such that
disty(z,C) =inf{p(r —y) : ye C}

Definition 2.4. A subset E of modular space (X,,p) is called externally modular hyper-
convez (with respect to X, ) if for each family of elements {xo}acr in X, and each family
of positive real number {rq}acr such that for every a, 3 € T

disty(za, E) <rT¢o p(i(xa —xg)) <ro+1p
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the following holds
m By(Ta:ra) NE # 0.
a€cl

A,(X,) is the notation of all the nonempty modular admissible subsets X, and ¢,(X,)
is the notation of all the externally modular hyperconvex subsets X, and #,(X,) is the
notation of all the modular hyperconvex subsets X,,.

Definition 2.5. Let A be a subset of a modular hyperconver space X,, set

= sup{p(z —y) : ye A}, zeXy
= inf{r,(4) : z€ X,};
= inf{r,(A) : z € A},

sup{p(z —y) : z,y € AL
{reX, : ry;(A) =r(A)}

= {z€A: ry(A)=r(A)}

= ({B:Bisap—ball and B D A};
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r(A) is called the reduce of A ( relative to X,), diam(A) is called the diameter of A, R(A)
is called Chebyshev radius of A, C(A) is called the Chebyshev center of A, and cov,(A) is
called the cover of A.

The reader can see the proof of the following Lemma in [8].

Lemma 2.1. Let A be a p-bounded subset of modular hyperconvex space X,, then:
1) covy(A) = ({By(z,72(A)) : v € X,}.

2) ry(cov,(A)) = ry(A), for any xz € X,,.

3) r(cov,(A))) = r(A).

4) r(A) = 1/2(diam(A)).

5) diam(cov,(A)) = diam(A).

6) If A = cov,(A), then r(A) = R(A). In particular we have R(A) = 1/2(diam(A)).

If A is a subset of modular space X,, we denote the e— closed neighborhood A with
N:(A) in which
N.(A) ={z € X, : dist)(z,A) <e}.

Definition 2.6. Suppose that A is an arbitrary set. A map T from A to P(A) where
P(A) is the power set of A, is called set-valued mapping.

Definition 2.7. Let T* : X, — B,(X,) is a set-valued mapping. A selection is a map
such as T : X, = X, such that T'(z) € T*(z) for each x € X,,.

Definition 2.8. Suppose that (X1, p1) and (Xo, p2) are modular spaces. we say the map-
ping T : X1 — Xy is A— lipschitzian when there exists X\ > 0 such that for each z,y € X
the following satisfies po(T(z) — T'(y)) < Ap1(z — y).

The smallest X that satisfies in the above relation is called lipschitzian constant and we
note it with Lip(T). If A =1 then we say the above map is nonerpansive.

Lemma 2.2. (lemma 2.2 [8]) If A is a external modular hyperconvex subset or a admissible
modular subset of a modular hyperconvex space H,, then A is the modular proziminal in
H,.
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Lemma 2.3. (lemma 3.2 [§]) Let X, be a modular hyperconvez space and D = (,cp Bp(Za,Ta)-
In this case for each € > 0 we have

N.(D) = ﬂ By(zq,Ta +€).
ael
Definition 2.9. If A and B are bounded and closed subsets in modular space X, we define
Hausdorff distance pg as follows:
pu(A,B) =inf{e >0: AC N.(B) , BC N:(A)}.
Theorem 2.1. (Theorem 2.2 [8]) If X, is a modular hyperconvez space then we have

Ap(Xp) Cep(Xy) CHH(X,).

3 Main results

In this section, we develop some results getting in [4, 7], for modular hyperconvex space.

Theorem 3.1. Let H, be a modular hyperconver space , S is an arbitrary set and T* : S —
ep(H,). Then there exists the map T : S — H, such that for each x € S, T(z) € T*(x)
and for each z,y € S we have

p(T(z) = T(y)) < pu(T"(x),T"(y))-

Proof: Let F' denote the collection of all pairs (D,T), where D C S and for all d € D
and for all z,y in D we have
T:D—H
T(d) € T*(d)

p(T(z) = T(y)) < pu(T*(x), T*(y))
We note that for each z¢ € S, T'(z¢) € T*(z¢), then ({zo},T) € F. Thus we have F' # g.
Now, we define the order relation < on F' as follows

(DlﬂTl) < (D23T2) = Dl C DQ R T2|D1 =1Ti.

Suppose {(Dq,T,)} is the increasing chain in (F, <). So it follows that ({J,cp Do, T) € F
where T'|p, = T,. It is clear that this member is an upper bound for above chain. with
defining order by Zorn’s lemma, the maximal element such as (D, T') in (F, <) exists. Now,
we show that D = S. Assume D # S, therefore there exists the element oy € S\D. Let
b =DU {IL‘U}

Now, consider the following set :

T = ([ Bo(T(w), pr (T* (), T*(x0)))) [ | T* (wo)-

zeD

Since T*(x¢) € €,(H,) we have J # ¢ if and only if for each z € D :
distp(T(z), T"(x0)) < pu(T"(z), T* (20))-

by lemma 2.2 we have T™(zg) € €,(H,) as a modular proximinal subset from H,. The
above is true if and only if for each x € D

Bp(T(z), pu (T" (), T" (0))) N T* (o) # 0.
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By the definition of Hausdorff distance
T*(2) C Ny (7= (2),7 (wo))+= (T (20))-
However by assumption T'(z) € T*(z) so it must be the case that for each ¢ > 0
B (T(w), prr (T (2), T* (20)) + ) 1 T* () £ 0.
Since T*(z¢) is a modular proximinial in H,, this implies that
By(T(x), pr (T"(2), T" (w0))) N T (x0) # 0.

Thus J # ¢. Now choose yo € J and define

oy _ )y ifr=m
T(w) = { T(z) ifreD
On the other hand p(T(xz0) — T(z)) = plyo — T(z)) < pr(T*(x), T*(x0)) (Vz € D).
Thus (D U {zp},T) € F and it has contradiction with maximality of (D, T). Therefore
D=S5.

Corollary 3.1. Suppose that H, is a modular hyperconvez space and (M, p1) is a modular
space and the set-valued mapping T* : M — €,(H,) is nonezpansive i.e, for each z,y € M
, pa(T*(x), T*(y)) < pi(x —y). Then the nonexpansive map T : M — H, exists such that
for each z € M, T'(z) € T*(x).

Proof: By theorem 3.1 and nonexpansive the 7%, there exists the selection T': M —
H, that for each x € M, T'(x) € T*(x) and

p(T(z) = T(y)) < pu(T*(2), T"(y)) < pr(z —y), (Vz,y € M).
Therefore p(T(z) — T(y)) < p1(x —y), thus T is nonexpansive.

Theorem 3.2. Let M, be a bounded modular space and (Hg)ger be a decreasing family of
nonempty modular hyperconvex subsets of M,, where I is totally ordered. Then ﬂ/ﬁer Hg
18 nonempty and modular hyperconver.

Proof: Define F' as the follows:
F ={A=1IgecrAs, Ag € A,(Hg) and (Ag) is decreasing and nonempty }.

Since M, is bounded so Hg is bounded . Thus Hg € A,(Hg). So Hg is not empty and
decreasing then Ilgcr Hg € F and F # ¢.
Since Hg is modular hyperconvex then A,(Hg) is compact for every § € I'. Thus F satisfies
the assumptions of zorn’s lemma when ordered by set inclusion. Hence for every D € F
there exists a minimal element A € F' such that, A C D.
We claim that if A = IIgcr Ag is minimal then there exists 3y € I" such that 6(Ag) = 0 for
every 8 > [y, where 6(A) = diam(A). Let g € T be fixed. For every D C M, define

covp3(D) = m Bo(z,r2(D)).

IEHQ
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Consider A" = Il er A}, where A), = cov,g(Ag) N Ay if a < f and A, = A, if a > 6.

Since A € F then the family (A’a>5) is decreasing . Let o <y < . Since A, C A,
and Ag = cov,s(Ag) N Ag so Al C Af,. Hence the family (Aj,) is decreasing. On the other
hand if & < 3 then cov,g(Ag) N Ay € A,(H,). Since Hg C H, so A}, € Ay(H,). Thus
A’ € F. Since A is minimal this implies that A = A’ which implies

Ay = covyg(Ag) N Ay Va < 6.
Let z € Hg and o < . Since Ag C Ag, then ry(Ag) < ri(Ay). Now cov,p(Ag) =
ﬂerﬂ Bo(x,75(Ag)), then we have cov,g(Ag) C B,(x,7:(Ag)), which implies
rz(cov,p(Ag)) < rp(Ap).
Additionally A, C cov,3(Ag) so
ra(Ag) < 1o(Aa) < re(covyp(Ag)) < 12(Ap).
Therefore we have r,(Ag) = r;(A,) for every x € Hg. Using the definition of r, we get
’I“(Aa) <r(Ap).
Let a € Ay and s = 74(Aq), then a € cov,g(Ag). Since A, C cov,g(Ag) so
a€ ﬂ Bp(x,s) Ncovys(Ag).
J?GAQ
By hyperconvexity of Hg,
Sg=Hgn ﬂ Bo(x,s) Ncovys(Ag) # 0.
CL‘EAB
Let z € Sg, then z € ﬂl’GAﬁ Bp(z, s). Since
Aﬁ = Hﬂ N COUpﬁ(Aﬂ).
It follows that r,(Ag) < s, which implies
r(Ag) < s =r4(A4q)

for every a € A,. Hence

r(Ag) =r(As) Vo,peT.
Assume that §(Ag) > 0 for every 8 € T'. Set Ay = C(Ap) for every B € I'. The family
(Aj) is decreasing. Let o < 8 and = € A}, then r;(Ag) = r(Ag). Since we proved that
r.(Ag) = r;(Ay) for every z € Hg then ry(Ay) = r4(Ag) = r(Ag) = r(Ay), which implies
that z € Al. Therefore

A = HﬁepAlé € F.

Since A" C A and A is minimal, we get that A” = A. Therefore Ay = C(Ag) for every
B € . This is in contradiction to hyperconvexity of Hg for each 8 € I'. Thus there exists
Bo € I" such that 6(Ag) = 0 for every 8 > By .So Ag = {a}for every 8 > [y, which implies
that a € g Hp # 0.
In order to complete the proof, we need to show that S = ﬂﬁer Hpg is modular hyper-
convex. Let (8,,)icr be a family of balls centered in S such that (;c; 8y, # @. Define
Dg = ;e Bp; N Hp for all B € T. Since Hg is modular hyperconvex and the family
(Bp;)ier centered in Hg then Dg is not empty and Dg € A,(Hpg). Therefore Dg is modular
hyperconvex. the above proof shows that [ ger Dp # 0
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Lemma 3.1. Let H, be a modular hyperconver space and E C H, be externally modular
hyperconvex related to H,. Suppose A is a modular admissible subset of H,. Then ENA
is externally modular hyperconvex related to H),.

Proof: Suppose {z,} and {r,} satisfy p(3(za —25)) < ro+rg and dist,(ze, ENA) <
Tq. Since A is admissible, A = (,c; By (i, 7;) and since B,(zq,7a) N A # ¢. It follows that
p(%(:}:a —;)) <ro -+ for each i € I. Since A C B,(x;,7;) it follows that

disty(z;, ENA) <r; , P(§($i—$j)) <ri+r; Vijel.

Therefore by external modular hyperconvexity of
(ﬂ /Bp(xiaTi)) N (m /Bp(xaaTa)) NE = ﬂﬁp(maaTa) N (A N E) # 0.
7 «@ «

Thus E N A is externally modular hyperconvex related to H,.

Theorem 3.3. Let {H;} be a decreasing chain of nonempty modular externally hyper-
convez subsets of a bounded modular hyperconvex space H,. Then M;H; is nonempty and
externally modular hyperconvex in H,.

Proof: By Theorem (3.2) and Theorem (2.1), we have D = (), H; # ¢. To prove D is
externally modular hyperconvex, let {z,} C H and {r,} C R satisfy

1 .
p(i(xa —x8)) <rq+rg , disty(ze,D) <rq.

Since H, is modular hyperconvex we know that A =, 8,(%qa,7a) # 0. also dist,(z4, D) <
ro and dist,(zq, H;) < rq for each 4, so by externally modular hyperconvexity of H; implies
that for each i we have ANH; # ¢. By Theorem 2.1 and lemma 3.1, { ANH;} is a decreasing
chain of nonempty modular hyperconvex subsets of H,. Now by Theorem 3.2, we have

(ANH)=AND #o.

Thus (), H; is nonempty and externally modular hyperconvex in H,.
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